Low micromolar zinc accelerates
- 格式:pdf
- 大小:2.58 MB
- 文档页数:11
33.The price for multiwall carbon nanotubes has droppedfrom a few hundred U.S.dollars per gram in the1990s to about100U.S.dollars per kilogram.See,for example, /details.asp?ArticleID=1108. 34.We gratefully acknowledge financial support for this workfrom the Air Force Office of Scientific Research(grantFA9550-06-1-0384).K.G.thanks L.Qu and J.Zhu for helpwith some initial work.Supporting Online Material/cgi/content/full/323/5915/760/DC1Materials and MethodsFigs.S1to S6Table S1References4November2008;accepted16December200810.1126/science.1168049Anomalously Metal-Rich Fluids Form Hydrothermal Ore DepositsJamie J.Wilkinson,1,2*†Barry Stoffell,1‡Clara C.Wilkinson,1,2†Teresa E.Jeffries,2Martin S.Appold3Hydrothermal ore deposits form when metals,often as sulfides,precipitate in abundance from aqueous solutions in Earth’s crust.Much of our knowledge of the fluids involved comes from studies of fluid inclusions trapped in silicates or carbonates that are believed to represent aliquots of the same solutions that precipitated the ores.We used laser ablation inductively coupled plasma mass spectrometry to test this paradigm by analysis of fluid inclusions in sphalerite from two contrasting zinc-lead ore systems.Metal contents in these inclusions are up to two orders of magnitude greater than those in quartz-hosted inclusions and are much higher than previously thought,suggesting that ore formation is linked to influx of anomalously metal-rich fluids into systems dominated by barren fluids for much of their life.H ydrothermal ore deposits,formed fromthe flow of hot solutions through porousor fractured rocks,are the principal source of metals in Earth’s crust(1).Such large accumulations of metal require concentration of elements hundreds or thousands of times above natural abundance,implying high-mass fluxes through small volumes of rock coupled with ef-ficient precipitation.A fundamental control on the formation of hydrothermal deposits is the ability of the fluid to carry metals in solution(2). Yet,paradoxically,for most deposit types formed at low-to-intermediate temperatures,both direct analysis of fluid inclusions and theoretical cal-culation indicate that the concentrations of dis-solved metals are likely to be low,on the order of tens of parts per million(3).Also,samples of modern crustal fluids,such as those from oil fields or mid-ocean ridges,typically contain only a few parts per million of Cu,Zn,and Pb(4,5), although there are exceptions,such as the Salton Sea geothermal brines in California(6)and oil-field waters from central Mississippi(4).A con-sequence is that the other parameters that govern total metal flux in ore formation(average flow velocity and system lifetime)tend toward their likely geological limits in both numerical simu-lations and empirical models based on geologicaland geochronological constraints(7,8).As aresult,it has been suggested that higher-than-normal concentrations of metal in fluids may berequired to form large ore bodies(9).For several decades,a key source of infor-mation on the physical and chemical conditionsof hydrothermal ore formation has been fluidinclusions trapped during mineral growth(10).Inmost deposits,metalliferous ore minerals(com-monly opaque sulfides)occur together with un-economic transparent phases(gangue).Becausefluid inclusions in the opaque phases are noteasily studied by traditional transmitted light mi-croscopy and microanalytical methods,the na-ture of ore-forming fluids and the conditions ofore-mineral precipitation have often been in-ferred from the properties of inclusions trapped inthe associated gangue minerals.However,it isoften difficult to provide unequivocal evidencefor coprecipitation based on textural observationsor isotopic measurements(11);consequently,un-certainty remains concerning the temporal and,therefore,genetic relationship between gangue-hosted inclusions and the ore-forming process.Several studies that used infrared light microsco-py to observe inclusions in opaque minerals suchas wolframite and cassiterite have shown that theproperties of these fluid inclusions may,indeed,be different(12).We analyzed fluid inclusions in sphalerite(ZnS)from two zinc-lead ore systems with theuse of laser ablation inductively coupled plasmamass spectrometry(LA-ICPMS).Primary inclu-sions in sphalerite must represent the ore-formingfluid because they are trapped during growth ofthe ore mineral itself.Unlike bulk analyticalstudies that are limited to a few major elementsand that may sample multiple populations of in-clusions(13),LA-ICPMS allows determinationof trace elements(including ore metals)in single,texturally constrained inclusions.We selected samples from two well-studiedhydrothermal ore systems.The Northern Arkan-sas district of the Ozark Plateau,North America,is an example of low-temperature MississippiV alley–Type(MVT)zinc-lead mineralization,thought to have formed by continent-scale ba-sinal brine migration(14).The Midlands Basinorefield in Ireland contains several large zinc-lead(-barium)ore deposits formed from moderatetemperature fluids generated by deep crustalcirculation of seawater-derived brines duringcontinental rifting(15,16).Both systems areeconomically noteworthy but provide a contrastin terms of sources of metals,sulfur,and hydro-logical regime.Lead is of particular interest be-cause it needs to be concentrated above averagecrustal abundance more than any other commonore-forming element(~4000times)to form apotentially economic accumulation.Samples from Northern Arkansas were col-lected from exposures in the Monte Cristo andPhiladelphia Mines of the Rush subdistrict andfrom the Lucky Dog Mine of the TomahawkCreek subdistrict.They comprise fine-to coarse-grained crystalline quartz and medium-tocoarse-grained pale yellow–to–brown sphalerite.Regionally,precipitation of sphalerite typicallyoverlapped with that of jasperoid and finelycrystalline quartz,and more coarsely crystallinequartz formed later(17).Samples from Irelandwere collected from historic mine exposures anddrill core from the Silvermines deposit,as well asfrom quarry outcrop of quartz-sulfide veins near-by.The deposit samples are composed of mas-sive sulfide dominated by coarse-grained brownsphalerite that replaces early disseminated gran-ular and framboidal pyrite.The vein sample iscomposed of quartz and ankerite,as well asminor sphalerite and galena,and was selected asa representative example of a regionally devel-oped set of feeder veins developed underneaththe ore deposits(18,19).Salinity data derived from freezing experi-ments(20)show that the Northern Arkansasmineralization formed from brines,typical ofMVT deposits(Fig.1).Assuming fluids weretrapped at hydrostatic pressure at depths of<2km,the inferred depth of ore formation(14),wecalculated an isochoric correction of<+10°C torecorded homogenization temperature(T h)val-ues to give true trapping temperatures.Thus,T hcan be regarded as a reasonable approximation offluid temperature during mineral growth.Inclu-sions from the Irish samples display lower salin-1Department of Earth Science and Engineering,Imperial College London,South Kensington Campus,Exhibition Road,London SW72AZ,UK.2Department of Mineralogy, Natural History Museum,Cromwell Road,London SW7 5BD,UK.3Department of Geological Sciences,University of Missouri–Columbia,101Geological Sciences Building, Columbia,MO65211,USA.*To whom correspondence should be addressed.E-mail: j.wilkinson@†Present address:Australian Research Council Centre of Excellence in Ore Deposits(CODES),Private Bag126, University of Tasmania,Hobart,Tasmania7001,Australia.‡Present address:Rio Tinto Mining and Exploration Limited,2Eastbourne Terrace,London W26LG,UK.ity and higher T h values than the MVT fluids (Fig.1),typical for the Irish orefield (11).For the Irish ores,which formed at shallow depth (16,19),any correction to homogenization tem-peratures will again be small so that T h values can be regarded as a good proxy for fluid trapping temperature.Laser ablation analyses were carried out with the use of a New Wave UP213AI,213-nm aperture-imaged laser ablation system (20–22)on primary fluid inclusions interpreted to haveformed during initial mineral growth based on con-ventional petrographic criteria (10).Some second-ary inclusions,formed during later fracturing and annealing,were analyzed for comparison (Fig.2).Lead and other elements of interest in hydrothermal systems such as Ba and Mn are clearly present in the fluid phase,as indicated by their good corre-lation with Cl in inclusion signals (Fig.3).Full data are reported in tables S1and S2(20).Zn concentrations in primary quartz-hosted inclusions from Northern Arkansas are low,rang-ing from 0.12to 12.3parts per million (ppm).In Irish quartz,except for one primary inclusion (14ppm),Zn was below the limitof detection (mean =37.6ppm)because of the small inclu-sion size.Such low Zn concentrations are con-sistent with previously reported bulk analyses of 3.4to 6.0ppm (16).Unfortunately,we were not able to measure the Zn concentration of inclu-sions trapped in sphalerite because of the over-whelming host mineral contribution to the laser ablation signal.A similar problem also occurred for Cu (Fig.3).However,Pb can be used as an indicator of the ore metal content of these inclusions,as it does not substitute appreciably into sphalerite,and its presence there can be cor-rected for (20).In Northern Arkansas,Pb concentrations dis-play a marked bimodal distribution,ranging from 0.2to 3.5ppm in quartz and primarily from 10to 400ppm in sphalerite (Fig.4).This excludes five sphalerite-hosted inclusions that fall in the lower population,interpreted to represent unrecognized secondary inclusions trapping fluid related to the later quartz.The quartz-hosted inclusion data are consistent with a 266-nm LA-ICPMS study that found that fluid inclusions in gangue minerals from the Southeast Missouri MVT district con-tained Pb,Zn,and Cu concentrations below in-strumental detection limits of ~10ppm (23).The Monte Cristo and Philadelphia sphalerites have similar mean Pb concentrations (80ppm)that are lower than the Lucky Dog sphalerites (119ppm).In Ireland,we also observed a distinction between the Pb content of primary inclusions in quartz (3.6to 26ppm)and sphalerite (22to 890ppm)(Fig.4).The quartz-hosted inclusion data are consistent with bulk fluid inclusion analyses for Irish feeder veins that gave Pb concentrations of 11.4to 19.8ppm (16).The more saline pri-mary inclusions in sphalerite 75-85-104have a higher mean Pb concentration (430ppm)than theFig.1.(A )Quartz wafer from Northern Arkansas showing primary growth zones (GZ).(B )Magnification of inset shown in (A)illustrating complex distribution of fluid inclusions,together with some secondary trails (S)and selected primary inclusions (P)within growth clusters.(C )Sphalerite wafer from Ireland showing growth zones defined by fine fluid inclusions and color banding,together with euhedral primary inclusions.(D )Plot of fluid temperature and salinity data derived from microthermometry.Salinity was estimated from the freezing point depression of ice,modeled in the NaCl-H 2O system (20).For Northern Arkansas [data previously shown in (17)],quartz from Monte Cristo and sphalerite (Sp)from Monte Cristo and Philadelphia contain apparently identical primary inclusions.Slightly lower salinity primary inclusions are found in sphalerite from the Lucky Dog mine (20km to the southwest),indicating geographic variability in brine composition.In the Irish Orefield,UG-1sphalerite contains primary and secondary inclusions of a less saline brine [12to 15weight percent (wt %)NaCl equivalent]and a trail of inclusions of more saline fluids (16to 18wt %NaCl equivalent).This cuts a growth zone boundary (Fig.2),indicating that these fluids are younger than this surface and its associated primary inclusions,but the exact timing with respect to other inclusions in the sample is uncertain (U).Fluids in the more saline population are trapped as primary inclusions in sphalerite 75-85-104.The data display a bimodal salinity distribution that mirrors the distribution observed in regional-scale fluid inclusion studies (see histogram at right),suggesting that these modes reflect multiple pulses of districtwide flow affecting a rock volume estimated at >130,000km 3.Analogous brine pulses have been inferred in the recent history of the Salton Trough geothermal field (6).The evidence noted above,together with crosscutting relations observed in other samples,suggests that the higher salinity fluid pulse is later and is associated with the majority of the sphalerite in the district.The inclusions analyzed by LA-ICPMS in sphalerite sample 75-85-104are not plotted because homogenization experiments could not be carried out due to problems with leakage.Fig.2.Transmitted light digital photomontage of double-polished fluid inclusion wafer (~100m m thick)of Irish sphalerite UG-1.Shown are individ-ual fluid inclusions analyzed (numbered)and average determined Pb concentrations for each population of primary,secondary,or uncertain inclusions (same as those referred to in Fig.1).inclusions in sphalerite UG-1(120ppm);sec-ondary inclusions in both samples display similar,lower concentrations.Two secondary inclusions in quartz contained higher metal concentrations (27to 128ppm)(Fig.4)than the primary in-clusions,indicating overprinting by later,more metalliferous fluids such as those trapped in sphalerite.Pb and Zn concentrations are commonly correlated in hydrothermal solutions as a result of their similar geochemical behavior andpotential buffering by their respective sulfides (4,24).This is illustrated by their empirical covariation in modern basin brines (4,6,24–26)and in the quartz-hosted inclusions in this study (above ~1ppm)where both metals were de-termined (Fig.4).This relation allows us to model the likely range of Zn concentrations to be expected in the sphalerite-hosted inclusions at the time of trapping:up to 5000ppm in Irish sphal-erite and 3000ppm in Northern Arkansas.The latter estimate is ~60%of the value predictedtheoretically from thermodynamic data using measured Pb concentrations,assuming galena and sphalerite saturation and making reasonable assumptions about pH and oxygen fugacity (17).Although these are only order-of-magnitude estimates,it is clear that the fluids precipitating sphalerite were markedly enriched in Pb and Zn compared with those precipitating quartz in the two systems.It could be argued that the fluid inclusions in quartz represent spent ore fluids,trapped after sulfide precipitation had already taken place.This is thought to be unlikely in the Irish deposits because the quartz was sampled from largely barren vein systems that formed beneath the ore deposits,in hydrothermal upflow zones (16),and the fluids show no signs of having substantially cooled or mixed (Fig.1),as is known to occur during mineralization (16,19).In the Tri-State MVT district,we found sphalerite-and quartz-hosted brine inclusions to have distinct halogen signatures,indicating that the fluids had separate origins (17).The fertile ore fluids appear to have originated during strong evaporation of seawater at Earth ’s surface,before later burial and expul-sion.This observation contrasts with the barren fluids that evolved from less strongly evaporated seawater (17).The metalliferous fluids are there-fore linked to the paleoclimate and the specific characteristics of the sedimentary aquifer within which they were trapped.The development of low-pH surface brines in the U.S.mid-continent in the Permian via sulfide oxidation (27)is an intriguing possible origin for such metal-prone fluids.Not only will unusually low pH enhance metal solubilization,but the reservoir rocks will be depleted in reduced sulfur that would other-wise limit metal take-up.The nonideal behavior of Cl at high ionic strengths,coupled with low pH and chloride complexing,has been cited as a control of high Zn and Pb concentrations in the most saline modern oil-field waters (6),but this does not account for the low metal concentrations observed in similar salinity brines in some oil fields or those trapped in gangue minerals in this study (Fig.4).Irrespective of the origin,both numerical models (8)and empirical observation(A ).Example of a time-resolved laser spectrum for a fluid inclusion in (primary inclusion 9,Irish sphal-erite 75-85-104).Initially,gas background was acquired and then the laser was turned on at 24s.Signals for 66Zn and 65Cu increase as sphalerite begins to be ablated.The inclusion was breached at ~52s.The signal was integrated offline over an ~16-s interval.The y axis is scaled from maximum to mini-mum recorded counts per second (cps)for each individual isotope.(B )The good corre-lations between the intensity for 35Cl (only present in the fluid inclusion)and all iso-topes measured (except 65Cu)through the integration interval confirms their predomi-nance in the fluid phase.This analysis returned 160ppm Li,530ppm Mg,7740ppm K,17500ppm Ca,530ppm Mn,2750ppm Sr,1770ppm Ba,and 61ppm Pb.Fig.4.Concentrations of Zn versus Pb in quartz-hosted fluid inclusions and histograms showing measured Pb concentrations in quartz-and sphalerite-hosted inclusions,compared with natural brine data from broadly analogous environments.Predicted Pb-Zn covariation for sphalerite-hosted inclusions indicated by fields,based on the extrapolation of empirical Pb-Zn concentrations,including data from modern oil-field waters (24,25)adjusted to mass/mass units and from the Salton Sea geothermal field (6).Both of these data sets have values that fall in our “high-metal ”fluid fields,suggesting that they are anomalously metalliferous and viable ore-forming fluids.Typical Zn:Pb ratios (by mass)for natural fluids are in the range of 1to 10(dashed lines)and tend toward higher values at elevated concentrations.Five data points from the Northern Arkansas data set with low detected Pb are inferred secondary inclusions.Short bars on symbols indicate that the plotted value is a maximum (limit of detection)value for that element.Qz,quartz;Sp,sphalerite;MC,Monte Cristo;PA,Philadelphia;LD,Lucky Dog.Some of the Northern Arkansas data shown are presented in (17),figures 6and 7.of brine heterogeneity in modern sedimentary basins(6)imply inefficiency of mixing and the potential for preservation of individual,metal-charged brine reservoirs that could be tapped at some later time.In the case of Ireland,the origin of metal-enriched fluids is uncertain,although a deepening convective flow system(15)has the capability to extract higher concentrations of metal later in the life of the system due to increasing temperature and possibly also progressive exhaustion of the buffer capacity for pH(by feldspar-mica)or the activity of H2S(by pyrite-Fe silicate)on the convective flow path.The observation that the texturally later brines have higher metal contents is consistent with this model,although their higher salinity is also likely to have contributed to enhanced metal transport.The high Ba content of the metalliferous fluids(up to6000ppm) indicates that the oxidized sulfur content must have been low,limited by barite saturation. Combined with high base metal concentrations that imply low reduced sulfur concentrations,we conclude that a key property of these fluids was low S S(total sulfur concentration).High metal concentrations may pertain in other types of hydrothermal ore systems,such as epithermal or volcanic-hosted massive sulfide deposits.In these environments,periodic injec-tion of metalliferous magmatic fluids may be responsible for the bulk of metal introduction (28–30)into systems otherwise dominated by barren geothermal waters.A number of large, high-temperature,magmatic-hydrothermal de-posits are also known to have formed from magmatic fluids that contained very high con-centrations of ore metals(31–33).Accepting that hydrothermal ores may form specifically from anomalously metal-rich batches of fluid implies geochemically specialized source regions and anepisodicity and potentially short duration of ore-forming events that may be controlled by changesin hydrology.Although the existence of an ef-ficient trap for these metals remains a fundamentalprerequisite for hydrothermal ore formation,ourinterpretation contrasts with the view that manycrustal fluids are viable ore fluids subject to theright perturbations in physicochemical conditionsto cause efficient deposition(24).References and Notes1.H.L.Barnes,A.W.Rose,Science279,2064(1998).2.D.L.Huston,J.Aust.Geol.Geophys17,15(1998).3.T.M.Seward,H.L.Barnes,in Geochemistry ofHydrothermal Ore Deposits,H.L.Barnes,Ed.(Wiley,NewYork,ed.3,1997),pp.435–486.4.J.S.Hanor,in Carbonate-Hosted Lead-Zinc Deposits,Society of Economic Geologists Spec.Publ.4(Society ofEconomic Geologists,Littleton,CO,1996),pp.483–500.5.K.L.Von Damm,Annu.Rev.Earth Planet.Sci.18,173(1990).6.M.A.McKibben,L.A.Hardie,in Geochemistry ofHydrothermal Ore Deposits,H.L.Barnes,Ed.(Wiley,NewYork,ed.3,1997),pp.877–936.7.G.Garven,M.S.Appold,V.I.Toptygina,T.J.Hazlett,Hydrogeol.J.7,108(1999).8.M.S.Appold,G.Garven,Econ.Geol.95,1605(2000).9.C.J.Hodgson,in Giant Ore Deposits,Society of EconomicGeologists Spec.Publ.2(Society of Economic Geologists,Queens Univ.,Golden,CO,1993),pp.1–2.10.E.Roedder,Fluid Inclusions,Reviews in Mineralogy,vol.12(Mineralogical Society of America,Washington,DC,1984).11.J.J.Wilkinson,Lithos55,229(2001).12.A.R.Campbell,K.S.Panter,Geochim.Cosmochim.Acta54,673(1990).13.J.G.Viets,A.H.Hofstra,P.Emsbo,in Carbonate-HostedLead-Zinc Deposits,Society of Economic Geologists Spec.Publ.4(Society of Economic Geologists,Littleton,CO,1996),pp.465–482.14.D.L.Leach,in Sediment-Hosted Zn-Pb Ores(Springer,Berlin,1994),pp.104–138.15.M.J.Russell,in Geology and Genesis of Mineral Depositsin Ireland(Irish Association for Economic Geology,Dublin,1986),pp.545–554.16.J.J.Wilkinson,C.E.Everett,A.J.Boyce,S.A.Gleeson,D.M.Rye,Geology33,805(2005).17.B.Stoffell,M.S.Appold,J.J.Wilkinson,N.A.McClean,T.E.Jeffries,Econ.Geol.103,1411(2008).18.C.E.Everett,J.J.Wilkinson,D.M.Rye,in Fractures,FluidFlow and Mineralization,Geological Society of LondonSpec.Publ.155(Geological Society of London,London,1999),pp.247–276.19.I.M.Samson,M.J.Russell,Econ.Geol.82,371(1987).20.Materials and methods are available as supportingmaterial on Science Online.21.B.Stoffell,J.J.Wilkinson,T.E.Jeffries,Am.J.Sci.304,533(2004).22.T.E.Jeffries,S.E.Jackson,H.P.Longerich,J.Anal.At.Spectrom.13,935(1998).23.M.S.Appold,T.J.Numelin,T.J.Shepherd,S.R.Chenery,Econ.Geol.99,185(2004).24.B.Yardley,Econ.Geol.100,613(2005).25.A.B.Carpenter,M.L.Trout,E.E.Pickett,Econ.Geol.69,1191(1974).26.Y.K.Kharaka et al.,Appl.Geochem.2,543(1987).27.K.C.Benison,R.H.Goldstein,B.Wopenka,R.C.Burruss,J.D.Pasteris,Nature392,911(1998).28.S.F.Simmons,K.L.Brown,Science314,288(2006).29.C.A.Heinrich,Science314,263(2006).30.T.Ulrich,S.D.Golding,B.S.Kamber,K.Zaw,Ore Geol.Rev.22,61(2003).31.T.Ulrich,D.Günther,C.A.Heinrich,Nature399,676(1999).32.A.C.Harris,V.S.Kamenetsky,N.C.White,E.vanAchterbergh,C.G.Ryan,Science302,2109(2003).33.B.Rusk,M.Reed,J.H.Dilles,L.Klemm,C.A.Heinrich,Chem.Geol.210,173(2004).34.This work was supported by an Imperial College AlbertJulius Bursary to B.S.and National Environment ResearchCouncil grant GR9/03047.We thank B.Coles and R.Garcia-Sanchez for laboratory support and the NaturalHistory Museum–Imperial College London Joint AnalyticalFacility for access to instrumentation.The constructivecomments of three anonymous reviewers are appreciated.Supporting Online Material/cgi/content/full/323/5915/764/DC1Materials and MethodsTables S1and S2References8August2008;accepted4November200810.1126/science.1164436Signature of the End-Cretaceous Mass Extinction in the Modern BiotaAndrew Z.Krug,1David Jablonski,1James W.Valentine2The long-term effects of mass extinctions on spatial and evolutionary dynamics have been poorly studied.Here we show that the evolutionary consequences of the end-Cretaceous [Cretaceous/Paleogene(K/Pg)]mass extinction persist in present-day biogeography.The geologic ages of genera of living marine bivalves show a significant break from a smooth exponential distribution,corresponding to the K/Pg boundary.The break reflects a permanent increase in origination rates,intermediate between the Mesozoic rate and the post-extinction recovery pulse. This global rate shift is most clearly seen today in tropical bioprovinces and weakens toward the poles.Coupled with the modern geographic distributions of taxa originating before and after the K/Pg boundary,this spatial pattern indicates that tropical origination rates after the K/Pg event have left a permanent mark on the taxonomic and biogeographic structure of the modern biota, despite the complex Cenozoic history of marine environments.T he major extinctions of the geologic past, each of which removed>50%of well-preserved genera and perhaps>70%of their species(1,2),irreversibly restructured the taxonomic composition of the global biota.Although the broad macroevolutionary conse-quences of mass extinctions are well known(asin the dinosaurs-mammals changeover),theirlong-term effects on the temporal and spatialdynamics of clades and biotas are rarely inves-tigated.For example,the good fit of modern bio-diversity to local temperatures and to refugiafrom recent glaciations(3,4)might imply that therecovery from the most recent major extinction,at the end of the Cretaceous Period65millionyears ago(Ma)[the Cretaceous/Paleogene(K/Pg)extinction],is largely obscured by subsequentevents.Here,we show the lasting influence of theK/Pg mass extinction on the evolutionary andbiogeographic structure of modern biotas,usingbackward survivorship curves(BSCs,also calledprenascence curves),which plot the proportion oftaxa within a cohort that originated before somereference time(5,6).Assuming that rates aretime-specific and taxonomically homogeneous(5),a BSC defines an exponential probabilityfunction governed only by the origination rate(l)of the cohort(7).The slope of a BSC is insen-1Department of Geophysical Sciences,University of Chicago,5734South Ellis Avenue Chicago,IL60637,USA.2Depart-ment of Integrative Biology and Museum of Paleontology,University of California,Berkeley,Berkeley,CA94720,USA.。
C60:巴克敏斯特富勒烯在以了解星际间和拱星壳中所形成的长链碳的机制为目的的研究中。
石墨被激光器气化,形成了一簇非常稳定的由60个碳原子组成的原子簇。
在什么样的C60结构可以形成十分稳定的原子簇的问题中,我们认为,应该是一种小型化的十二面体,即一个有60个顶点32个面的多边形,其包括12个五边形和20个六边形。
这个东西就像我们常见的如图一所示的足球一样。
构成c60就代表着,每一个被放在顶点的碳原子的化合价由两个单键和一个双键所满足。
它有着许多的共振结构,而且外表很像是芳香族化合物。
制造和发现这种不同寻常的小颗粒与能把碳原子从石墨表面蒸发到高密度氦气流中的蒸馏器有关。
其实这个蒸馏器就是一个强力的脉冲激光器。
这个蒸发激光器是一个由光量开关控制的能够产生出大约30mJ能量的二次简谐波Nd:YAG(钇铝石榴石激光器)。
这些作为气化结果的碳原子簇,就在超声速的C原子流中不断膨胀(生长)。
然后利用准分子激光使其电离,并利用光谱法测量其质量。
气化室如图二所示。
在实验中,先打开脉冲阀,然后再精准的时间控制之后,点火气化激光器,石墨片就被气化在了氦气流中,在其中冷却和进行部分平衡膨胀。
这些膨胀(生长)完成的颗粒然后再被吹到一个电离区内。
然后这些原子簇由一个仔细同步过的脉冲激光器进行单光子激发电离。
碳的气化早先就在一个与之非常相似的仪器内被研究过。
在那项研究中,由190个碳组成的原子簇曾被发现,而且只发现了超过四十个碳原子且原子个数为偶数的原子簇(富勒烯)被发现。
在ref.6的质量波普显示器上,C60是规格超过40的原子团中数量最多的,但他并非完全是主要部分,我们最近重新测试了这个体系,而且发现在这种聚合条件下,C60的峰值可达到与其相邻的的原子团峰值的40倍以上。
图三显示了一系列原子簇的分布,这些分布图线是在气化条件变动的情况下的ref.3中相似的原子簇分布图线进化而来的,在其中C60是主要的。
图三c中,在气化激光器点火被延误直到绝大多数氦电子脉冲停止后,一个巨多量带有38-120个原子的约为高斯分布的原子团产生了。
偏钒酸铵作为氧化剂英文回答:Ammonium perchlorate (NH4ClO4), commonly known as AP,is a powerful oxidizer used in various applications, suchas rocket propellants, explosives, and fireworks. As an oxidizer, it provides oxygen for the combustion process by releasing oxygen molecules during decomposition.One of the key properties of ammonium perchlorate isits high oxygen content. It contains a large amount of oxygen in its molecular structure, making it an excellent source of oxygen for combustion reactions. When AP decomposes, it releases oxygen gas, which combines with a fuel to sustain and enhance the combustion process.For example, in solid rocket propellants, ammonium perchlorate is mixed with a fuel, such as powdered aluminum. When the propellant is ignited, AP decomposes and releases oxygen gas, which reacts with the aluminum to form aluminumoxide and additional heat. This exothermic reactionsustains the combustion process and provides the thrust required for propulsion.In addition to its high oxygen content, ammonium perchlorate also has other desirable properties for use as an oxidizer. It has a high stability, meaning it can be stored for extended periods without significant degradation. It also has a high solubility in water, which allows it to be easily incorporated into various formulations.However, it is important to handle ammonium perchlorate with care due to its potential for explosive reactions. When mixed with certain organic compounds or fuels, it can become highly sensitive and prone to detonation. Therefore, strict safety measures and proper handling procedures are essential when working with AP.中文回答:偏钒酸铵(NH4ClO4),通常称为AP,是一种强氧化剂,广泛应用于火箭推进剂、炸药和烟花等领域。
第39卷第2期河南大学学报(自然科学版)Vol.39 No.2 2009年3月Journal of Henan University(Natural Science)Mar.2009微波加热条件下氯化锌催化合成乙酸乙酯陈蔚萍1,陈迎伟2,王慧琴3,乔聪震1(1.河南大学化学化工学院,河南开封475004; 2.塔里木中原钻井液公司,新疆塔里木841000;3.开封东大化工集团,河南开封475003)摘 要:以冰醋酸和无水乙醇为原料,氯化锌为催化剂,采用微波加热法合成乙酸乙酯.探讨了酸醇比、催化剂用量、微波功率和辐射时间对合成乙酸乙酯产率的影响.得出最佳的反应条件为酸醇摩尔比2∶1、催化剂质量百分数1.5%、辐射时间6min和微波功率400W,合成乙酸乙酯的产率为78.36%.关键词:微波;氯化锌;乙酸乙酯;催化中图分类号:O623.611 文献标志码:A文章编号:1003-4978(2009)02-0145-03Synthesis of Ethyl Acetate C atalyzed by Zinc Chlorideunder the Conditions of Microw ave H eatingC H EN Wei2ping1,CH EN Y ing2wei2,WAN G Hui2qin3,Q IAO Cong2zhen1(1.College of Chemist ry and Chemical Engineering,Henan Universit y,Henan Kai f eng475004,China;2.Zhong y uan D rilling Fl ui d Com pany of Talim u,X inj iang Talim u841000,China;3.East bi g Kai f eng Chemical Group,Henan Kai f eng,475003,China)Abstract:By taking the glacial acetic acid and the absolute ethyl alcohol as raw materials,this paper synthesized ethyl acetate by adopting microwane heating method and used zinc chloride as catalyst.The effects of the ratio of acid and alcohol,the comount use of catalyst,the power of microwave and the time radiation on the production of ethyl acetate were discussed in the paper.The optimized reaction conditions were two to1ratio for the mole ratio of acid and alcohol, 1.5mass percent for the catalyst,six minutes for the radiation and four hundred watt for microwave.Under the above conditions,the production of the ethyl acetate was78.36percent.K ey w ords:microwave;zinc chloride;ethyl acetate;catalysis0 引言乙酸乙酯(et hyl acetate,EA)是一种工业用途十分广泛的化合物.它具有优异的溶解性能,是一种快干性的工业溶剂,被广泛用于涂料、醋酸纤维、乙基纤维素、人造革、油毡着色剂、氯化橡胶、乙烯树脂、乙酸纤维树脂、合成橡胶等生产中,也可用于生产复印机用的液体硝基纤维墨水.在纺织工业中用作清洗剂;在食品工业中是最重要的香料添加剂,可作为调香剂的组分;乙酸乙酯也可作为粘合剂用于印刷油墨、人造珍珠的生产;还可用作油漆的稀释剂以及制造药物、染料的原料.因此,乙酸乙酯的合成方法及其催化剂的研究一直被人们所关注.传统的生产工艺是用冰醋酸和无水乙醇为原料,以浓硫酸作催化剂直接合成,但用浓硫酸作催化剂有以下缺点:硫酸是氧化性酸,对反应设备腐蚀严重,生产成本高[1-2].有人用铌酸作催化剂在微波场中合成乙酸乙酯[3],减轻了腐蚀问题,但催化剂成本还比较高.本课题在微波场[4-6]中用氯化锌作催化剂合成乙酸乙酯.该方法可避免传统方法中的腐蚀性强的缺点,并且用微波加热,加热快速、均匀、效率高,操作方便,可大大地缩短反应时间,具有很好的工业应用价值. 收稿日期:2008210212 基金项目:河南省科技攻关项目(0524270049) 作者简介:陈蔚萍,女,河南南阳人,副教授.研究方向:纳米材料,绿色化工.E2mail:chwp@146 河南大学学报(自然科学版),2009年,第39卷第2期1 实验部分1.1 药剂与仪器冰醋酸(分析纯,天津市化学试剂一厂);无水乙醇(分析纯,天津市化学试剂一厂);氯化锌(分析纯,上海新宝精细化工厂);无水碳酸钠(分析纯,河南焦作市化工三厂);氯化钠(分析纯,天津市化学试剂三厂);无水氯化钙(分析纯),4A型分子筛(无锡市荣得利分子筛厂).电热鼓风干燥箱(上海市实验仪器厂);M P25002电子天平(上海恒平科学仪器厂);NJL0722型实验专用微波炉(南京杰全微波设备有限公司);GC217色谱分析仪(日本岛津).1.2 实验方法准确量取一定量的冰醋酸、无水乙醇和并称取适量的氯化锌后加入50mL事先装有几粒沸石的圆底烧瓶中(反应体系为m酸+m醇=30g),稍加振动,放入微波炉中加热(反应体系装有回流装置).在一定的功率下加热一定时间,加热完毕后冷却至室温,过滤取出沸石.烧杯中的滤液加入适量饱和碳酸钠溶液[7],此时有大量气泡产生.直到没有气泡产生用p H试纸检测为中性时,将混合液转入分液漏斗中静止分层除去下层水溶液,上层有机物用适量饱和氯化钠水溶液洗涤.然后分出酯层,再用适量饱和氯化钙水溶液洗涤,最后再用去离子水洗涤后放出废液,用4A型分子筛除去酯中水分,将处理后的溶液倒入250mL圆底烧瓶中进行蒸馏,收集73~78℃的馏分,称重,用乙酸乙酯作为内标,用气相色谱仪测定各样品溶液中乙酸乙酯的含量,计算乙酸乙酯的产率.1.3 实验原理本实验原理是利用无水乙醇和冰醋酸为原料,以氯化锌作催化剂,用微波作为加热源,其基本反应式为C H3C H2O H+CH3COO H ZnCl2 微波CH3COOCH2CH3+H2O 微波是频率在300M Hz~300GHz之间的电磁波,常用于加热的微波频率一般固定在2450M Hz或900M Hz.微波加热是一种内部加热过程,微波可均匀辐射到反应体系的各个部分,使整个物质同时被加热,在极短时间内达到活化状态,出现分子极化﹑摩擦和碰撞而产生热效应.微波辐射不改变化学反应的动力学特征,即微波对化学反应的加速主要归结对极性有机物置于微波电场中,分子的偶极子重新排列,并随着高频交变电场高速振动,需要克服分子原有的热运动和分子相互间作用的干扰和阻碍,发生类似摩擦的作用,产生大量的热.2 结果与讨论2.1 酸醇摩尔比的变化对乙酸乙酯产率的影响在选定的实验条件下,不同酸醇摩尔比对乙酸乙酯产率的影响见表1.表1 醇酸摩尔比对乙酸乙酯产率的影响Tab.1 The effect of the mole ratio of acid and alcohol on the production of ethyl acetaten(H3COO H)∶n(CH3(H2)O H) 2.5∶1 2.0∶1 1.5∶11∶11∶1.51∶2.0乙酸乙酯的产率/%79.0578.3672.2140.8945.2042.43 注:催化剂0.45g,辐射时间6min,辐射功率400W.由表1知,随着酸醇摩尔比的逐渐增大,乙酸乙酯的产率也显著增加,这是因为酯化反应就其动力学而言属于二级反应,与醇和酸浓度的一次方成正比关系,某一组分过量均能提高产率.考虑到原料成本和产率增加的幅度,本实验合适的酸醇摩尔比为2∶1.2.2 催化剂用量的变化对乙酸乙酯产率的影响催化剂用量的变化对乙酸乙酯产率的影响见表2.表2 催化剂用量对乙酸乙酯产率的影响Tab.2 The effect of the amount used of catalyst on the production of ethyl acetate氯化锌用量/g0.300.450.600.750.90乙酸乙酯的产率/%46.6778.3679.7680.9579.30 注:酸醇摩尔比2∶1,辐射时间6min,辐射功率400W.陈蔚萍,等:微波加热条件下氯化锌催化合成乙酸乙酯147由表2知,当催化剂用量较少时,产品产率较低,原因是水解产生的路易斯酸较少.随着催化剂用量的增大产率逐渐增加,考虑到成本,本实验催化剂选用0.45g最佳.2.3 辐射时间的变化对乙酸乙酯产率的影响辐射时间的变化对乙酸乙酯产率的影响见表3.表3 辐射时间对乙酸乙酯产率的影响Tab.3 The effect of radiation time on the preduction of ethyl ecetate时间/min 1.00 3.00 6.009.0012.00乙酸乙酯的产率/%52.8467.8878.3669.8058.95 注:酸醇摩尔比2∶1,催化剂为0.45g,辐射功率400W. 由表3知,乙酸乙酯的产率随辐射时间增长而增大,当达到一个最大值时,随辐射时间增长产率反而下降.这是因为随着反应时间的增长,温度升高,有两方面的因素影响着产率:一是温度高有反应物挥发,造成产率下降;二是热力学方面的因素.合成乙酸乙酯反应的平衡常数与温度的关系为d(ln K)d T=ΔH m,f R T2.式中ΔH m,f为负值,所以温度升高平衡常数减小,当反应时间长时,反应温度升高,反应平衡向乙酸乙酯水解方向移动,从而造成产率下降.在实验条件下,本反应最佳辐射时间为6min左右.2.4 辐射功率的变化对乙酸乙酯产率的影响辐射功率的变化对乙酸乙酯产率的影响见表4.表4 辐射功率对乙酸乙酯产率的影响Tab.4 The effect of radiation power on the production of ethyl acetate功率/W320360400440480乙酸乙酯的产率/%55.8464.9478.3662.4556.69 注:酸醇摩尔比2∶1,催化剂为0.45g,辐射时间6min.由表4知,随着辐射功率的增大,酯化产率也随之增大.在功率为400W时,产率达到最大.随后随着微波功率的增大,酯化产率反而降低,原因是功率越大在达到反应时间6min时的反应温度就越高,温度升高时动力学因素和热力学因素的影响正好相反.即:温度越高反应速度越快,平衡常数越小.在400W以下,6min以内动力学因素占主导地位,所以功率越高,酯的产率越高;在400W以上,6min以内热力学因素占主导地位,所以功率越高酯的产率反而降低.3 结论在微波场中用氯化锌作催化剂催化合成乙酸乙酯,得到了比较满意的结果.反应条件为: n(CH3COO H)∶n(C2H5O H)=2∶1,催化剂质量百分数为1.5%,辐射时间为6min,辐射功率为400W.乙酸乙酯的产率为78.36%.该方法与传统合成方法相比,缩短了实验时间,而且操作简单,反应速度快(用传统加热法反应时间需100min)[8],对设备腐蚀小,体现出省时、节能等优点,具有一定的社会效益和经济效益.参考文献:[1]许波.微波技术应用于酯化反应的研究进展[J].北京石油化工学院学报,2005,13(4):35-36.[2]莫莉萍,周璇,李拥军.微波技术在现代有机合中的应用进展[J].广东化工,2004,1(4):44-45.[3]植中强,李红缨,杨海贵,等.微波催化酯化合成乙酸乙酯[J].化学工程师,2002,89(2):11-12.[4]贾树勇,任玉荣.活性炭负载FeCl3催化合成CH3COOEt的研究[J].宝鸡文理学院学报:自然科学版,2003,23(4):279-280.[5]贾艳宗,马沛生,王彦飞.微波在酯化和水解反应中的应用[J].化工进展,2004,23(6):641-642.[6]李水清,张促宁,谢晖.微波辐射对乙酸乙酯皂化反应的影响[J].化学研究,2005,16(3):47-49.[7]王清廉,沈凤嘉.有机化学实验[M].2版.北京:高等教育出版社,1996:162-163.[8]大连工学院有机化学教研室编.有机化学实验[M].北京:人民教育出版社,1979:137-144.责任编辑:马同森。
含硒光催化剂下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!含硒光催化剂在环境保护和能源利用领域具有重要应用价值。
第46卷第6期2023年11月河北农业大学学报JOURNAL OF HEBEI AGRICULTURAL UNIVERSITYVol.46 No.6Nov.2023低浓度NaCl对油葵芽苗菜生长及品质的影响尹伟僮,王明姣,范 辉,李青云,薛占军(河北农业大学 园艺学院,河北 保定 071001)摘要:以油葵种子‘S667’为试材,从催芽到芽苗菜收获的整个过程分别连续施用10 d 0(CK)、5、10、15、20和25 mmol/L NaCl溶液,测定油葵芽苗菜的生长、产量和品质指标,探索低浓度NaCl对油葵芽苗菜生长及品质的调控效应。
与对照(CK,0 mmol/L NaCl)相比,15 mmol/L NaCl对油葵芽苗菜的生长和品质的调控效应最明显,其中下胚轴的长度、粗度、可溶性蛋白和Vc含量分别增加41.57%、8.58%、1548.03%和169.57%,子叶的面积、Vc和多酚含量分别增加45.49%、37.10%和81.49%,同时油葵芽苗菜的可食率和经济产量分别提升了13.68%和73.76%,叶绿素总量/类胡萝卜素含量增加了30.77%;但是,低浓度NaCl处理显著降低了油葵芽苗菜下胚轴和子叶的游离氨基酸含量,分别较CK降低了47.00%~77.70%和56.63%~74.96%。
由此可见,施用15 mmol/L NaCl可显著提升油葵芽苗菜的产量和品质。
关 键 词:油葵;芽苗菜;低浓度NaCl;生长;品质中图分类号:S649开放科学(资源服务)标识码(OSID):文献标志码:AEffects of low concentration NaCl on the growth and quality of oilsunflower sproutsYIN Weitong, WANG Mingjiao, FAN Hui, LI Qingyun, XUE Zhanjun(College of Horticulture, Hebei Agricultural University, Baoding 071001, China)Abstract: The oil sunflower ‘S667’ was treated with 0 (CK), 5, 10, 15, 20 and 25 mmol/L NaCl solutions from seedgermination to sprout harvest followed by measurement of the growth, yield and quality indexes of oil sunflower sproutsafter 10 days to explore the effects of low concentration NaCl on the growth and quality of oil sunflower sprouts.Compared with the control (0 mmol/L NaCl), 15 mmol/L NaCl treatment had the most obvious effects on the growth andquality of oil sunflower sprouts, in which the length, thickness, soluble protein and Vc contents of hypocotyl increasedby 41.57%, 8.58%, 1548.03% and 169.57%, respectively, and area, Vc and polyphenol content of cotyledon increasedby 45.49%, 37.10% and 81.49%, respectively. Meanwhile, edible percentage, economic yield and total chlorophyll/carotenoid content of oil sunflower sprouts increased by 13.68%, 73.76% and 30.77%, respectively. However, lowconcentration of NaCl significantly reduced the content of free amino acids in hypocotyl and cotyledon of oil sunflowerseedlings, which decreased by 47.00%-77.70% and 56.63%-74.96% compared with CK, respectively. In conclusion,application of 15 mmol/L NaCl significantly increased the yield and quality of oil sunflower sprouts. Our resultsprovided a simple, safe and effective regulation technology to produce oil sunflower sprouts.Keywords: Oil sunflower; sprouts; low concentration of NaCl; growth; quality收稿日期:2023-06-07基金项目:河北省现代农业产业技术体系设施蔬菜创新团队项目(HBCT2021030213).第一作者:尹伟僮(1997-),女,河北廊坊人,硕士研究生,从事蔬菜栽培生理与品质调控研究.E-mail:**************通信作者:薛占军(1983-),男,内蒙古商都县人,博士,讲师,从事蔬菜栽培生理与品质调控研究.E-mail:****************本刊网址:文章编号:1000-1573(2023)06-0052-06DOI:10.13320/ki.jauh.2023.009253第6期芽苗蔬菜生产因其具有生育周期短、产品质量等级优、生物效率高和对设施及装备要求低等特点,率先实现了工厂化优质高效生产,不同程度地推动了新型芽苗菜产业的快速发展。
大分子有机阴离子盐锌离子电池英文回答:Organic ionic salts are a type of large-molecule organic compounds that contain ions. These salts are composed of organic cations and inorganic anions. They can be formed by the reaction between organic bases and inorganic acids. One example of an organic ionic salt is tetraethylammonium chloride (TEACl).Zinc ion batteries, on the other hand, are a type of rechargeable battery that uses zinc ions as the charge carrier. These batteries consist of two electrodes a zinc anode and a cathode made of another material, such as manganese dioxide. When the battery is charged, zinc ions are released from the anode and travel through the electrolyte to the cathode. During discharge, the zinc ions return to the anode, releasing electrons that flow through an external circuit to power a device.The combination of organic ionic salts and zinc ions can be used to create a zinc ion battery. In this type of battery, the organic ionic salt acts as the electrolyte, facilitating the movement of zinc ions between the electrodes. The organic cation in the salt providesstability and helps to prevent the formation of dendrites, which can cause short circuits in the battery.One advantage of using organic ionic salts in zinc ion batteries is their high ionic conductivity. The organic cations can enhance the mobility of zinc ions, allowing for faster charge and discharge rates. Additionally, the organic cations can be tailored to improve the stability and safety of the battery.For example, a zinc ion battery using tetraethylammonium chloride as the electrolyte can have improved performance compared to traditional zinc ion batteries. The TEACl salt provides high ionic conductivity, allowing for faster charging and discharging. The organic cation also helps to stabilize the zinc ions, reducing the risk of dendrite formation.In summary, the combination of organic ionic salts and zinc ions can be used to create high-performance zinc ion batteries. These batteries offer advantages such as high ionic conductivity and improved stability. By harnessing the unique properties of organic ionic salts, we can develop more efficient and reliable energy storage solutions.中文回答:有机阴离子盐是一种含有离子的大分子有机化合物。
测井资料常用英文代码表Microlog 1 Microlog 2 Acousticlog Density Compensated Dual-Spacing Neutron Log Caliper Bit Size Gamma Ray-Natural Radioactivity Spontaneous Potential Deep Investigation Induction Log Midium Investigation Induction Log Laterolog 8 Micro-Sphericlly Focused Log Laterolog Deep Laterolog Shallow Resistivity 4True Formation ResistivityResistivity 2.5 中子伽马 中子伽马 泥质含量 孔隙度 渗透率 含水饱和度 含油饱和度 束缚水饱和度 残余油饱和度 深侧向电阻率 LLD 浅侧向电阻率 LLS 4米梯度电阻率RT 地层真电阻率RT 感应电导率2.5 米梯 度电 阻率 R2.5 微梯度ML1 微电位ML2 声波时差AC 密度DEN 中子孔隙度CNL 井径CAL 钻头大小BS 自然伽马GR 自然电位SP 深感应电阻率ILD 中感应电阻率ILM 八侧向电阻率LL8 COND Conductivity NGR Neutron Gamma RaySH ShalePOR PorosityPERM PermeabilitySW Water SaturationSO Oil Saturation ofSWI Initial Water SaturationSOR Residual Oil Saturation微 球 形 聚 焦 电 阻 率 MSFL NEU Neutron斯仑贝谢 ( Schlumberger ) 常用英文缩写数控测井系统CSU Cyber Service Units 或Computerized Logging Units 声波时差DT Delta T密度RHOB Rho Bulk中子孔隙度NPHI Neutron Phi感应电导率CILD IL-Deep Conductivity井径CALS Caliper Size自然伽马能谱NGS Natural Gamma Ray Spectrolog铀URAN Uranium钍THOR Thorium钾POTA Potassium高分辨率地层倾角仪HDT High Resolution Dipmeter Tool地层学高分辨率地层倾角仪SHDT Stratigraphy High Resolution Dipmeter Tool地层压力RFT Repeat Formation Tester波形WF Wave Form微电阻率成像FMI Fullbore Formation Micro Imager Tool 阵列感应成像AIT Array Induction Imager Tool方位侧向成像ARI Azimuthal Resistivity Imager Tool偶极声波成像DSI Dipole Shear Sonic Image Tool超声波成像USI Ultrasonic Imager Tool核磁共振CMR Combination Magnetic Resonance模块式地层动态测试仪MDT Modular Formation Dynamics Tester测井曲线名称汇总GRSL—能谱自然伽马POR 孔隙度NEWSANDPORW 含水孔隙度NEWSANDPORF 冲洗带含水孔隙度NEWSANDPORT 总孔隙度NEWSANDPORX 流体孔隙度NEWSANDPORH 油气重量NEWSANDBULK 出砂指数NEWSANDPERM 渗透率NEWSANDSW 含水饱和度NEWSANDSH 泥质含量NEWSANDCALO 井径差值NEWSANDCL 粘土含量NEWSANDDHY 残余烃密度NEWSANDSXO 冲洗带含水饱和度NEWSANDDA 第一判别向量的判别函数NEWSAND DB 第二判别向量的判别函数NEWSAND DAB 综合判别函数NEWSANDCI 煤层标志NEWSANDCARB 煤的含量NEWSANDTEMP 地层温度NEWSANDQ 评价泥质砂岩油气层产能的参数NEWSANDPI 评价泥质砂岩油气层产能的参数NEWSAND SH 泥质体积CLASSSW 总含水饱和度CLASSPOR 有效孔隙度CLASSPORG 气指数CLASSCHR 阳离子交换能力与含氢量的比值CLASS CL 粘土体积CLASSPORW 含水孔隙度CLASSPORF 冲洗带饱含泥浆孔隙度CLASSCALC 井径差值CLASSDHYC 烃密度CLASSPERM 绝对渗透率CLASSPIH 油气有效渗透率CLASSPIW 水的有效渗透率CLASSCLD 分散粘土体积CLASSCLL 层状粘土体积CLASSCLS 结构粘土体积CLASSEPOR 有效孔隙度CLASSESW 有效含水饱和度CLASSTPI 钍钾乘积指数CLASSPOTV 10 0%粘土中钾的体积CLASSCEC 阳离子交换能力CLASSQV 阳离子交换容量CLASSBW 粘土中的束缚水含量CLASSEPRW 含水有效孔隙度CLASSUPOR 总孔隙度,UPOR=EPOR+BW CLASS HI 干粘土骨架的含氢指数CLASSBWCL 粘土束缚水含量CLASSTMON 蒙脱石含量CLASSTILL 伊利石含量CLASSTCHK 绿泥石和高岭石含量CLASSVSH 泥质体积CLASSVSW 总含水饱和度CLASSVPOR 有效孔隙度CLASSVPOG 气指数CLASSVCHR 阳离子交换能力与含氢量的比值CLASS VCL 粘土体积CLASSVPOW 含水孔隙度CLASSVPOF 冲洗带饱含泥浆孔隙度CLASSVCAC 井径差值CLASSVDHY 烃密度CLASSVPEM 绝对渗透率CLASSVPIH 油气有效渗透率CLASSVPIW 水的有效渗透率CLASSVCLD 分散粘土体积CLASSVCLL 层状粘土体积CLASSVCLS 结构粘土体积CLASSVEPO 有效孔隙度CLASSVESW 有效含水饱和度CLASSVTPI 钍钾乘积指数CLASSVPOV 100%粘土中钾的体积CLASSVCEC 阳离子交换能力CLASSVQV 阳离子交换容量CLASSVBW 粘土中的束缚水含量CLASSVEPR 含水有效孔隙度CLASSVUPO 总孔隙度CLASSVHI 干粘土骨架的含氢指数CLASSVBWC 粘土束缚水含量CLASSVTMO 蒙脱石含量CLASSVTIL 伊利石含量CLASSVTCH 绿泥石和高岭石含量CLASSQW 井筒水流量PLIQT 井筒总流量PLISK 射孔井段PLIPQW 单层产水量PLIPQT 单层产液量PLIWEQ 相对吸水量ZRPM PEQ 相对吸水强度ZRPM POR 孔隙度PRCO PORW 含水孔隙度PRCO PORF 冲洗带含水孔隙度PRCO PORT 总孔隙度PRCO PORX 流体孔隙度PRCO PORH 油气重量PRCO BULK 出砂指数PRCO HF 累计烃米数PRCO PF 累计孔隙米数PRCO PERM 渗透率PRCO SW 含水饱和度PRCO SH 泥质含量PRCO CALO 井径差值PRCO CL 粘土含量PRCO DHY 残余烃密度PRCO SXO 冲洗带含水饱和度PRCO SWIR 束缚水饱和度PRCO PERW 水的有效渗透率PRCOPERO 油的有效渗透率PRCOKRW 水的相对渗透率PRCOKRO 油的相对渗透率PRCOFW 产水率PRCOSHSI 泥质与粉砂含量PRCOSXOF 199*SXO PRCOSWCO 含水饱和度PRCOWCI 产水率PRCOWOR 水油比PRCOCCCO经过PORT校正后的C/ O值PRCOCCSC经过PORT校正后的SI/CA值PRCOCCCS经过PORT校正后的CA/SI值PRCODCO油水层C/ O差值PRCOXIWA 水线视截距PRCOCOWA 视水线值PRCOCONM 视油线值PRCOCPRW 产水率(C/ O计算)PRCOCOAL 煤层CRAOTHR 重矿物的百分比含量CRASALT 盐岩的百分比含量CRASAND 砂岩的百分比含量CRALIME 石灰岩的百分比含量CRADOLM 白云岩的百分比含量CRAANHY 硬石膏的百分比含量CRA ANDE 安山岩的百分比含量CRA BASD 中性侵入岩百分比含量CRA DIAB 辉长岩的百分比含量CRA CONG 角砾岩的百分比含量CRA TUFF 凝灰岩的百分比含量CRA GRAV 中砾岩的百分比含量CRA BASA 玄武岩的百分比含量CRA常用测井曲线名称A1R1 T1R1 声波幅度A1R2 T1R2 声波幅度A2R1 T2R1 声波幅度A2R2 T2R2 声波幅度AAC 声波附加值AAVG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1 号极板方位AZ1 1 号极板方位AZI 1 号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200 兆赫兹介电常数D4EC 47 兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z 轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1 组分孔隙度P02 第2 组分孔隙度P03 第3 组分孔隙度P04 第4 组分孔隙度P05 第5 组分孔隙度P06 第6 组分孔隙度P07 第7 组分孔隙度P08 第8 组分孔隙度P09 第9 组分孔隙度P10 第10 组分孔隙度P11 第11 组分孔隙度P12 第12 组分孔隙度P1AZ 1 号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200 兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47 兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1 号极板电阻率曲线PAD2 2 号极板电阻率曲线PAD3 3 号极板电阻率曲线PAD4 4 号极板电阻率曲线PAD5 5 号极板电阻率曲线PAD6 6 号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2 谱PPORB 核磁T2 谱PPORC 核磁T2 谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4 米电位电阻率R045 0.45 米电位电阻率R05 0.5 米电位电阻率R1 1米底部梯度电阻率R25 2.5 米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200 兆赫兹幅度比R4AT_1 47 兆赫兹幅度比R4SL 200 兆赫兹电阻率R4SL_1 47 兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2 谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2 分布对数平均值T2LM T2 分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值测井曲线代码一览表常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formationresistivity 冲洗带地层电阻率lid deep in vestigate in duction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井lls shallow investigate induction log 浅探测感应测井Rd deepinvestigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double 浅双侧向电阻率测井lateral resistivity log RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子常用测井曲线名称测井符号 英文名称 中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子 SP spontaneous potential自然电位CALborehole diameter 井径K potassium 钾TH thorium钍Uuranium 铀 KTHgamma ray without uranium 无铀伽马NGR neutron gamma ray中子伽马 GR natural gamma ray自然伽马GR natural gamma ray 自然伽马SP spontan eous pote ntial 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700 系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像多极阵列声波成像MACMRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2 分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP ATTN 纵波衰减Shear ATTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜。
英文介绍锌优缺点的作文Zinc: A Vital Mineral with Diverse Benefits and Potential Risks.Zinc is an essential mineral that plays a crucial role in numerous bodily functions. It is involved in cell growth and division, immune function, wound healing, and metabolism. Zinc also contributes to healthy skin, hair, and nails. However, excessive zinc intake can lead to adverse health effects. Understanding both the benefits and drawbacks of zinc is essential for maintaining optimal health.Benefits of Zinc:1. Immune Function Enhancement:Zinc is vital for a robust immune system. It supports the production and function of white blood cells, which combat infections. Studies have shown that zincsupplementation can strengthen the immune response and reduce the severity and duration of illnesses such as the common cold and respiratory infections.2. Antioxidant Properties:Zinc is a potent antioxidant that protects cells from damage caused by free radicals. Free radicals are unstable molecules that contribute to aging and chronic diseases. Zinc works by neutralizing free radicals, reducingoxidative stress, and preserving cell integrity.3. Wound Healing Support:Zinc is essential for proper wound healing. It plays a role in collagen synthesis, a protein that forms the structural framework of skin. Zinc also promotes the growth of new tissue and reduces inflammation, speeding up the healing process.4. Healthy Skin, Hair, and Nails:Zinc is involved in the production of keratin, a protein that strengthens skin, hair, and nails. Adequate zinc intake helps maintain healthy skin by reducing inflammation and acne breakouts. It also supports strong and shiny hair, preventing breakage and hair loss. Zinc deficiencies can lead to brittle nails and impaired nail growth.5. Metabolic Processes:Zinc is a cofactor for numerous enzymes involved in metabolism. It helps regulate blood sugar levels, supports thyroid hormone production, and facilitates digestion and absorption of nutrients. Zinc deficiency can lead to impaired metabolic function and various health problems.Potential Risks of Excessive Zinc Intake:While zinc is essential for health, excessive intake can cause adverse effects. The tolerable upper intake level (UL) for zinc is 40 mg per day. Consuming more than this amount for a prolonged period can lead to:1. Nausea and Vomiting:Acute zinc toxicity, usually from ingesting excessive amounts of zinc supplements or contaminated food, can cause immediate symptoms such as nausea, vomiting, and abdominal cramps.2. Weakened Immune System:Paradoxically, excessive zinc intake can weaken the immune system by suppressing the production of certain immune cells. This can increase susceptibility to infections.3. Copper Deficiency:Zinc and copper are both essential minerals that compete for absorption. Consuming large amounts of zinc can decrease copper absorption, leading to copper deficiency. Copper deficiency can cause a range of health problems, including anemia, heart disease, and cognitive impairment.4. Neurological Effects:High zinc levels can interfere with the brain's neurotransmitter activity. This can lead to neurological symptoms such as confusion, memory loss, and irritability.5. Prostate Cancer Risk:Studies have suggested that excessive zinc intake may be linked to an increased risk of prostate cancer. The exact mechanism is unclear, but it is hypothesized that high zinc levels can promote cell growth and proliferation in the prostate.Monitoring Zinc Intake:To reap the benefits of zinc while avoiding potential risks, it is crucial to monitor zinc intake. The recommended daily intake (RDI) for adults varies depending on age and gender. Good sources of zinc include oysters, meat, poultry, nuts, seeds, and fortified cereals.Conclusion:Zinc is a vital mineral with numerous health benefits, including immune function enhancement, antioxidant properties, wound healing support, and healthy skin, hair, and nails. However, excessive zinc intake can lead to adverse effects. Therefore, it is essential to balance zinc consumption within recommended limits to optimize health and well-being. If you have concerns about your zinc intake or experience any symptoms suggestive of zinc toxicity, consult with a healthcare professional.。
doi:10.19677/j.issn.1004-7964.2023.04.006木质纤维素制备寡聚糖及其在绿色制革中的应用高咪1,2,丁伟3*,蒋智成1,2*,石碧1,2(1.四川大学轻工科学与工程学院,四川成都610065;2.四川大学制革清洁技术国家工程实验室,四川成都610065;3.中国皮革制鞋研究院有限公司,北京100015)摘要:木质纤维素生物质中含有丰富的多糖组分,在较温和的反应条件下将其转化为寡聚糖,不仅可保留其天然结构,将其直接应用于工业生产,还可降低断裂复杂化学键所需能耗,助力生物炼制产业的可持续发展。
文章总结了无机酸、有机酸和无机盐等均相酸性催化剂促进木质纤维素降解的过程,对几类酸性催化剂的作用方式和效果进行了对比,并概括了不同催化作用下制得寡聚糖的纯度、相对分子质量分布等特征。
寡聚糖具有分子尺寸适中、含氧官能团丰富等结构特性,通过改性可作为醛鞣剂和非铬金属-寡聚糖配合物鞣剂用于清洁制革。
文章进一步总结了通过调控改性过程和改性程度提高生物质基鞣剂性能的方法,为推进此类鞣剂在高性能无铬皮革生产中的应用提供参考。
关键词:寡聚糖;木质纤维素;均相催化;皮革鞣制中图分类号:Q31;TS54文献标志码:APreparation of Oligosaccharides from Lignocellulose and theirApplication in Leather Tanning(1.College of Biomass Science and Engineering,Sichuan University,Chengdu610065,China;2.National EngineeringLaboratory for Clean Technology of Leather Manufacture,Sichuan University,Chengdu610065,China;3.China Leather and Footwear Research Institute Co.,Ltd.,Beijing100015,China)Abstract:Lignocellulose contains abundant polysaccharides.The depolymerization of lignocellulose into oligosaccharides under relatively mild conditions not only retains their natural structures,but also reduces energy inputs during the cleavage of chemical bonds,which is promising for the development of the sustainable biorefinery industry.Here,we summarized the catalytic depolymerization of the polysaccharides by using acidic catalysts,mainly including inorganic acids,organic acids and inorganic salts.The effects of catalysts and the products'structural features were compared. Owing to their appropriate molecular size and abundant oxygen-containing groups,the oligosaccharides could be modified and then used as aldehyde tanning agents and metal-oligosaccharides complex tanning agents.We summarized the modification methods and modification degrees for improving the tanning performance,providing the application potentials of these biomass-derived tanning agents in high-performance chrome-free leather production.Key words:oligosaccharides;lignocellulose;homogeneous catalysis;leather tanning收稿日期:2022-10-26基金项目:国家自然科学基金(22078211)第一作者简介:高咪(1998-),女,硕士生,主要从事生物质转化制备高附加值化学品的研究。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第4期·1074·化工进展石油馏分中酸性物质的组成分析肖丽霞,吕涯(华东理工大学石油加工研究所,上海 200237)摘要:针对某炼厂酮苯脱蜡装置原料油(减三线)中酸性物质组成特殊(对装置产生严重的腐蚀)的情况,采用碱醇法提取其中的酸性物质,借助负离子电喷雾-傅里叶变换离子回旋共振质谱(negative-ion ESI FT-ICR MS)研究其酸性组分的组成及分布,并与工业级脱脂环酸进行比较,从分子层面上揭示了其特殊之处。
Negative-ion ESI FT-ICR MS结果表明,减三线酸性化合物主要的特点为O2类化合物中脂肪酸(Z=0)占明显优势,缩合度较大的Z=−8和Z=−10的O2类化合物中有些碳数的物质相对丰度也比较大,碳数分布有两个中心;O1类杂原子化合物的相对丰度仅次于O2类化合物,且大大高出其他类杂原子化合物,O1类化合物中,烷基酚类化合物占绝对优势。
减三线酸性化合物的特殊组成将对进一步探究腐蚀机理和寻求解决设备腐蚀的途径有重要的指导意义。
关键词:石油馏分;腐蚀;酸性物质;负离子电喷雾-傅里叶变换离子回旋共振质谱;组成中图分类号:TE 622 文献标志码:A 文章编号:1000–6613(2016)04–1074–07DOI:10.16085/j.issn.1000-6613.2016.04.017Composition of acidic compounds in petroleum fractionXIAO Lixia,LÜ Ya(Institute of Petroleum Processing,East China University of Science and Technology,Shanghai 200237,China)Abstract:The acidic compounds in the feedstock of a refinery(vacuum cut 3) made devices corroded seriously,so the composition and distribution of the acidic compounds were analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy (negative-ion ESI FT-ICR MS). The acid fraction was extracted by alkaline-ethanol extraction prior to analysis,and compared with the industrial-grade naphthenic acids. The specialty of the acidic compounds in the feedstock of the refinery was explained from the molecular level. Negative-ion ESI FT-ICR MS revealed that the O2 class of the extracted acid fraction in the feedstock was dominated by acyclic carboxylic acids (belong to Z=0 family),and those had higher relative abundance of some compounds belonged to Z=−8 and −10 families of the O2 class,which leads the carbon number distribution curve has two peaks. The relative abundance of O1 class was much higher than that of other classes except for O2 class. The O1 class was dominated by alkylphenols. The special composition and distribution of acidic compounds has an important guiding significance to study the mechanism of corrosion and seek treatments for equipment corrosion.Key words:petroleum fractions;corrosion;acidic species;negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy(negative-ion ESI-FT-ICR MS);composition随着石油资源的不断消耗,含酸或高酸原油的处理量越来越大,对石油加工过程产生很多影响,例如加工时引起装置严重腐蚀、影响产品质量等[1-2],深入研究石油及馏分中的酸性物质成为石油化学研究的热点之一。
㊀第41卷㊀第5期2022年5月中国材料进展MATERIALS CHINAVol.41㊀No.5May 2022收稿日期:2021-12-15㊀㊀修回日期:2022-03-22基金项目:国家自然科学基金优青项目(51922082)第一作者:贾豫婕,女,1997年生,博士研究生通讯作者:韩卫忠,男,1981年生,教授,博士生导师,Email:wzhanxjtu@DOI :10.7502/j.issn.1674-3962.202112010锆合金的研发历史㊁现状及发展趋势贾豫婕,林希衡,邹小伟,韩卫忠(西安交通大学金属材料强度国家重点实验室,陕西西安710016)摘㊀要:锆合金作为一种重要的战略材料,被誉为 原子能时代的第一金属 ,由于其低中子吸收率㊁抗腐蚀㊁耐高温等优点,被广泛用作核反应堆关键结构材料㊂我国锆合金基础研究及工业化发展起步较晚,锆合金种类较少,因此,锆合金的研发受到了学术界及工业界的广泛重视㊂回顾了核用锆合金研发的历史进程㊁应用现状及未来发展趋势,阐明了锆合金基础研究和开发应用的重要性,简要介绍了新兴的高性能锆合金,包括医用锆合金㊁耐腐蚀锆合金㊁高强高韧锆合金和锆基非晶合金㊂随着核反应堆的升级换代和非核用应用需求的多样化,发展新型锆合金㊁拓展锆合金的应用范围,是锆合金未来研发的着眼点㊂关键词:锆合金;包壳;强韧化;耐蚀性;抗辐照性中图分类号:TG146.4+14;TB31㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2022)05-0354-17引用格式:贾豫婕,林希衡,邹小伟,等.锆合金的研发历史㊁现状及发展趋势[J].中国材料进展,2022,41(5):354-370.JIA Y J,LIN X H,ZOU X W,et al .Research &Development History,Status and Prospect of Zirconium Alloys[J].Materials China,2022,41(5):354-370.Research &Development History ,Status andProspect of Zirconium AlloysJIA Yujie,LIN Xiheng,ZOU Xiaowei,HAN Weizhong(State Key Laboratory for Mechanical Behavior of Materials,Xi a n Jiaotong University,Xi a n 710016,China)Abstract :Zirconium alloys,as an important strategic material,also widely known as the first metal in the atomic-energyage ,are widely used in nuclear reactors as key structural components because of their small thermal neutron capture cross-section,excellent corrosion resistance and high-temperature mechanical properties.The fundamental research and industrial-ization of zirconium alloy in China is later than that of the developed countries.As a result,our zirconium industries have less variants of products,which attract broad attentions from the academic communities and industry sectors.In this review,we retrospect the development history,application status and future trends of nuclear-related zirconium alloys,and empha-size the importance of accelerating fundamental research and developing new zirconium alloys.The design and development of advanced high-performance zirconium alloys are also briefly introduced,including medical-used zirconium alloys,corro-sion-resistant zirconium alloys,high strength-high toughness zirconium alloys and zirconium-based amorphous alloys.With the requirements of further upgrading of nuclear reactors and the diverse applications,the development of new zirconium al-loys and the broadening of their applications are key points in future research &development of advanced zirconium alloys.Key words :zirconium alloy;fuel cladding;strength-ductility;corrosion resistance;irradiation resistance1㊀前㊀言锆元素的地壳丰度约为1.30ˑ10-4,处于第18位㊂然而,锆矿石全球储量分布不均,如图1a 所示,供需市场严重错位[1]㊂锆的熔点为1852ħ,具有低毒㊁耐腐蚀㊁热中子吸收截面小㊁高温力学性能优良㊁与人体相容性好等优点;其化合物如氧化锆㊁氯氧化锆等具有独特的化学和物理性能㊂因此,锆及锆制品被广泛应用于核工业㊁化学工业㊁陶瓷工业㊁耐火材料工业㊁铸造业㊁航空航天㊁医疗行业等㊂目前,我国锆产业的生产和发展主要有2个特点:一是锆矿石严重依赖进口(图1a);二是主要消费品集中在陶瓷等领域,初级产品占比高㊁产能过剩,整体产业污染高㊁效益低㊁高端产品占比少㊁All Rights Reserved.㊀第5期贾豫婕等:锆合金的研发历史㊁现状及发展趋势自主化程度低[2-4](图1b)㊂因此,亟需合理规划和布局锆行业的发展,提高锆相关产品的技术含量和附加值,打破锆合金高端市场的国际垄断,在国内建立完整高效的锆合金供应链,对整个锆合金行业进行深入思考和规划㊂图1㊀锆资源分布及生产分析:(a)全球锆矿资源分布[1],(b)国内锆合金产业结构分析及预测[2-4]Fig.1㊀Zr reserves and production:(a)world Zr reserves [1],(b)analysis and forecast of China Zr industry [2-4]2㊀核用锆合金的研发现状2.1㊀国外锆合金研发历程核燃料包壳材料选择的多重设计约束包括抗蠕变性能㊁强度㊁韧性㊁抗中子辐照㊁热中子吸收截面㊁高温性能㊁化学兼容性等各种综合性能的限制[5]㊂锆合金在高温材料中具有较低的热中子吸收截面和较为优良的抗辐照能力,自20世纪50年代开始作为核反应堆中重要的结构材料延用至今㊂美国㊁俄罗斯㊁法国及德国等国家自20世纪50年代起先后研发出一系列锆合金㊂受当时的冶炼条件限制,高纯锆在冶炼及加工过程中会不可避免地引入Ti,C,Al,N,Si 等有害杂质,降低了合金的耐腐蚀性能㊂Sn 作为α相稳定元素,能吸收合金中有害杂质[6]㊂因此,美国于1951年研发出了Zr-2.5Sn 合金,即Zr-1合金[7-9]㊂并在Zr-1合金基础上调整合金成分研制出了Zr-2合金(Zr-1.7Sn-0.2Fe-0.1Cr-0.05Ni),但Ni 元素的加入导致Zr-2合金吸氢量增加㊂于是,在Zr-2合金基础上去掉Ni 元素,增加Fe 元素,研制出了Zr-4合金[10]㊂锆合金中较高含量的Sn 不利于进一步提高合金的耐腐蚀性能,之后,随着冶炼技术的发展,通过将Zr-4合金中的Sn 含量控制在较低水平,并通过增加Fe 和Cr 的含量,改进型Zr-4合金得到了发展㊂此外,不同于美国侧重于研发Zr-Sn 系合金,依据Nb 元素较小的热中子吸收截面和强化合金的作用,前苏联发展了E110等Zr-Nb 系合金[11],加拿大开发了Zr-2.5Nb 合金用作CANDU 重水反应堆的压力管材料[12]㊂随着各国不断提高燃料能耗㊁降低循环成本,改进型Zr-4合金已不能满足50GWd /tU 以上的高燃耗要求[13],各种新型高性能锆合金相继被研发并且部分合金已投入生产,如法国的M5合金[14]㊁美国西屋公司的Zirlo 合金[15]㊁前苏联的E635合金[16]㊁日本的NDA 合金[6]㊁韩国的HA-NA 合金[6]等㊂2.2㊀我国锆合金研发历程面对国外长期的技术封锁及国家核工业发展的急需,我国从20世纪60年代初开始了锆合金的研究及工业化生产,期间成功制取了原子能级海绵锆,建设了西北锆管有限责任公司等具有先进水平㊁与中国大型核电站配套发展的现代化企业,生产制造的国产Zr-4合金完全满足工程要求㊂自20世纪90年代初开始,我国研制了以N18(NZ2)和N36(NZ8)合金为代表的具有自主知识产权的第三代锆合金[17,18]㊂21世纪初开始,一批性能优异的CZ 系列㊁SZA 系列锆合金先后启动研发㊂国内外几种典型核用锆合金的成分对比如表1所示[19]㊂作为核工业的重要材料,核级锆材的国产化生产至关重要㊂将国内外重要的锆合金牌号及其相应的研发年份汇总至图2中[6-17],可以发现我国目前已经具备了各类核级锆材的供应能力,建立了较为完整的自主化核级锆材产业体系,但产能较低㊁自主化水平较弱㊂据中国核能行业协会‘2021年核电行业述评及2022年展望“可知,截至2021年12月底,我国大陆地区商运核电机组53台,总装机容量为5463.695万千瓦;在建核电机组16台,总容量是1750.779万千瓦㊂因此,我国的核电产业每年所需锆材约为1071.6~1268.4t,海绵锆约为2143.2~2536.8t [20]㊂目前国核宝钛锆业㊁中核晶环锆业㊁东方锆业的海绵锆年产能分别约为1500,500和150t,总体产能低于每年海绵锆的需求量㊂总体来看,通过加强锆矿石进口海外布局,推动核用锆合金自主化,提高锆合金企业研发能力和生产效益,是突破我国核工业关键材料卡脖子问题㊁确保我国能源安全的关键一步㊂553All Rights Reserved.中国材料进展第41卷表1㊀几种典型核用锆合金的成分[19]Table 1㊀Composition of several typical nuclear Zr alloys [19]Alloy Chemical compositions /wt%Sn Nb FeCrNi Cu Country Zr-2 1.5 0.150.10.05 USA Zr-41.50.220.1 USAE110 1.0USSR E1252.5Canada Zr-2.5Nb-0.5Cu2.5 0.5Canada Zirlo1.01.00.1USAE635 1.20 1.00.4USSR N18(NZ2)1.00.30.30.1ChinaN36(NZ8) 1.01.00.3China图2㊀国内外锆合金研发历程[6-17]Fig.2㊀Research history of Zr alloys [6-17]2.3㊀核用锆材发展趋势锆合金的研发周期长㊁服役要求高,从研发到批量化生产需要经过大量的性能测试和工序调整(见图3),因此,近20年内核反应堆服役的锆合金种类及应用结构部件近乎不变[21-23],目前核反应堆常用锆合金应用情况如表2所示[21-25]㊂但随着三代核反应堆的逐渐发展及应用,在保证核反应堆安全㊁高效㊁经济的前提下,其燃耗㊁服役寿命及可用性需求不断提升[24],如华龙一号平均燃耗达到45000MWd /tU 以上㊁CAP1400的目标燃耗为60000MWd /tU㊁锆合金的换料周期从12个月延长至18个月及以上,这些要求使得各国密切关注锆合金服役性能的提升㊂其中,拟采取的主要措施为多元合金化和改进加工工艺[25]㊂同时,在现有锆合金的基础上进行成分调整也是发展方向之一,如美国西屋电气公司通过将Zirlo 中Sn 的含量从1%下调至0.6%~0.8%,从而得到耐腐蚀性能和抗蠕变性能更加优异的Optimized Zirlo (OPT Zirlo)[26]㊂我国核用锆合金发展现阶段的目标是实现先进压水堆燃料组件用锆合金结构材料的自主产业化㊂目前,我表2㊀核反应堆常用锆合金应用情况[21-25]Table 2㊀The application of representative zirconium alloys in thenuclear reactor [21-25]Designation of zirconium alloy Reactor types UsageZr-2,Zr-4,BWR (boiling water reactor)Fuel cladding,spacers,fuel outer channel,et al .Zr-4,Zirlo,duplex,M5,MDA,NDAPWR (pressurized water reactor)Fuel cladding,guide tube,grid spacers,plug,fuel outer channel,access port,et al .Zr-2,Zr-4,Zr-2.5NbCANDU Pressure tube,calandria tube,fuel cladding,garter springs,plug,et al .E110VVER-440㊁VVER-1000Fuel cladding,grid spacersE110,E635RBMKFuel cladding,guide tube,fuel outer channel,spacers653All Rights Reserved.㊀第5期贾豫婕等:锆合金的研发历史㊁现状及发展趋势图3㊀新型锆合金的研发历程[22]Fig.3㊀The research and development route of a new zirconium alloy [22]国的锆合金研发及应用现状如下:不同型号核反应堆所用的Zr-4合金㊁M5合金和Zirlo 合金已经具备全流程的国产化制造能力,其中Zirlo 合金的入堆服役标志着我国核级锆材国产化目标的实现;国内自主研制的SZA 系列和CZ 系列锆合金堆内测试基本完成,工程化生产及性能评价已进入尾声,预计在2025年之前完成该系列新型锆合金的工程化应用;N36作为 华龙一号 中CF3核燃料组件的指定包壳材料,已在巴基斯坦卡拉奇核电站2号机组运行使用[27,28]㊂在自主产业化目标即将实现的同时,我国核用锆合金发展的部分问题仍未解决,例如自主研制的核用锆合金种类少,堆内测试地点少,堆内模拟数据库急需建立,针对锆材加工工艺㊁组织分析与堆内外服役性能之间的机理联系研究尚有不足等㊂2.4㊀核用锆材的生产加工技术进展及新型锆合金的开发改进锆合金的生产加工工艺与研制新型锆合金是发展核用锆材的关键㊂近年来,国内外在锆合金的生产加工技术以及合金成分优化方面都取得了重要进展㊂2.4.1㊀锆合金的加工技术进展核用锆合金管件的加工一般采用如图4所示的工艺流程[29],依次包括锆合金铸锭的熔炼㊁铸锭锻造㊁β相区淬火㊁热轧㊁反复的冷轧及退火,最终达到尺寸要求㊂改进锆合金的加工工艺是推动锆合金国产化的重要方面㊂目前,各个核发达国家均建成了从原子能级海绵锆到核图4㊀锆合金管件常规的加工热处理工艺流程图[29]Fig.4㊀Conventional processing and heat treatment process of Zr alloy tube[29]753All Rights Reserved.中国材料进展第41卷级锆合金结构材料的完整产业链㊂其中,美国的华昌㊁西屋电气,法国的法玛通等公司代表了锆合金产业化的世界先进水平㊂近年来,我国在锆合金的加工工艺方面取得了极大进展㊂在锆合金的熔炼工艺方面,采用非自耗真空电弧熔炼法可以得到组织均一㊁性能良好的锆合金,且铸锭的实际化学成分与预期的成分也相吻合;在锆合金的生产方面,通过工程化研究,我国已系统解决了Zr-4合金大规格铸锭(Φ=650mm 及以上)的熔炼技术及成分的均匀化调控技术㊁铸锭低温开坯技术㊁管材低温加工技术及织构调控技术㊁管材的表面处理技术㊁精整及检测技术等;在锆合金的热加工工艺方面,累积退火参数A 为锆锡合金管的加工提供了有效指导[30]㊂国内多家锆合金企业在生产加工技术方面也取得了很大的进步[31]㊂2010~2013年,中国核动力研究设计院联合西北有色金属研究院研制了采用国产两辊轧机两道次轧制㊁配合进口KPW25轧机生产Φ9.5mm ˑ0.57mm 管材的生产工艺,攻克铸锭均匀化熔炼㊁挤压感应加热等技术难题,推动了N36合金科研成果的转化㊂此外,国核锆业股份公司通过消化吸收美国西屋公司Zirlo 合金生产技术,成功熔炼得到核级Zr-4铸锭㊁R60702铸锭及Zirlo 返回料铸锭,实现了锆合金铸锭大规模国产化的新突破,建立了完整自主化的锆材加工生产线㊂综上所述,在锆合金生产加工工艺改进方面,国家还需加大投入力度,强化生产条件建设,加快具有自主知识产权锆合金的产业化生产步伐,实现核用锆合金研发生产加工的自主化,积极参与国际市场竞争㊂2.4.2㊀新型锆合金的研究与开发新型锆合金研发的主要趋势是开发多元合金,在Zr-Sn-Nb 系合金的基础上通过加入多种合金元素,同时提高锆合金的耐腐蚀性能及力学性能等㊂国内外新型核级锆合金的牌号及详细成分详见表3[31,32]㊂由表3可知,近20年来,随着核电技术的进一步发展,各国在新型锆合金成分筛选方面继续探索,美国㊁法国㊁韩国等在已经成功应用的锆合金基础上,开展了成分优化及新合金成分锆合金的研究㊂为打破国外核级锆合金厂商对锆合金成分的垄断,以中国核工业集团有限公司㊁国家核电技术有限公司㊁表3㊀国内外新型锆合金牌号及成分[31,32]Table 3㊀New Zr alloys developed by different countries [31,32]Designation of zirconium alloyChemical compositions /wt%SnNbFeCr Other Country OPT Zirlo0.60~0.790.80~1.200.09~0.13USAX5A0.500.300.350.25USA Valloy0.10 1.10~1.20USA VB 1.00 0.50 1.00USAM5 1.00 Sʒ(0.10~0.35)ˑ10-2Oʒ0.13~0.17France OPT M50.10~0.301.000.10~0.30France J11.80Japan J2 1.60 0.10 Japan J32.50 JapanHANA-40.40 1.500.200.10 Korea HANA-61.10Cuʒ0.05Korea N18(NZ2)0.80~1.200.20~0.400.30~0.400.05~0.10China N36(NZ8)0.80~1.200.90~1.100.10~0.40ChinaC7 0.10 Cuʒ0.01Sʒ0.025China CZ-10.800.250.350.10Cuʒ0.05China CZ-2 1.000.15 Cuʒ0.01China SZA-4/60.50~0.800.25~1.000.20~0.350~0.10Geʒ0.05or Cuʒ0.05or Siʒ0.015China 853All Rights Reserved.㊀第5期贾豫婕等:锆合金的研发历史㊁现状及发展趋势中国广核集团㊁西北有色金属研究院等为代表的核电材料龙头企业及研究机构从20世纪90年代初开始注重开发具有自主知识产权的锆合金㊂在前期研究的基础上,西北有色金属研究院进行了锆合金中试研究,确定了新一代锆合金的合金成分范围和加工工艺,研制出2种新型锆合金NZ2(N18)和NZ8(N36)㊂2009~2011年,西北有色金属研究院依托国家 863 计划项目成功研发了一种Zr-Nb 系锆合金 C7合金㊂2016年,由中广核集团自主研发设计的4组STEP-12核燃料组件和4组高性能核级锆合金(CZ 锆合金)样品管组件正式装入岭澳核电站二期1号机组,随反应堆进行辐照考验,这也标志着中广核集团全面掌握了核燃料组件的研究㊁设计㊁制造和试验技术㊂同时,国核宝钛锆业股份公司自主研发的SZA 新型锆合金紧跟锆合金发展趋势,在Zr-Sn-Nb 系合金的基础上添加微量合金元素Ge,Si 和Cu㊂试验结果表明,SZA 系列合金具有优良的耐腐蚀㊁吸氢和力学性能,有望用于CAP1400燃料组件中㊂2018年,在经过8年的技术攻关之后,我国突破了N36锆合金制备的核心技术环节,成功掌握了具有自主知识产权的完整N36锆合金工程化制备技术,已实现批量化生产,并成功应用于 华龙一号 CF3燃料组件的制造,打破了国外长期垄断的局面,解决了我国长期的锆合金出口受限问题[27,28]㊂2.5㊀锆合金的微观组织演化锆合金的再结晶行为,第二相粒子的种类㊁尺寸及分布对锆合金的抗腐蚀性能㊁力学性能有很大的影响㊂此外,锆合金在加工过程中形成的强织构不仅影响锆合金中氢化物的分布特征,还是辐照生长㊁应力腐蚀开裂等的重要诱因㊂因此,锆合金的合金成分和加工工艺对其微观组织和织构演化有重要影响,系统研究锆合金的微观组织演化规律与加工工艺之间的关系是优化锆合金综合性能的基础㊂2.5.1㊀锆合金的微观组织特征核反应堆的极端服役条件要求加工后的锆合金具有均匀的微观组织㊁充分再结晶的晶粒和弥散分布的第二相颗粒等㊂研究表明,通过增加加工变形量或提高热处理温度都会加速Zr-1Nb 合金的再结晶进程[33](见图5)㊂合金元素Mo 的添加大大延缓了Zr-Nb 合金的再结晶过程[34],并且会显著降低Zr-Nb 合金的晶粒尺寸,进而降低合金的塑性㊂含Nb 锆合金的第二相大小及弥散程度与累积退火参数的相关性不强㊂因此,如何在Zr-Nb 合金中获得均匀弥散分布的第二相成为生产加工的重点问题㊂实验表明,N36(NZ8)锆合金中第二相粒子的尺寸㊁数量㊁分布与终轧前热处理的保温温度和保温时间相关[35]㊂经580ħ保温的N36(NZ8)锆合金具有细小且分布均匀的第二相粒子,其耐腐蚀性能较好㊂反之,保温温度的升高或保温时间的延长导致第二相粒子逐渐演化为带状分布,颗粒尺寸增加,耐腐蚀性能显著降低㊂此外,亦有研究发现在650~800ħ保温时,Zr-Nb-Fe 第二相粒子因结构不稳定发生溶解,同时基体析出β-Zr 相[36](见图6)㊂图5㊀Zr-1Nb 合金在580ħ下保温不同时间后的显微组织结构[33]:(a)冷轧变形态,(b)10min,(c)30min,(d)180min;(e)再结晶Zr-1Nb 试样在不同加工变形量㊁热处理温度及退火时间条件下的平均晶粒尺寸Fig.5㊀Microstructures of Zr-1Nb alloy annealed at 580ħfor various time [33]:(a)as-deformed,(b)10min,(c)30min,(d)180min;(e)average grain size of the recrystallized Zr-1Nb specimens subjected to different rolling stain,annealing temperature and annealing time953All Rights Reserved.中国材料进展第41卷图6㊀Zr-Sn-Nb 合金在不同温度保温后淬火得到的显微组织[36]:(a)原始组织,(b)590ħ保温50h,(c)650ħ保温15h,(d)800ħ保温40min,(e)900ħ保温10min,(f)Zr-Nb 二元合金相图富Zr 端Fig.6㊀Microstructure of Zr-Sn-Nb alloy after different temperature of heat preservation [36]:(a)as-received microstructure,(b)590ħ/50h,(c)650ħ/15h,(d)800ħ/40min,(e)900ħ/10min,(f)rich Zr zone of Zr-Nb binary alloy phase diagram2.5.2㊀锆合金的织构锆合金用于核燃料包壳管时,加工织构不仅影响其力学性能,还会影响其辐照生长㊁应力腐蚀开裂和氢脆等行为,因此,加工过程中对锆合金管材织构的控制是十分重要的[37,38]㊂对Zr-Sn-Nb-Fe 新型锆合金管冷轧后的织构分析结果表明[39],管材的织构类型与织构含量随冷加工变形量的变化而变化(如图7所示)㊂冷轧变形前,管材中的主要织构类型为<0001>//周向(TD)和<1120>//轧向(AD)㊂随变形量的增加,<1120>//AD 织构的含量急剧减少,同时<1010>//AD 织构的含量则快速增加,表明取向为<1120>//AD 的晶粒随变形量的增加逐渐转至<1010>//AD㊂图7㊀锆合金管材冷轧变形中织构组分的演化[39]:(a)管材变形锥体示意图,(b)织构组分变化曲线Fig.7㊀Variation of texture component in Zr cladding tube during cold rolling [39]:(a)deformation cone of Zr-Sn-Nb-Fe cladding,(b)tex-ture components evolution with strain [39]㊀㊀Zr-4合金带材是重要的核燃料组件定位格架结构材料,其织构影响辐照生长的倾向,进而影响格架的夹持力[40],因此,如何在生产中控制锆合金带材的织构是一个重要的课题㊂研究发现,β淬火板坯厚度㊁热轧总变形量㊁热轧温度等均会影响Zr-4合金板带材的织构,但热轧变形量的影响最显著[41-43],因此在工业生产中,应主要考虑通过调整热轧变形量来控制锆合金板带材的织构㊂此外,热轧变形量也会对锆合金板材的织构因子,即轧面法向织构因子f n ㊁轧向织构因子f 1以及横向织构因子f t 产生影响㊂增大板材的热轧总变形量能够增大织构因子f n ,同时减小织构因子f 1和f t [43]㊂2.6㊀核用锆合金的堆内(外)性能锆合金在服役过程中始终处于高温㊁高压㊁高应力㊁强辐照的服役环境,且锆合金在高温下极易与用作冷却63All Rights Reserved.㊀第5期贾豫婕等:锆合金的研发历史㊁现状及发展趋势剂的水发生反应,进而引发腐蚀㊁吸氢等一系列问题,因此锆合金的堆内外性能研究受到了广泛的关注㊂2.6.1㊀锆合金的腐蚀性能金属材料的腐蚀反应包括扩散㊁迁移㊁吸附㊁解吸㊁氧化还原和相变等步骤,如图8a所示,其中,影响腐蚀速度的关键因素是氧离子在氧化层中的扩散速率[44]㊂因此,依据Wagner-Hauffle假说[21],可以初步确定锆合金的合金化元素㊂随着锆合金合金成分多元化的发展趋势,腐蚀增重从单一的转折过程变成了复杂的多阶段性过程,如图8b所示,因此,阐明不同成分第二相粒子的耐腐蚀机理变得非常重要㊂通常,第二相的腐蚀速率比基体慢[45,46]㊂当基体被氧化时,内部的第二相被氧化锆包围,均匀弥散分布的第二相可以释放四方相氧化锆内应力,稳定致密柱状晶结构,减缓腐蚀增重转折点的出现㊂而在复杂的服役环境中,中子辐照会造成第二相的溶解和重新分布[47],基于此,有研究[48]建议选择尺寸较大的第二相,从而增加致密氧化层的稳定时间,提高合金耐腐蚀性能㊂图8㊀锆的腐蚀过程示意图[44]:(a)腐蚀中的物质传输,(b)不同合金的整体腐蚀增重曲线Fig.8㊀Illustration of corrosion mechanisms in Zr alloy[44]:(a)ions transportation in corrosion,(b)corrosion weight gain curves of different Zr alloys㊀㊀下面以含Nb(Nb>0.6%,质量分数)锆合金为例简要分析第二相对其腐蚀行为的影响㊂对于含β-Nb的锆合金,延长保温时间以增加β-Nb的析出不一定能够提高基体的耐腐蚀性能,因此,关于β-Nb对基体耐腐蚀性能的影响存在争议[49-52]㊂这种争议的主要原因在于,当合金中含有Fe,Cr,Cu等元素时,其扩散系数比Nb元素高,第二相析出更快,长时间的时效反而会导致其余第二相的析出长大,从而抵消β-Nb的抗腐蚀作用,最终基体的耐腐蚀性能升高不明显㊂总体而言,均匀弥散的β-Nb是具有耐腐蚀作用的,退火参数的选择需要综合不同的合金成分和加工工序进行调整,最终使β-Nb保持弥散㊁均匀的分布㊂近期的研究[53]阐明了β-Zr抗腐蚀能力提高的原因,由于β-Zr会发生共析反应,逐步分解为α-Zr和抗腐蚀性较好的β-Nb,保障了氧化层结构中致密而稳定的四方相氧化锆不断形成,从而降低了基体腐蚀速率㊂除却整体的腐蚀规律,局部腐蚀特征也是研究人员关注的重点,如疖状腐蚀和横向裂纹的产生㊂目前,关于疖状腐蚀的微观机理主要有2种:KUWAE氢聚集模型[54]和周邦新形核长大模型[55](如图9所示)㊂KUWAE氢聚集模型的机理解释为氢聚集在Zr/ZrO2界面上之后巨大的氢压导致氧化膜的破裂,从而使得腐蚀的进一步加剧㊂该模型主要适用于沸水堆[56],这一理论也可以解释大粒径的第二相粒子如何通过影响局部氢传输速度从而导致疖状腐蚀的产生[56]㊂周邦新形核长大模型的机理图9㊀疖状腐蚀机理整体认知:(a)KUWAE氢聚集模型[54],(b)周邦新形核长大模型[55]Fig.9㊀The mechanisms of nodular corrosion:(a)KUWAE model[54],(b)Zhou Bangxin model[55]163All Rights Reserved.中国材料进展第41卷解释是表面取向㊁合金元素㊁析出相局部不均匀导致了氧化膜的局部增厚现象,而氧化膜与基体的内应力不协调使得氧化膜的进一步长大,从而形成了疖状腐蚀㊂而氧化膜与基体的不协调也是横向裂纹产生的主要诱因㊂基于此,研究者[57,58]认为在ZrO2/Zr界面上由于晶体取向的各向异性,引发了第二相的偏聚及氧化层的各向异性生长,从而导致疖状腐蚀的形成[58]㊂随着锆合金合金化元素种类的增加,在今后的研究中,需重点关注不同合金元素带来的腐蚀性能差异,进而建立全面的腐蚀调控理论㊂此外,随着核反应堆向更高堆芯功率密度和更长服役寿命方向发展,对包壳和堆芯结构材料的服役可靠性提出了更高要求,尤其是对锆合金的超高温耐腐蚀性能提出了需求㊂日本福岛核事故中锆包壳与高温水蒸气反应引发氢爆,对现有核燃料组件的安全可靠性敲响了警钟,同时加速推动新型包壳和核燃料组件的研发㊂因此,研发事故容错燃料组件,预防失水事故(LOCA)时锆包壳与高温水蒸气反应引发重大安全事故,是当前的研究热点之一㊂目前,事故容错燃料领域主要包括3种研发思路[59]:①在现有包壳材料表面涂覆涂层,包壳涂层需具备抗氧化性㊁高附着性㊁热膨胀系数匹配㊁耐辐照㊁自我修复㊁高保护性以及制造工艺的稳定性等指标[60],目前的研究主要集中在铬涂层㊁SiC陶瓷涂层㊁高熵合金涂层等;②研究新型燃料包壳材料替换当前的锆合金㊂经过多年的研究,研究者们普遍认为钼合金㊁先进不锈钢[61]㊁SiC基陶瓷复合材料[62]㊁高熵合金[63]等具备代替锆合金的潜力;③研发新型核燃料组件以替代目前的整体UO2基燃料组件,从而大幅度提升核燃料组件的传热效率,降低堆芯温度㊂目前高性能燃料组件的设计思路主要包括美国提出的环形燃料组件[64]和 麻花型 扭转组件[65]等,其中环形燃料组件的发展较为成熟㊂2.6.2㊀锆合金的抗辐照损伤性能核用锆合金在核反应堆中的服役周期一般为12个月及以上,长时间高剂量中子辐照对锆合金的结构和性能产生重要影响,因此,锆的辐照损伤行为是评价其服役可靠性的关键问题之一㊂如图10所示,锆合金在中子辐照下容易引发辐照生长[66]㊁辐照硬化[67]和辐照蠕变[68]等㊂这些辐照效应会使锆包壳产生一系列服役安全问题,澄清其微观机制是调控锆合金抗辐照性能的关键㊂图10㊀锆合金的辐照效应:(a)辐照生长[66],(b)辐照硬化[67],(c)辐照蠕变[68]Fig.10㊀The irradiation damage of Zr alloy:(a)irradiation growth[66],(b)irradiation hardening[67],(c)irradiation creep[68]㊀㊀研究表明,辐照生长与<a>型和<c>型位错环密切相关,其中<c>型位错环的形成机理存在争议㊂最新研究[69]揭示了一种<c>型位错环形成的可能机制㊂纯锆在辐照后间隙型位错环的比例高于空位型位错环,额外的空位形成了二维三角形空位型缺陷㊂通过比较三角形空位缺陷与<c>型位错环的尺寸以及两者的能量,发现当三角形空位型缺陷达到临界尺寸后,会塌陷形成能量更低的<c>型位错环㊂氢的存在会降低表面能㊁稳定空位,促进了二维三角形空位型缺陷的形成㊂界面工程是提高材料抗辐照性能的重要方法㊂界面的引入可以加速辐照缺陷的湮灭,降低辐照缺陷的聚集,提高材料的抗辐照性能[70]㊂此外,界面还具有吸收辐照缺陷[71]㊁通过 空位泵 [72]机制调控辐照点缺陷分布的作用㊂如何在锆合金设计中引入大量相界面是一个重要的挑战㊂研究者曾采用连续叠轧[73]和磁控溅射[74]技术制备层状锆合金,然而这些方法得到的材料各向异性强㊁加工成本高㊁工艺重复性差㊂近期,研究者采用热机械相变法[75],成功制备出了多级三维纳米层状双相锆铌合金,该合金具备优异的力学性能和抗辐照损伤能力㊂锆合金在服役过程中的辐照蠕变和辐照生长等严重影响其服役安全性㊂通常入堆后的锆材放射性较强,难以进一步细致表征,因此,模拟计算成为了研究和评价新型锆合金抗辐照性能的重要手段[76]㊂在宏观尺度上,一般采用有限元方法进行模拟㊂在介观尺度上,研究者通过VPSC(Visco-Plastic Self-Consistent)方法评估多晶蠕变和生长行为[77,78],通过速率理论[79]模拟缺陷演化并预测辐照硬化㊂在原子尺度上一般采用第一性原理计算和分子动力学模拟的方法研究点缺陷及其复合体的性质㊂最终,通过建立模拟平台实现对锆合金服役性能的跨尺度预测㊂综上所述,加强锆合金辐照损伤机理的研究,有利于促进新型抗辐照锆合金的设计㊂此外,加强多功能测试用263All Rights Reserved.。
微生物生长促进剂英语Microbial growth promoters (MGP) are substances that stimulate the growth and development of microorganisms. They are commonly used in various industries, including agriculture, food production, wastewater treatment, and pharmaceuticals. The use of microbial growth promoters has gained significant attention due to their potential benefits in enhancing productivity, improving product quality, and minimizing environmental impact. This article will provide an overview of microbial growth promoters, their applications, and their benefits.Microbial growth promoters can be classified into three main categories: probiotics, prebiotics, and synbiotics. Probiotics are live microorganisms that confer health benefits on the host when consumed in adequate amounts. They can improve digestion, boost the immune system, and enhance nutrient absorption. Common examples of probiotics include Lactobacillus and Bifidobacterium.Prebiotics, on the other hand, are non-digestible food ingredients that promote the growth of beneficial microorganisms in the gut. They serve as nourishment for probiotics and stimulate their multiplication. Inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) are commonly used prebiotics.Synbiotics are a combination of probiotics and prebiotics. They are designed to maximize the benefits of both by delivering live microorganisms together with nutrients that promote their growth and colonization. Synbiotics can effectively modulate the gut microbiota and improve gastrointestinal health.In the field of agriculture, microbial growth promoters are used to enhance crop growth and yield. They can improve nutrient uptake, increase resistance to pests and diseases, and promote soil fertility. For example, certain bacteria, such as Azospirillum and Rhizobium, can fix atmospheric nitrogen and make it available to plants. This reduces the reliance on chemical fertilizers, resulting in cost savings and reduced environmental pollution.In the food industry, microbial growth promoters are used to improve the production and quality of various food products. They can enhance fermentation processes, manage spoilage organisms, and increase the shelf life of food. For instance, certain lactic acid bacteria are used in the production of yogurt and cheese to improve texture, flavor, and microbial safety.Microbial growth promoters also play a crucial role in wastewater treatment. They can degrade organic pollutants, remove nutrients like nitrogen and phosphorus, and improve overall treatment efficiency. Certain strains of bacteria, such as Nitrosomonas and Nitrobacter, are commonly used in biological wastewater treatment systems to convert ammonia into nitrate through nitrification.In the pharmaceutical industry, microbial growth promoters are used in the production of antibiotics, vaccines, and other biologics. They can enhance the yield and quality of microbial fermentation processes, leading to increased production efficiency and reduced costs.The use of microbial growth promoters offers several benefits. Firstly, they can improve productivity and yield in variousindustries. This leads to increased profitability and competitiveness. Secondly, they can enhance product quality by improving characteristics such as taste, texture, and safety. Thirdly, they can reduce environmental impact by minimizing the use of chemical inputs and promoting sustainable practices. Finally, microbial growth promoters can have positive health effects on both humans and animals by promoting gut health and improving disease resistance.In conclusion, microbial growth promoters are valuable substances that stimulate the growth and development of microorganisms. They have wide-ranging applications in industries such as agriculture, food production, wastewater treatment, and pharmaceuticals. The use of microbial growth promoters can lead to increased productivity, improved product quality, and reduced environmental impact. Probiotics, prebiotics, and synbiotics are common types of microbial growth promoters that offer various health and production benefits.。
刘启洋,外⽂翻译原⽂Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cellsJingyu Zou,1Hin-Lap Yip,1,2Steven K.Hau,1and Alex K.-Y.Jen1,2,a?1Department of Materials Science and Engineering,University of Washington,Seattle,Washington98195,USA2Institute of Advanced Materials and Technology,University of Washington,Seattle,Washington98195,USAReceived19January2010;accepted23March2010;published online17May2010A simple method was developed using metal grid/conducting polymer hybrid transparent electrodeto replace indium tin oxide?ITO?for the fabrication of inverted structure polymer solar cells.Theperformance of the devices could be tuned easily by varying the width and separation of the metalgrids.By combining the appropriate metal grid geometry with a thin conductive polymer layer,substrates with comparable transparency and sheet resistance to those of ITO could be achieved.Polymer solar cells fabricated using this hybrid electrode show ef?ciencies as high as?3.2%.Thismethod provides a feasible way for fabricating low-cost,large-area organic solar cells.?2010American Institute of Physics.?doi:10.1063/1.3394679?Polymer solar cells?PSCs?are becoming as a viabletechnology for low-cost power production.1Indium tin oxide ?ITO?is the most commonly used transparent electrode for PSCs because it offers good transparency in the visible rangeof the solar spectrum as well as good electrical conductivity.However,there are several de?ciencies that exist for usingITO such as poor mechanical properties of ITO-coated plas-tic substrates,2limited conductivity for fabricating large-areasolar cells,limited availability of indium,and complicated vacuum sputtering process tend to increase the cost for ITO. These limitations set a potential barrier for the commercial-ization of low-cost PSCs.To alleviate this problem,alterna-tive materials for transparent conducting electrodes are needed to replace ITO.There has been some research on exploring conductive polymers,2carbon nanotubes,3 graphenes,4and silver nanowires5as potential candidates to replace ITO.However,lower transparency and higher sheet resistance compared to ITO strongly hinder their use for transparent electrode.Metal grids have also been investi-gated as a promising alternative for transparent electrode.6,7 Utilizing micro?uidic deposition and nanoimprinting meth-ods,metal grids coated substrates have been used for fabri-cating conventional PSCs with PCE as high as2%.Previously,inverted architecture PSC using ITO as cath-ode and evaporated silver?Ag?as anode has been proved to be more stable in ambient than the conventional devices us-ing sensitive metal as cathode.8Moreover,poly?3,4-ethylenedioxythiophene?:poly?styrenesulfonate??PEDOT-:PSS?has also been demonstrated by Hau et al.9as a potential replacement of ITO for fabricating inverted PSCs. However,the relatively high sheet resistance of PEDOT:PSS compared to ITO may limit the performance of PSCs The combination of conductive metal grids with PEDOT:PSS provides a good solution to solve this problem and obtain ITO-free and ambient stable PSCs.Here,we report a simple method to fabricate high-ef?ciency ITO-free inverted structure PSCs using a metal grid/conducting polymer hybrid transparent electrode.By us-ing soft lithography and chemical etching,the metal gridscan be easily fabricated on substrates.The inverted devicearchitecture is used to fabricate PSCs with Ag as anode tocollect holes and zinc oxide?ZnO?as an electron selectivelayer at the metal grid/conducting polymer interface to helpcollect electrons.To prepare the metal grids,a1nm alumi-num?Al??lm was deposited?rst followed by evaporating a30nm thick silver?lm onto the glass substrates.It was foundthat the very thin Al layer improves adhesion between thesubstrate and the Ag?lm.A micropatterned photoresist?SU-8,MicroChem??lm,fabricated by standard photolithography,was used as a mas-ter to replicate stamps for microcontact printing??CP?.A typical stamp was made by casting a10:1?v/v?mixture ofpolydimethyl siloxane?PDMS?and curing agent against asilanized master.The PDMS stamp was?rst soaked with an“ink”containing1mM of mecaptoundecanoic acid?MUA?in ethanol,then brought into contact with the surface of sil-ver for60s.After the removal of the stamp,the patterned Aglm was developed by wet etching with aqueousFe3+/thiourea using the patterned SAM as resist.10MUA was chosen for both generating better wettability for the process-ing of upper layer?lm.and facilitating better chargecollection.11Three types of designed grids patterns were utilizedas width and separation with?1?5?m and50?m ?5?m/50?m?,?2?10?m and100?m ?10?m/100?m?,?3?20?m and200?m ? 20?m/200?m?,respectively.The optical transmittance of as-fabricated Ag grids was measured by UV-Vis spectros-copy? Fig.1?.The sheet resistance for metal grids with dif-ferent geometries was also measured.The transmittance of ITO at550nm is85.7%.When thetransmittance of glass??93%?is taken into account,the maximum expected transmittance of the metal grids coated glass substrate is calculated to be?83–84%.It was found that the average transmittance of metal grid coated glass sub-strates in the range of250–1200nm is78%,80%,and82%, respectively,for grids of5?m/50?m,10?m/100?m, and20?m/200?m.The lower transmission may be due toa?Electronic mail:ajen@/doc/1d16844512.html.APPLIED PHYSICS LETTERS96,203301?2010?0003-6951/2010/96?20?/203301/3/$30.00?2010American Institute of Physics96,203301-1some diffusion of MUA during contact printing on the metal surface.As the result,the actual Ag grid patterns expand 1–2?m in width.Figure 2?a ?shows the optical microscope images of an as-fabricated metal grid electrode on a glass substrate.Another important parameter for transparent conducting electrodes is the sheet resistance.The sheet resistance of commercial available ITO substrates is 151,??while the Ag grid electrodes exhibited sheet resistances of9.11,146.31,and 254.11,for 5?m /50?m,10?m /100?m,and 20?m /200?m,re-spectively.Lower sheet resistances willminimize the loss of photocurrent during charge transport due to the lowered lat-eral resistance of the electrode.In general,the transmittance and sheet resistance for thin conductive ?lms are related by the equation ofT =?1+188.5R s ?OpDC2,where ?Op is the optical conductivity ?here we quoted at ?=550nm ?and ?DC is the conductivity of the ?lm.?DC /?Op is a commonly used term to describe transparent conductors.12For ITO with R s of 151and T ?550nm ?of 85.7%,the ?DC /? Op is 156.7.The best results that have been achieved for the graphene-based ?lms 13and carbon nanotubes 14are 0.5and 25,respectively.Based on the best metal grid geometry used in this work ?5?m /50?m ?,R s =9.1?/?,and T ?550nm ?=79.0%,a ?DC /?Op ratio as high as 165.6could be achieved.To fabricate solar cells,the ITO substrate and the metal grids coated substrate were cleaned using standard cleaning procedures.A thin layer of ZnO nanoparticles ?ZnO NPs ?was spin-coated onto these substrates.A C 60-based SAM ?C 60-SAM ?was deposited onto the ZnO surface using a spin-coating process as reported previously.15A 200nm bulk-heterojunction ?lm comprising of poly ?3-hexylthiophene ??P3HT Rieke Metals ?and ?6,6?phenyl C 61butyric acid methyl ester ?PCBM American Dye Source ?was then spin-coated in an argon-?lled glove box.After depositing a 50nm of PEDOT:PSS ?lm ?H.C.Starck,CLEVIOS?P VP 4083?.8A layer of Ag was vacuum deposited on top of PEDOT:PSS as anode.The solar cells were tested under ambient using a Keithley 2400SMU and an Oriel Xenon lamp ?450W ?with an AM 1.5?lter.The light intensity was calibrated to 100mW /cm 2.The device architectures are shown in Fig.2?b ?.The J -V characteristics under illumination and the solar cells perfor-mance are summarized in Fig.3?a ?and Table I ,respectively.The device with the 5?m /50?m Ag grid has the best performance with PCE of 2.97%.The lower ef?ciency of the metal grid substrate derived device is mainly due to lower J sc and ?ll factor.An important parameter that needs to be considered for the design of metal grids is that the charges generated from the voids between the grid lines need to be ef?ciently col-lected.The inverted device structure utilizes a ZnO NP layer as an electron selective layer between the active layer and the metal grids to collect electrons.The inhomogeneous and poor charge collection in the voids due to high sheet resis-tance of ZnO decrease both J sc and ?ll factor.Inaddition,FIG.1.?Color online ?Transparency vs wavelength of different geometry Ag grids on glass as compared to transparency of ITO and glass,as refer-enced againstair.FIG.2.?Color online ??a ?Optical microscope image of silver grid with 5?m width separated by a distance of 50?m.?b ? Device con?guration of the polymer solar cell using Ag grid as the transparent electrode with or without conductive PEDOT:PSSlayer.FIG.3.?Color online ?The current density-voltage ?J ?V ?characteristics of polymer solar cells with ?a ?different Ag grid geometries ?b ?different Ag grid geometries combining 40nm PEDOT:PSS PH500?lm measures under AM1.5illumination from a calibrated solar simulator with a light intensity of 100mW cm ?2.the lower transmittance of the5?m/50?m Ag grids ??78%?compared to ITO??85%?also contributes to the decrease in J sc.Increasing the width and separation while maintaining the same aspect ratio dramatically reduces the J sc and?ll-factor.To alleviate the problem for poor charge collection,a PEDOT:PSS?H.C.Starck,CLEVIOS?PH500?conduct-ing polymer was inserted between the silver grids and the ZnO layer to form the hybrid electrode.To demonstrate the function of the hybrid electrode,an inverted photovoltaic device with220nm thick PEDOT:PSS PH500?lm without metal grids as the bottom electrode was fabricated.The J-V characteristics under illumination and the solar cells performance are summarized in Fig.3and Table I, respectively.For the smaller separation Ag grids ?5?m/50?m?,the addition of the conducting PEDOT:PSS polymer layer improved the device performance to3.21% due to the reduced lateral resistance.For devices using larger separation grid lines?10?m/100?m and 20?m/200?m?,the addition of the PEDOT:PSS layer sig-ni?cantly improved the performance of the devices.For grids with separation distance of over10?m,additional layer of PEDOT:PSS is necessary to reduce the lateral resistance.All three silver grids electrodes can achieve near3%PCE using the additional PEDOT:PSS layer.The potential bene?t of using larger size grid patterns is the ease for device fabrica-tion especially for cost ef?cient industrial roll-to-roll pro-cessing.Without Ag grids,PEDOT:PSS PH500bottom elec-trode devices can only have ef?ciency of?2.2%which is due to the high sheet resistance.In conclusion,we have demonstrated that silver metal grid electrodes fabricated by microcontact printing and wet chemical etching can replace conventional ITO electrodes for fabricating organic solar cells.The patterned metal elec-trodes on glass show high optical transmittance as well as good electrical /doc/1d16844512.htmlanic solar cells with opti-mized grid geometry show encouraging device performance. It was also found that silver grid electrodes with smaller width and separation with the same aspect ratio facilitated better charge collection from the ZnO NP layers leading to increased FF,J sc,and PCE.By adding a PEDOT:PSS PH500 conducting polymer between Ag grid and ZnO,even devices with larger Ag grid spacing can achieve good performance. The use of inexpensive Ag grids compared to ITO allows the possibility of employing roll-to-roll process to realize low-cost,large-area organic solar cells.This work is supported by the National Science Founda-tion’s NSF-STC Program under Grant No.DMR-0120967, the Department of Energy’s“Future Generation Photovoltaic Devices and Process”Program under Grant No.DE-FC36-08GO18024/A000,and the Of?ce of Naval Research’s Pro-gram under Grant No.N00014-08-1-1129.A.K.-Y.J.thanks the Boeing-Johnson Foundation for?nancial support.1G.Dennler,M.C.Scharber,and C.J.Brabec,Adv.Mater.?Weinheim, Ger.?21,1323?2009?.2S.I.Na,S.S.Kim,J.Jo,and D.Y.Kim,Adv.Mater.?Weinheim,Ger.?20,4061?2008?.3M.W.Rowell,M.A.Topinka,M.D.McGehee,H.J.Prall,G.Dennler,N. S.Sariciftci,L.Hu,and G.Gruner,Appl.Phys.Lett.88,233506? 2006?. 4G.Eda,Y.Y.Lin,/doc/1d16844512.htmller,C.W.Chen,W.F.Su,and M.Chhowalla, Appl.Phys.Lett.92,233305?2008?.5J.Y.Lee,S.T.Connor,Y.Cui,and P.Peumans,Nano Lett.8,689?2008?. /doc/1d16844512.html ingstedt and O.Inganas,Adv.Mater.?Weinheim,Ger.?19,2893?2007?.7M.Kang,M.Kim,J.Kim,and L.J.Guo,Adv.Mater.?Weinheim,Ger.?20,4408?2008?.8S.K.Hau,H.L.Yip,N.S.Baek,J.Zou,K.O’Malley,and A.K.-Y.Jen, Appl.Phys.Lett.92,253301?2008?.9S.K.Hau,H.L.Yip,J.Zou,and A.K.-Y.Jen,Org.Electron.10,1401?2009?.10J.M.McLellan,M.Geissler,and Y.Xia,J.Am.Chem.Soc.126,10830?2004?.11H.L.Yip,S.K.Hau,N.S.Baek,and A.K.-Y.Jen,Appl.Phys.Lett.92, 193313?2008?.12S.De,T.M.Higgins,P.E.Lyons,E.M.Doherty,P.N.Nirmalraj,W.J. Blau,J.J.Boland,and J.N.Coleman,ACS Nano3,1767?2009?.13X.Wang,L.Zhi,and K.Mullen,Nano Lett.8,323?2008?.14H.Z.Geng,D.S.Lee,K.K.Kim,G.H.Han,H.K.Park,and Y.H.Lee, Chem.Phys.Lett.455,275?2008?.15S.K.Hau,H.L.Yip,H.Ma,and A.K.-Y.Jen,Appl.Phys.Lett.93, 233304?2008?.TABLE I.Summary of PSCs performance with different Ag grids width and separation.V oc ?V?J scmA/cm2FFPCE%R scm2?R pcm2?ITO0.6110.720.66 4.350.9780.2 Ag Grid5?m/50?m0.609.570.52 2.97 2.81341.6 Ag Grid10?m/100?m0.59 6.620.42 1.65 3.0327.4 Ag Grid20?m/200?m0.58 4.330.49 1.00 3.1322.1 Ag Grid5?m/50?m-PEDOT0.609.390.57 3.21 2.81118.0 Ag Grid10?m/100?m-PEDOT0.609.140.58 2.93 2.91213.2 Ag Grid20?m/200?m-PEDOT0.608.950.53 2.85 3.0956.3 PEDOT0.628.910.40 2.2030.7365.1。
ICH领域专业术语表(质量、安全性)序号英文中文1"relevant" viruses and "model" viruses“相关”病毒和“模型”病毒225-fold AUC radio25倍的AUC比值3 a single 2 generation study单项包括两代(生殖毒性)的研究4abbreviated or abridged application简略申请5abnormal karyology异常核形6abortions流产7absorbed moisture吸附水8absorption吸收9acceptable daily intake可接受的日摄入量10acceptable test加速试验11acceptance criteia认可标准12accuracy准确性13accuracy准确度14acelerated/stress stability studies加速/强力破坏稳定性研究15acentric fragment无着丝点片段16acetylation 乙酰化作用17achiral assay非手性测定18achlorhydric eldderly老年性胃酸缺乏症19acridine orange吖啶橙20action limits内控限值21active components/compound/moiety活性成分22active ingredient活性组分23active metabolite活性代谢产物24adaption to specific culture conditions特定培养条件的适应25additional test 附加实验26additions添加剂27adduct加合物28adequate exposure充分暴露29adjuvant 佐剂30ADME吸收、分布、代谢、排泄31administration period给药期32adventitious agents外源性因子33adventitious contaminants外来污染物34adventitious viral or mycoplasma contamination外源性病毒或支原体污染35adventitious viruses外源病毒36advers effect不良反应37adverse reaction不良反应38aerobic microorganisms需氧微生物39affinity亲和力40affinity chromatography亲和层析41affinity column亲和柱42against humanised proteins serum antibodies抗人源蛋白血清抗体 43agar and broth琼脂和肉汤44aggregates 聚合体45aggregation聚集46aginal smear阴道涂片 47air ighting reflex空中翻正反射48alkylating electrophilic center烷化亲电子中心49allele基因突变产生的遗传因子50allergenic/allergic extracts过敏原抽提物51allergic reactions过敏性反应(变应性反应)52altenative validated test有效替代试验53altered conjugated forms改变的结合物形式54altered growth 生长改变55ambient condition自然条件56amino acid composition氨基酸组成57amino acid sequence氨基酸顺序58amino acids氨基酸59amino sugars氨基糖60amino-terminal amino acids氨基端氨基酸61ammonia production Rates产氨率62ammoniun sulphide staining of the uterus子宫硫化胺染色 63analogue类似物(同系物)64analogue series of substances同系物65analyte 被测物66analytical method 分析方法67analytical procedure分析方法68anaphase分裂后期69aneuploidy非整倍体70aneuploidy inducer非整倍体诱导剂71animal cell lines动物细胞系72animal tissues or organs动物组织或器官73antennary profile 触角形状74antibiotic resistance genes抗生素耐药基因75antibiotics抗生素76antibody抗体77antibody production tests抗体产生试验78antigenic specificity抗原特异性79antisera抗血清80apoptosis凋亡81applicant申报者82art and ethical standards技术和伦理标准83ascites腹水84assay含量测定85assay procedure定量方法86assessment of genotoxicity遗传毒性评价87attainment of full sexual function达到性成熟 88AUC曲线下面积89auditory startle relex惊愕反射(听觉惊跳反射)90autoimmune自身免疫91autoradiographic assessment放射自显影评价92autoradiography放射自显影93avian鸟类94avidity亲和性95background 背景96bacteria细菌97bacterial mutagenicity test细菌致变突试验98bacterial reverse mutation test细菌回复突变试验99bacterial strains菌株100bacterial test organisms微生物试验菌101base pairs碱基对102base set of strains基本菌株103base substitution碱基置换104batches批次105batch-to-batch逐批106between-assay variation试验间变异107binary fission双数分裂108binding assays结合试验109bioanalytical method生物学分析方法110bioavaiability生物利用度111bioburden生长量/生物负荷112biochemical methods生化方法113bioequivalency生物等效性114biohazard enformation生物有害信息115biological activity生物活性116biological products生物制品117biological relevance生物学意义118bioreactor生物反应器119biotechnological products生物技术产品120biotechnological/biological products生物技术/生物制品121biotechnology-derived pharmaceuticals生物技术药物122biphasic curve双相曲线123birth出生124blood plasma factors血浆因子125body burden机体负担126body fluids体液127bone marrow cell骨髓细胞128bouin's fixation包氏液固定129bovine牛130bovine spongiform encephalopathy(BSE)疯牛病131bracketing括号法132breakage of chromatid染色单体断裂133breakage of chromosome染色体断裂134breeding conditions饲养条件135bridging character桥梁作用136by-products副产物137C(time)一定剂量、某一时间的浓度138calibrate标化139canine犬140cap liner瓶帽内垫141capillary electrophoresis毛细管电泳142carbohydrate碳水化合物143carboxy-terminal amino acids羧基端氨基酸144carcinogen致癌物质145carcinogenesis致癌性146carcinogenic hazard致癌性危害147carcinogenicity bioassay致癌性生物检测148carcinogenicity potential of chemical化合物的潜在致癌性149carcinoginicity(oncogenicity)致癌(致瘤)150cardiovascular心血管151carrier载体/担体152case-by-case个例153catalysts催化剂154cell bank 细胞库155cell bank system细胞库系统156cell banking procedures细胞建库过程157cell banking system细胞库系统158cell culture-derived impurities来源于细胞培养基的杂质159cell cultures 细胞培养物160cell cultures 细胞培养161cell expansion细胞扩增162cell fusion细胞融合163cell line细胞系164cell lines 细胞系165cell membrane lipid细胞膜脂质层166cell metabolites细胞代谢物167cell pooling细胞混合168cell proliferation细胞增植169cell replication system细胞复制系统170cell substrate-derived impurities 来源于细胞基质的杂质171cell substrates细胞基质172cell suspension细胞悬液173cell viability细胞活力174cell-derived biological products细胞来源的生物制品175cell-mediated immunity细胞介导的免疫176cellular blood components血细胞成分177cellular therapy细胞治疗178cemadsorbing viruses红细胞吸附病毒179central nervous systems中枢神经系统180cerbral spinal fluid脑脊液181characterization and testing of cell banks细胞库鉴定及检测182charcoal活性炭183charge电荷184chemical actionmertric system化学光化线强度系统185chemical nature化学性质186chemical reactivity 化学反应性187chemical syntheses化学合成188chemically inert化学惰性189chewable tablets咀嚼片190childbeering potential生育可能性191chinese hamster V79 cell中国仓鼠V79细胞192chiral impurities手性杂质193CHL cell中国仓鼠肺细胞194CHO cell中国仓鼠卵巢细胞195chromatide染色单体196chromatograms色谱图197chromatographic behavior色谱行为198chromatographic procedures色谱方法199chromatography columns色谱分离柱200chromosomal aberration染色体畸变201chromosomal damage染色体损伤202chromosomal integrity染色体完整性203chronic toxicity testing 慢性毒性试验204circular dichroism圆二色性205classfical biotransformation studies经典的生物转化试验206clastogen染色体断裂剂207clastogenic致染色体断裂的208clearance studies清除研究209cleavage of the balanopreputial gland 龟头包皮腺裂开210climatic zones气候带211clinical indication临床适应证212clinical research临床研究213clinical trial application 临床试验申请214clisure闭塞物215cloning 克隆216cloning efficiency克隆形成率217closure of hard palate硬腭闭合218C max峰浓度219coat growth毛发生长220code number编号221coding sequence编码序列222coefficient of variance变异系数223collaborative studies协作实验研究224colony isolation菌落分离225colony sizing集落大小226colony-stimulating factors集落刺激因子227combination product复方制剂228comparative trial对比试验229complement binding补体结合230completely novel compound全新化合物231components成分232compound bearing stuctural alerts结构可疑化合物233concentration threshold阈浓度234conception受孕235concomitant toxicokinetics相伴毒代动力学236confidence interval置信区间237confidence limits可信限238confirmatory studies确认研究239conformance to specifcations符合规范240conformation构型241conjugated product连接产物242conjugation连接243consistency一致性244container容器245container/closure容器/闭塞物246container/closure integrity testing 容器/密封完整性试验247contaminants污染物248contaminated cell substrate污染的细胞基质249content uniformity含量均匀度250continuous treatment 连续接触251control methodology控制方法学252controlled released product控释制剂253conventional live virus vaccines传统的活病毒疫苗254conventional vaccines传统疫苗255cool white fluorescent冷白荧光灯256corpora lutea黄体257corpora lutea count黄体数258correction factor校正因子259correlation coefficient相关系数260covalent or noncovalent共价或非共价261creams霜剂262cross-contamination交叉污染263cross-linking agent交联剂264cross-reactivity交叉反应265cryopreservation冷冻保存266cryoprotectants防冻剂267crystals晶体268culture components 培养基成分269culture condiction培养条件270culture confluency培养克隆率271culture confluenty培养融合272culture media/medium培养基273culture medium培养基274cyanogen bromide溴化氰275cytogenetic细胞遗传学的276cytogenetic change细胞遗传学改变277cytogenetic evaluation细胞遗传学评价278cytokines细胞因子279cytopathic细胞病的280cytoplasmic A-and R-type particles细胞浆a型和r型颗粒281cytotoxicity细胞毒282dark control暗度控制283dead offspring at birth 出生时死亡的子代284deamidation去氨基285deaminated去酰胺化的286deamination脱氨基287decision flow chart/tree判断图288definable and measurable biological activity明确和可测定的生物学活性289degradant降解产物290degradation降解291degradation pathway降解途径292degradation product降解产物293degradation profile降解概况294degree of aggregation 凝集度295degree of scatter离散程度296delay of parturition分娩延迟297delayed-release延迟释放298deleterious有害的299deletion缺失300delivery systems给药体系301derivatives衍生物302description 性状303descriptive statistics描述性统计304detection limit检测限度305detection of bacterial mutagen细菌诱变剂检测306detection of clastogen染色体断裂剂检测307determination of metabolites测定代谢产物308development of the offspring 子代发育309developmental toxicity发育毒性310dilivery systems释放系统311dilution ratio释放倍数312dimers二聚体313diminution of the background lawn背景减少314diode array二极管阵列315diploid cells二倍体细胞316direct genetic damage 直接遗传损伤317dissociation解离318dissolution testing溶出试验319dissolution time溶出时间320distribution分布321DNA adduct DNA加合物322DNA damage DNA损伤323DNA repair DNA修复324DNA strand breaks DNA链断裂325dosage form剂型326dose dependence剂量依赖关系327dose escalation剂量递增328dose level剂量水平329dose -liming toxicity剂量限制性毒性330dose-ranging studies剂量范围研究331dose-related剂量相关 332dose-relatived cytotoxicity剂量相关性细胞毒性333dose-relatived genotoxic activity剂量相关性遗传毒性334dose-relatived mutagenicity剂量相关性诱变性335dose-response curve剂量-反应曲线336dosing route给药途径337downstream purification下游纯化338drug product制剂339drug product components制剂组方340drug substances原料药341duration周期342duration of pregnancy妊娠周期343eaning断奶344earlier physical malformation早期身体畸形345early embryonic development早期胚胎发育346early embryonic development to implantation着床早期的胚胎发育347ectromelia virus脱脚病病毒348elastomeric closures橡皮塞349electro ejaculation电射精350electron microscopy(EM)电镜351electrophoresis电泳352electrophoretic pattern电泳图谱353elimination消除354elution profile洗脱方案355embryofetal deaths胚胎和胎仔死亡356embryo-fetal development 胚胎-胎仔发育357embryo-fetal toxicity胚胎-胎仔毒性358embryonated eggs鸡胚359embryonic death胚胎死亡360embryonic development胚胎发育361embryonic period胚胎期362embryos胚胎 363embryotoxicity胚胎毒性364enantiomer对映体365enantiomer对映异构体366enantiomeric镜像异构体367enantioselective对映体选择性368encephalomyocarditis virus(EMC)脑心肌炎病毒369end of pregnancy怀孕终止370endocytic 内吞噬(胞饮)371endocytic activity内吞噬活性372endogenous agents内源性因子373endogenous components内源性物质374endogenous gene内源性基因375endogenous proteins内源性蛋白376endogenous retrovirus内源性逆转录病毒377endonuclease核酸内切酶378endonuclease release form lysosomes溶酶体释放核酸内切酶379endotoxins内毒素380end-point终点381end-product sterility test-ing最终产品的无菌试验382enhancers增强子383enveloped RNA viruses包膜RNA病毒384environmental factors环境因素385enzymatic reaction rates酶反应速率386enzyme酶387epididymal sperm maturation附睾精子成熟性388epitope表位389epitope抗原决定部位390Epstein-Barr virus (EBV)EB病毒391equine马392error prone repair易错性修复393erythropoietins促红细胞生成素394escalation递增395escherichia coli starn大肠杆菌菌株396esscherichia coli 大肠杆菌397ethnic origin种族起源398eukaryotic cell真核细胞399evaluation of test result试验结果评价400ex vivo体外401exaggerated pharmacological response超常增强的药理作用402excipient赋形剂403excipient specifications赋形剂规范404excretion排泄(消除)405expiration date/dating失效日期406exposure assessment 接触剂量评价407exposure level暴露程度408exposure period光照时间409exposure period接触期410expression constract表达构建体411expression system表达系统412expression vector表达载体413extended-release延时释放414extent of the virus test病毒测试的程度415external metabolising system体外代谢系统416extinction coefficient消光系数417extrachromosomal染色体外418extraneous contaminants外源性污染物419extrapolation 外推法420F1-animals子一代动物421false negative result假阴性结果422false positive result假阳性结果423fecundity多产424feed-back反馈425fermentation发酵426fermentation products发酵产品427fertilisation受精428fertility生育力429fertility studies生育力研究430fetal abnormalities胎仔异常431fetal and neonatal parameters胎仔和仔鼠的生长发育参数432fetal development and growth胎仔发育和生长433fetal period 胎仔期434fetotoxicity胎仔毒性435fill volume装量436filter aids 过滤介质437final manufacturing最终生产438finished product成品439first pass testing 一期试验440flanking region侧翼区441fluorescence in situ hybridisation (FISH)原位荧光分子杂文442foetuses胎仔443forced degradation testing强制降解试验444foreign matter异质性物质445formal labeling正式标签446formal stability studies正式的稳定性研究447formulation 处方/配方448formulation 制剂449fragmentation片段化450frameshift mutation移码突变451frameshift point mutation移码点突变452free-standing独立453freeze-dried product冻干产品454fresh dissection technique新鲜切片技术455friability脆碎度456functional deficits功能试验457functional test功能性指标458funetional indices融合蛋白459fungi真菌460fusion partners融合伴侣461fusion protein融合蛋白462fusion proteins配子463gametes动物性别464gel filtration 凝胶过滤465gender of animals性别专一性药物466gender-specific drug基因剔除467gene amplification基因扩增468gene knockout基因治疗469gene mutation基因突变470gene therapy基因疗法471generation of the cell substrate细胞基质的产生472genetic遗传473genetic change 遗传学改变474genetic damage遗传学损伤475genetic endpoint遗传终点476genetic manipulation基因操作477genetic toxicity遗传毒性478genomic dinucleotide repeats基因组双核苷酸重复数479genomic DNA基因组DNA480genomic polymorphism pattern基因组形态类型481genotoxic activity遗传毒性作用482genotoxic carcinogen遗传毒性致癌剂483genotoxic effect 遗传毒性效应484genotoxic hazard遗传毒性危害485genotoxic potential潜在遗传毒性486genotoxic rodent carcinogen啮齿类动物遗传毒性致癌剂487genotoxicity 遗传毒性488genotoxicity evaluation遗传毒性评价489genotoxicity test遗传毒性试验490genotoxicity test battery遗传毒性试验组合491genotypic 基因型492germ cell mutagen生殖细胞诱变剂493germ line mutation生殖系统突变494GLP临床前研究质量管理规范495glucose consumption rates耗糖率496glycoforms糖化形式497glycosylation糖基化498goegrapgical origin 地理起源499gross chromosomal damage 染色体大损伤500gross evaluation of placenta 胎盘的大体评价501growth factors生长因子502growth hormones 生长激素503guanidine胍504haematoxylin staining苏木素染色505half-life半衰期506hamster antibody production(HAP) test仓鼠抗体产生实验507Hantaan virus汉坦病毒508hardness硬度509heavy metals重金属510hematopoietic cells造血细胞511heparins肝素512heptachlor七氯化合物513herbal products草药514heritable遗传515heritable defect遗传缺陷516heritable disease遗传性疾病517heritable effect 遗传效应518herpes virus 疱疹病毒519heterogeneities异质性520heterohybrid cell lines异种杂交细胞系521high concentration高浓度522high-resolution chromatography高分辨色谱523histologic appearance of reproductive organ生殖器官的组织学表现524histopathological chang组织病理学改变525homogeneity均一性526homologous proteins同系蛋白527homologous series同系528host cell 宿主细胞529host cell banks宿主细胞库530host cell DNA宿主细胞DNA531host cell proteins宿主细胞蛋白质532hot-stage microscopy热价显微镜533human carcinogen人类致癌剂534human cell lines人细胞系535human diploid fibroblasts人二倍体成纤维细胞536human lymphoblastoid TK6 cell 人成淋巴TK6细胞537human mutagen人类致突变剂538human polio virus人脊髓灰质炎病毒539human subjects人体540human tropism人向性541humidity湿度542humidity-protecting containers防湿容器543humoral immunity 体液免疫544hybridization techniques杂交技术545hybridoma cell杂交瘤细胞546hybridomas杂交瘤547hydrolysates水解物548hydrolytic enzymes水解酶549hydrophobicity疏水性550hygroscopic吸湿性551identification/identity鉴别552immature erythrocyte未成熟红细胞553immediate and latent effect速发和迟发效应554immediate container/closure直接接触的容器/密闭物555immediate pack内包装556immediate release立即释放557immortalization激活558immune spleen cells免疫脾细胞559immunoassay免疫检测560immunochemical methods免疫化学方法561immunochemical properties免疫化学性质562immunoelectrophoresis免疫电泳563immunogenicity免疫原性564immunological interations免疫相互作用565immunopathological effects免疫病理反应566immunoreactivity免疫反应性567immunotoxicity免疫毒性568implantation着床569implantation sites着床部位570impurity profile杂质概况571in vitro体外572in vitro and in vivo inoculation tests体内和体外接种试验573in vitro assay体外检测574in vitro cell age体外细胞传代期575in vitro lifespan体外生命周期576in vitro test体外试验577in vitro tests体外试验578in vitro/in vivo correlation体内体外相关性579in vivo体内580in vivo assays体内检测581in vivo test体内试验582inactivated vaccine 灭活疫苗583incidence of polyploid cell 多倍体细胞发生率584incisor eruption门齿萌出585independent test独立试验586indicator cell指示细胞587indicator organisms指示菌588individual fetal body weight单个胎仔体重589indoor indirect daylight室内间接日光590induced and spontaneous models of disease诱发或自发的疾病模型591inducer of micronuclei微核诱导剂592inducers 诱导剂593inedntification test鉴别试验594infectious agents感染性因子595influenza virus流感病毒596inhalation吸入597inhalation dosage forms 吸入剂型598inhibitor of DNA metabolism DNA代谢抑制剂599in-house内部的600in-house criterea内控标准601in-house primary reference material内部一级参比物质602in-house reference materials内部参比物质603in-house working reference material内部工作参比物质604initial filing原始文件605initial submission最初申报606initial text最初文本607inoculation接种608inorganic impurities无机杂质609inorganic mineral无机矿物质610inorganic salts无机盐611in-process acceptance criteia生产过程认可标准612in-process controls生产过程中控制613in-process testing生产过程中检测614insect昆虫615insulins胰岛素616intact animals完整动物(整体动物)617intake摄入618intended effect预期效果619intended storage period 预期的贮藏期620intentional degradation人为降解621interactions相互作用622interferon干扰素623interleukins白细胞介素624intermediate中间体625intermediate precision中间精密度626intermediates半成品627internal control内对照628international reference standards国际参比标准品629interphase muclei分裂间期细胞核630intra-and inter-individual个体与个体间631intra-assay precision间隙含量精密度632intracytoplasmic细胞浆内633introduction of virus病毒介入634inverted or horizontal position倒立或水平位置635ion-exchange离子交换636ionic content离子含量637isoelectric focusing/isoelectrofocusing等电聚焦638isoenzyme analysis同工酶分析639isoform pattern异构体类型640isolated organs离体器官641isomerized 异构化的642Jp/Ph.Eur./Usp.日本药局方/欧洲药典/美国药典643juvenile animal studies未成年动物研究644K virus K病毒645karyology胞核学646Kinetic profile动力学特点647Kinetics 动力学648laboratory scale实验室规模649lactate production rates乳糖产生速率650Lactating授乳、哺乳651lactic dehydrogenase virus (LDM)乳酸脱氢酶病毒652Large deletion event大缺失事件653Late embryo loss后期胚胎丢失654leachables沥出物655Level of safety安全水平656Libido性欲657Life threatering危及生命658ligand 配位体/配体659light光照660light resistant packaging避光包装661limit for in vitro cell age 细胞体外传代限度662limit of acceptance可接受的限度663limit of in vitro cell age 体外细胞代次664limit test限度试验665limulus amoebocyte lysate鲎试剂666linear relation ship 线性关系667linearity线性668Lipophilic compound亲脂性化合物669liquid nitrogen 液氮670liquid oral dosage forms 液体口服制剂671Litter size每窝胎仔数目672Live and dead conceptuese活胎和死胎673Live offspring at birth出生时存活的子代674live vaccine 活疫苗675living cells活细胞676Local toxicity局部毒性677Lockl tolerance studies 局部耐受性研究678Locu位点679logarithmic scale:对数级680long term test长期试验681Long-term carcinogenicity study长期致癌性试验682long-time and accelerated stability长期和加速稳定性试验683Loss of the tk gene tk 基因丢失684losses of activity活性丧失685lot release 批签发686low molecular weight subsances低分子量物质687lower-observed effect level (LOEL)能观察到反应的最低量688lymphocytic choriomeningitis virus (LCM)淋巴细胞性脉络丛脑膜炎病毒689lyophilised cakes冻干粉饼690lysate of cells 细胞溶解物691Major organ fomeation主要器官形成692Male fertility雄性生育力693Male fertility assessment雄性生育力评价694mammalian哺乳类695Mammalian cell mutation test哺乳动物细胞致突变试验696Mammalian cells哺乳动物细胞697Mammalian species哺乳类动物698manufacturing scale生产规模699marieting pack 上市包装700marker chromosome 标志染色体701marketing approval批准上市702Marketing approval上市许可703mass 重量704mass balance质量平衡705mass spectrometry质谱706master cell bank (MCB)主细胞库707Matemal animal亲代动物708material balance物质平衡709Mating behaviour交配行为710Mating period交配期711Mating ratio交配比例712Matrices基质713matrix基质、矩阵714matrix system矩阵化设计715matrixing每日最大剂量716maximum daily dose平均动力学温度717Maximum tolerated dese(MTD)最大耐受剂量718mean kinetic temperature后生动物细胞培养719Mechanism of genotoxicity遗传毒性机制720Mechanistic activation代谢活化721Mechanistic activation pathway代谢活化途径722Mechanistic activation system代谢活化系统723Mechanistic investigation机制研究724Metabolism代谢725Metabolites profile代谢物的概况726Metaphase中期727Metaphase analysis分裂中期相分析728Metaphase cell分裂中期细胞729metazoan cell culture微生物细胞培养730microbial cells微生物细胞731microbial contamunation 微生物污染732microbial expression system微生物表达系统733microbial limits微生物限度734microbial metabolites微生物代谢物735microbial proteases微生物蛋白酶736microbial vaccine antigens微生物疫苗抗原737microbiological testing 微生物学试验738Micronucleus微核739Micronucleus formation微核形成740Microtitre微滴定741Microtitre method微滴定法742Mimicking模拟743minimum exposure time最低作用时间744minimum of pilot plant试产规模745minute virus of mice小鼠小病毒746mirror image 镜像747mismached S-S linked错连的S-S键748Mitotic index有丝分裂指数749modified-/modifying release修饰释放750modifying factor修正因子751moisture level水分752molar absorptivity克分子吸收753Molecular characterisation分子特性754molecular characteristics分子特性755molecular confirmation分子构型756molecular entities/entity分子实体757molecular size分子大小758Molecular technique分子技术759Monitor监测760Monoclonal antibodies单克隆抗体761monoclonal antibody单克隆抗体762mork run空白对照试验763morphological analysis形态学分析764mouse antibody production (MAP) test小鼠抗体产生试验765mouse cytomegalovirus (MCMV)小鼠巨细胞病毒766mouse encephalomyelitis virus (GDVII)小鼠脑脊髓炎病毒767mouse hepatitis virus (MHV)小鼠肝炎病毒768Mouse lymphoma tk assay小鼠淋巴瘤tk检测769Mouse lymphoma L5178Y cell小鼠淋巴瘤L5178Y细胞770mouse rotavirus (EDIM)小鼠小轮状病毒771MuLV murine leukemia virus鼠白血病病毒772murine hybridoma cell lines鼠杂交瘤细胞系773Mutagen诱变原774Mutagen carcinogen诱变性致癌剂775Mutagen potential of chemical化合物的潜在致突变性776Mutant colony突变体集落777Mutation突变778Mutation induction in transgenes转基因诱导突变779mutations 突变780mycoplasma支原体781myeloma cell line骨髓瘤细胞系782Naked eye肉眼783national or international reference material国家或国际参比物质784national reference standards国家参比标准品785near ultraviolet lamp近紫外灯786Necropsy(macroscopic examination)解剖(大体检查)787Negative control阴性对照788Negative result阴性结果789Neonate adaptation to extrautenrine life新生仔宫外生活的适应性790neural sugars中性糖791new chemical entity新化学体792new dosage form新剂型793new drug products/produce新药制剂794new drug substance新原料药795new molecular entities新分子体796Newbom新生仔797Newcleated有核798no effect level不产生反应的量799Non rodent非啮齿类800Non-clinical非临床801noncovalent/convalent forces非共价/共价键802non-enveloped viruses非包膜病毒803Non-genotoxic carcinogen非遗传毒性致癌剂804Non-genotoxic mechanism非遗传毒性机制805Non-human primate非人灵长类806Non-linear非线性807non-mammalian animal cell lines非哺乳动物细胞系808non-recombinant cell-cul-ture expression systems非重组细胞培养表达系统809non-recombinant products/vaccines非重组制品/疫苗810non-specific model virus非特异模型病毒811Non-toxic compound无毒化合物812Non-toxic-effect dose level无毒性反应剂量水平813no-observed effect level不能观察到反应的量814N-terminal sequencing N端测序815nuclear magnetic resonance 核磁共振816Nucleated bone marrow cell有核骨髓细胞817nucleic acid核酸818Nucleoside analogue核苷酸同系物819nucleotide sequences 核苷酸序列820Number of live and dead implantation宫内活胎和死胎数821Numerical chromosmal aberration染色体数目畸变822Numerical chromosome changes染色体数目改变823Oestrous cycle动情周期824official procedure正式方法825ointments软膏826oligonucleotide低聚核苷酸827Oligonucleotide grugs寡核苷酸药物828oligosaccharide pattern寡糖类型829One,two,three generation studies一、二、三子代研究830opacity浊度831Organ development器官发育832organic impurities有机杂质833origins of replication复制起点834osmolality摩尔渗透压浓度835outdoor daylight室外日光836Ovulation rate排卵率837oxidation氧化838oxygen consumption rates耗氧量839package包装840Paraffine embedding石蜡包埋841parainfluenza virus副流感病毒842parallel control assays 平行对照分析843Parameter参数844Parent compound母体化合物845parent stability Guideline稳定性试验总指导原则846parental cell line母细胞系847Parenteral非肠道848parenterals非肠道制剂849particle size粒度850Particulate material颗粒物851particulate matter微粒852Parturition分娩延迟853parvoviruses细小病毒854passage history of the cell line细胞系的传代史855pathogenic agents致病因子856pathogenicity致病性857patterns of degradation降解方式858Pediatric populations小儿人群859peptide肽860peptide map 肽图861percent recovery回收率862periodic/skip testing定期检验/抽验863Peripheral blood erythrocyte外周血红细胞864permitted daily exposure允许的日接触量865Perpoductive competence生殖能力866phage typing噬菌体分型867pharcodynamic studies药效学研究868Pharmacodinetic药代动力学869Pharmacodynamic effects药效作用870Pharmacodynamics药效学(药效动力学)871pharmacopoeial药典872pharmacopoeial pharmacoppeial specifications药典规范873pharmacopoeial standards药典标准874phenotypic 表型875Phenylene diamine苯二胺876phosphorylation磷酸化作用877photostability testing光稳定性试验878Physical development身体发育879physicochemical changes理化改变880physicochemical methods物理化学方法881physico-chemical properties物理化学特性882Physiological stress生理应激883Pilot studies 前期研究884pilot-plant scale试生产规模/中试规模885Pinna unfolding耳廓张开886piston release force活塞释放力887piston travel force活塞移动力888pivotal stability studies关键的稳定性研究889plaque assays菌斑测定890plasmid质粒891Plasmid质粒892plasmid banks质粒库893plasminogen activators纤溶酶原激活素894Plasminogen activators纤维蛋白溶解酶原激活因子895Ploidy整倍体896pneumonia virus of mice小鼠肺炎病毒897Point mutation点突变898poisson distribution泊松分布899Polychromatic erythrocyte嗜多染红细胞900polyclonal antibody多克隆抗体901Polycyclic hydrocarbon多环芳烃902Polymer聚合物903polymerase chain reaction (PCR)聚合酶链式反应904polymorphic form多晶性型905polymorphs多晶型906polyoma virus多瘤病毒907polypeptides多肽908Polyploid cell多倍体细胞909Polyploidy多倍体910Polyploidy induction多倍体诱导911pooled havest集中回收912Poorly soluble compound难溶化合物913population doubling细胞数倍增/群体倍增914porcine猪915Positive control阳性对照916Positive result阳性结果917Post meiotic stages减数分裂后期918Post-approval批准后919Postcoital time frame交配后日期920Postimplantation deaths着床后死亡921Postnatal deaths出生后死亡922post-translational modifications批准后923post-translationally modified forms翻译后修饰924Postweaning development and growth断奶后发育和生长925potency效价926potent功效927Potential 潜在性928potential adverse consequences潜在的不良后果929potential excipients准赋形剂930Potential immunogenecity潜在免疫原性931potential impurity潜在杂质932potential new drug products准新药制剂933potential new drug substances准新药原料934Potentialtarget organs for toxicity潜在毒性靶器官935potentiometric titrimetry电位滴定936powders粉剂937power outages and human error断电和人为错误938preamble引言939Pre-and post-natal development study围产期的发育研究940Pre-and postweaning survival and growth断奶前后的存活和生长941pre-approval or pre-liscense stage批准前或发证前阶段942Precipitate沉淀物943precision精密度944preclinical and clinical studies临床前和临床研究945Preclinical safety evaluation临床前安全性评价946precursors前体947Predetermined criteria预定标准948Prediction of carcinogenicity致癌性预测949Pregnant怀孕950Pregnant and lactating animals怀孕与哺乳期动物951Preimplantation development着床前发育952Preimplantation stages of the embryo胚胎着床前期953preliminary assessment初步评估954preliminary cell bank初级细胞库955Preliminary studies预试验956Premating交配前957Premating treatment交配前给药958preparation制剂959Pre-screening预筛选960preservative防腐剂961Prevalence of abnormalities异常情况的普遍程度962Preweaning断奶前963Primary active entity主要活性实体964primary cells原代细胞965primary stability data主要稳定性数据966primary stability study/formal study/formal stability study主要稳定性研究/正式研究/正式稳定性研究967primary structure一级结构968primer引物969priming regimen接种方案970Priority selection优先选择971probability概率972process characterisation studies工艺鉴定研究973process controls工艺控制974process optimisation工艺优化975process parameters工艺参数976process validation工艺确证977process-related impurities工艺相关杂质978Pro-drug前体药物979product-related imputies产品相关杂质980progenitor祖细胞981prokaryotic cell原核细胞982Prolongation of parturition产程延长983promoters启动子984proposed commercial process模拟上市985protected samples避光样品。
Low Micromolar Zinc Accelerates the Fibrillization of Human Tau via Bridging of Cys-291and Cys-322*Received for publication,August24,2009Published,JBC Papers in Press,October13,2009,DOI10.1074/jbc.M109.058883Zhong-Ying Mo,Ying-Zhu Zhu,Hai-Li Zhu,Jun-Bao Fan,Jie Chen,and Yi Liang1From the State Key Laboratory of Virology,College of Life Sciences,Wuhan University,Wuhan430072,ChinaA hallmark of a group of neurodegenerative diseases such as Alzheimer disease is the formation of neurofibrillary tangles, which are principally composed of bundles of filaments formed by microtubule-associated protein Tau.Clarifying how natively unstructured Tau protein forms abnormal aggregates is of cen-tral importance for elucidating the etiology of these diseases. There is considerable evidence showing that zinc,as an essential element that is highly concentrated in brain,is linked to the development or progression of these diseases.Herein,by using recombinant human Tau fragment Tau244–372and its mutants, we have investigated the effect of zinc on the aggregation of Tau. Low micromolar concentrations of Zn2؉dramatically acceler-ate fibril formation of wild-type Tau244–372under reducing con-ditions,compared with no Zn2؉.Higher concentrations of Zn2؉,however,induce wild-type Tau244–372to form granular aggregates in reducing conditions.Moreover,these non-fibril-lar aggregates assemble into mature Tau filaments when Zn2؉has been chelated by EDTA.Unlike wild-type Tau244–372,low micromolar concentrations of Zn2؉have no obvious effects on fibrillization kinetics of single mutants C291A and C322A and double mutant C291A/C322A under reducing conditions.The results from isothermal titration calorimetry show that one Zn2؉binds to one Tau molecule via tetrahedral coordination to Cys-291and Cys-322as well as two histidines,with moderate, micromolar affinity.Our data demonstrate that low micromolar zinc accelerates the fibrillization of human Tau protein via bridging Cys-291and Cys-322in physiological reducing condi-tions,providing clues to understanding the relationship between zinc dyshomeostasis and the etiology of neurodegen-erative diseases.Tau,a microtubule-associated protein,is the major protein subunit of neurofibrillary tangles(NFTs),2which are found in a group of neurodegenerative diseases such as Alzheimer disease and frontotemporal lobar degeneration(1,2).NFTs are mainly composed of bundles of Tau in the form of paired helical fila-ments(PHFs),straight filaments,or twisted ribbons.It is gen-erally believed that the neuron degeneration in such diseases is very likely to be contributed by the accumulation of these aggregates(3).Thus the characterization of factors involved in abnormal Tau aggregation is of great importance to clarify the etiology of neurodegenerative diseases and assist in the estab-lishment of medical treatment.Tau is one of the largest proteins without recognizable sec-ondary structure and adopts a natively unfolded structure in solution(4).There are two distinct domains of Tau protein,the projection domain and the microtubule binding domain.The microtubule binding domain mainly contains either three or four imperfect repeats(18amino acids in length)separated from one another by inter repeats(13–14amino acids in length) (5).In its normal state,Tau facilitates and stabilizes the assem-bly of microtubules.But under certain pathological conditions, it will detach from microtubules.Some of its small segments adopt a-conformation,and further interactions convert them toward formation of aggregates that are rich in-sheet struc-tures.These aggregates undergo filament nucleation and elon-gation and form NFTs eventually(1,2,6).The microtubule binding repeat region forms the core of filaments while the rest of the protein retains its largely unfolded structure,which forms the fuzzy coat of the filaments(7–9).Although the mechanism by which Tau protein aggregates is not fully understood,there are increasing evidences showing that a disturbance of brain zinc homeostasis during aging plays a role in the etiology of Alzheimer disease(10–12).Zinc is an integral component of numerous enzymes,transcription fac-tors,and structural proteins.Furthermore,zinc is one of the most abundant transition metals in the brain and is in particu-larly large concentrations in the mammalian brain with an overall concentration ofϳ150M(13).The distribution of zinc is not uniform,and up to15%of brain zinc is located inside presynaptic vesicles(13,14).Although the cytosolic free con-centration of Zn2ϩin cultured neurons is generally subnano-molar,in pathological conditions the free concentration of Zn2ϩis altered via several pathways such as presynaptic zinc translocation(15).There is current evidence for a relative increase in intracel-lular zinc in vulnerable regions of the Alzheimer disease brain (16),and abnormally high levels of zinc at millimolar concen-trations have been found in NFTs and senile plaque cores(17, 18).It is estimated that strong activation of Zn2ϩ-containing presynaptic terminals results in transient local synaptic Zn2ϩconcentrations in the100–300M range(13,17).Histochem-ically reactive zinc deposits are also found specifically localized to cerebral amyloid angiopathy deposits and NFT-bearing neu-rons(19).It has been reported that there are3-to5-fold increases in zinc in the cortical and accessory basal nuclei of the*This work was supported by National Key Basic Research Foundation of China Grant2006CB910301and by National Natural Science Foundation of China Grants30770421and30970599.1To whom correspondence should be addressed.Tel.:86-27-6875-4902;Fax: 86-27-6875-4902;E-mail:liangyi@.2The abbreviations used are:NFT,neurofibrillary tangles;AFM,atomic forcemicroscopy;DM,double mutant C291A/C322A of Tau244–372;DTT,dithio-threitol;ITC,isothermal titration calorimetry;PHF,paired helical filaments; TEM,transmission electron microscopy;ThT,thioflavin T;WT,wild-typeTau244–372.THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL.284,NO.50,pp.34648–34657,December11,2009©2009by The American Society for Biochemistry and Molecular Biology,Inc.Printed in the U.S.A.by guest on January 13, 2015/Downloaded fromamygdala and in the neuropil of Alzheimer disease patients,as compared with age-matched controls(20).Zinc has been shown to accelerate the aggregation of amyloid peptides(21,22),trigger the fibrillization of methionine oxi-dized␣-synuclein(23),and cause an aggregation of Dcp1a pro-tein in an RNA-dependent manner(24).There are also results indicating that Ca2ϩand Mg2ϩcan selectively induce the for-mation of PHF-Tau aggregation(25),whereas Al3ϩ,Cu2ϩ,and Fe2ϩ/Fe3ϩcan bind to Tau(26–28).However,whether Zn2ϩhas an effect on the aggregation of Tau has not been reported so far,which leaves us to answer the physiological question whether the alteration of zinc can affect Tau aggregation and thus play a role in the pathology of neurodegenerative diseases such as Alzheimer disease.In the present study,by using several biophysical methods, such as thioflavin T binding,atomic force microscopy(AFM), transmission electron microscopy(TEM),and isothermal titra-tion calorimetry(ITC),we investigated the impact of zinc onthe aggregation of human Tau fragment Tau244–372.Ourresults indicated that low micromolar zinc dramatically accel-erated fibril formation of wild-type Tau244–372in the presenceof dithiothreitol(DTT),but had no obvious effects on fibrilli-zation kinetics of single mutants C291A and C322A and double mutant C291A/C322A.Further,we demonstrated that Zn2ϩbound to Tau molecules via tetrahedral coordination to Cys-291,Cys-322,and two histidines with moderate,micromolar affinity,and thus concluded that low micromolar zinc pro-moted the fibrillization of human Tau protein via bridging of Cys-291and Cys-322in physiological reducing conditions. EXPERIMENTAL PROCEDURESMaterials—Heparin(average molecular massϭ6kDa)and thioflavin T(ThT)were purchased from Sigma.DTT was obtained from Ameresco Chemical Co.(Solon,OH).All the metal cations used were chloride forms of analytical grade.All other chemicals used were made in China and were of analytical grade.The buffers used in this study were treated with ion-exchange resins to remove trace amounts of divalent cations present as contaminants in the solutions.Plasmids and Proteins—The cDNA-encoding human Taufragment Tau244–372was amplified using the plasmid forhuman Tau40(kindly provided by Dr.Michel Goedert)as atemplate.The PCR-amplified Tau244–372was subcloned intopRK172vector.Single cysteine mutants C291A and C322A anddouble mutant C291A/C322A of Tau244–372were generatedusing primers GCAACGTCCAGTCCAAGGCTGGCTCAA-AGG/CCTTTGAGCCAGCCTTGGACTGGACGTTGC for C291A and GTGACCTCCAAGGCTGGCTCATTAGGCAA-CATC/GATGTTGCCTAATGAGCCAGCCTTGGAGG-TCAC for C322A.Single histidine mutants H330A and H362A and histidine-less mutant H268A/H299A/H329A/H330A/ H362A were generated in a similar manner.Plasmids contain-ing target sequences were transformed into Escherichia coli BL21(DE3)strain.The expression of recombinant human Taufragment Tau244–372and its mutants was induced with400Misopropyl--D-thiogalactopyranoside and cultured for3h.Cell pellets of2-liter culture were collected and re-suspended in80 ml of buffer A(20m M phosphate buffer containing2m M DTT,pH7.0)and then sonicated at250watts for30min.500m MNaCl was added into the mixture,and then the mixture was boiled at100°C for15min.After centrifugation at17,000ϫgfor30min at4°C,supernatant was collected and dialyzed against buffer A extensively.The sample was then loaded to anSP-Sepharose column and washed with400ml of buffer A.The target protein was obtained by washing the column using500ml of20m M phosphate buffer containing2m M DTT and0–400m M NaCl.The Tau fragment was then concentrated and dialyzed against50m M Tris-HCl buffer containing2m M DTT(pH7.5)extensively,and then stored atϪ80°C.Purified Tau protein was analyzed by SDS-PAGE with one band and con-firmed by mass spectrometry.The concentration of human Tau fragment was determined according to its absorbance at214nm with a standard calibration curve drawn by bovine serum albumin as described(29).ThT Binding Assays—A2.5m M ThT stock solution was freshly prepared in50m M Tris-HCl buffer(pH7.5)and passed through a0.22-m pore size filter before use to remove insol-uble particles.Under standard conditions,10M Tau244–372was incubated without agitation in50m M Tris-HCl buffer(pH7.5)containing1m M DTT and20M ThT with or withoutZn2ϩat37°C for up to1h in the presence of fibrillization inducer heparin used in a Tau:heparin molar ratio of4:1.The fluorescence of ThT was excited at440nm with a slit width of7.5nm,and the emission was measured at480nm with a slitwidth of7.5nm on an LS-55luminescence spectrometer (PerkinElmer Life Sciences).The preparation of the samples before the first measurement took1min.The polymerization for Tau244–372and its cysteine mutantsin96-well plates were set up by a mixture of20M Tau protein,5M heparin,50M ThT,and0–80M Zn2ϩeither in the presence or in the absence of1m M DTT in50m M Tris-HCl buffer containing100m M NaCl(pH7.5).The reaction compo-nents were mixed quickly and immediately read for8h(with DTT)or3h(without DTT)at37°C in SpectraMax M2 microplate reader(Molecular Devices,Sunnyvale,CA)using excitation at440nm and emission at480nm with a wave-length cut-off at475nm.Each sample was run in triplicate or quadruplicate.Kinetic parameters were determined by fit-ting ThT fluorescence intensity versus time to a sigmoidal equation(30),FϭF0ϩ͑Aϩct͒/͕1ϩexp[k͑t mϪt͔͒}(Eq.1)where F is the fluorescence intensity,k is the rate constant forthe growth of fibrils,and tmis the time to50%of maximal fluorescence.The initial baseline during the lag time isdescribed by F.The final baseline after the growth phase hasended is described by Aϩct.The lag time is calculated as tmϪ2/k.Sarkosyl-insoluble Tau SDS-PAGE—The Sarkosyl-insolubleTau experiments were carried out according to the method described by Aoyagi and co-workers(31)with minor changes.Tau polymerization was set up by incubating a mixture of10MTau244–372,2.5M heparin,1m M DTT,and0–100M Zn2ϩin50m M Tris-HCl buffer(pH7.5)at37°C without agitation.Ali-quots(100l)of assembly mixtures were taken out and addedLow Micromolar Zinc Accelerates Tau Fibrillizationby guest on January 13, 2015/Downloaded frominto 500l of 50m M Tris-HCl buffer (pH 7.5)containing 1%Sarkosyl.The mixture was left at room temperature for 30min and then centrifuged in an Optima LE-80K ultracentrifuge (Beckman Coulter,Fullerton,CA)at 150,000ϫg for 30min.The supernatant (Sarkosyl-soluble Tau)was removed,and the pellet (Sarkosyl-insoluble Tau)was re-suspended in 50l of SDS sample buffer containing 5%2-mercaptoethanol and sub-jected to 15%SDS-PAGE.After the electrophoresis the gels were stained with Coomassie Blue.Transmission Electron Microscopy —The formation of fila-ments by human Tau fragment was confirmed by electron microscopy of negatively stained samples.Sample aliquots of 10l were placed on copper grids and left at room temperature for 1–2min,rinsed with H 2O twice,and then stained with 2%(w/v)uranyl acetate for another 1–2min.The stained samples were examined using an H-8100transmission electron microscope (Hitachi,Tokyo,Japan)operating at 100kV.AFM —The formation of filaments by human Tau fragment was further confirmed by AFM.Sample aliquots of 10l were deposited onto freshly cleaved mica,left on the surface for 10min,and rinsed with H 2O twice.Then the solution was dried in a desiccator for 12h.AFM images were acquired in tapping mode with an SPM-9500J3scanning probe microscope (Shi-madzu,Kyoto,Japan).Several regions of the mica surface were examined to confirm that similar structures existed through the sample.Isothermal Titration Calorimetry —ITC experiments on the interaction of Zn 2ϩwith Tau 244–372and its mutants were car-ried out at 25.0°C using an iTC 200titration calorimetry (Micro-Cal,Northampton,MA).Freshly purified Tau proteins (wild-type Tau 244–372,single mutants C291A,C322A,H330A,and H362A,double mutant C291A/C322A,and histidine-less mutant H268A/H299A/H329A/H330A/H362A)were dialyzed against 50m M Tris-HCl buffer (pH 7.5)containing 1m M EDTA,overnight at 4°C and then dialyzed against 50m M Tris-HCl buffer (pH 7.5)extensively to remove EDTA.A solution of 100–200M Tau proteins was loaded into the sample cell (200l),and a solution of 2.8–6.0m M Zn 2ϩwas placed in the injec-tion syringe (40l).The first injection (0.3l)was followed by 24–27injections of 1l.Dilution heats of Zn 2ϩwere measured by injecting Zn 2ϩsolution into buffer alone and were sub-tracted from the experimental curves prior to data analysis.The stirring rate was 600rpm.The resulting data were fitted to a single set of identical sites model using MicroCal ORIGIN soft-ware supplied with the instrument,and the standard molarenthalpy change for the binding,⌬b H m 0,the dissociation con-stant,K d ,and the binding stoichiometry,n ,were thus obtained.The standard molar free energy change,⌬b G m 0,and the stand-ard molar entropy change,⌬b S m 0,for the binding reaction were calculated by the fundamental equations of thermodynamics (32).⌬b G m 0ϭRT ln K d(Eq.2)⌬b S m 0ϭ͑⌬b H m 0Ϫ⌬b G m 0͒/T(Eq.3)RESULTSThe Presence of Zn 2ϩInfluenced Tau Aggregation —The enhanced fluorescence emission of the dye ThT has been fre-quently used for monitoring the kinetics of amyloid fibril for-mation,which is a specific marker for the -sheet conformation of fibril structures (33,34).Because Tau 244–372consists of the four-repeat microtubule binding domain forming the core of PHFs in Alzheimer disease and assembles more readily than full-length Tau protein into filaments in vitro ,we employed such a Tau fragment for studying kinetics of Tau fibril forma-tion.As shown in Fig.1,the kinetic curves of the ThT fluores-cence intensity at 480nm for Tau 244–372fibrillization were con-sistent with a nucleation-dependent elongation model (35),in which the lag phase corresponded to the nucleation phase,and the exponential part to a fibril growth (elongation)phase.Bivalent cations such as Mg 2ϩ,Mn 2ϩ,Ca 2ϩ,Zn 2ϩ,and Cu 2ϩand trivalent cation Fe 3ϩwere incubated separately with phys-iological concentrations of Tau 244–372at 37°C in the presence of DTT.As shown in Fig.1A ,in the absence of cation,the lag phase for wild-type Tau 244–372polymerization was ϳ500s,whereas the addition of Mg 2ϩ,Mn 2ϩ,Ca 2ϩ,Fe 3ϩ,and Cu 2ϩat a low micromolar concentration (10M )decreased the lag phase in different ranges.In the presence of 10M Zn 2ϩ,how-ever,the lag phase was dramatically diminished,indicating that low micromolar concentrations of Zn 2ϩgreatly accelerated fibril formation of wild-type Tau 244–372,compared with no Zn 2ϩ,and the enhancing effect of Zn 2ϩwas more remarkable than those of other cations such as Mn 2ϩ,Fe 3ϩ,and Cu 2ϩ.Clearly,the nucleation of Tau fragment was much more accel-erated by 10M Zn 2ϩthan the following step of elongation (Fig.1A ).Meanwhile,when wild-type Tau 244–372was incubated with 100M cations,the kinetic curve of Tau 244–372in the presence of Zn 2ϩwas also quite different from those of other cations except Fe 3ϩ(Fig.1B ).The lag phase was too short to be observed,but the maximum intensity became much lower in the presence of 100M Zn 2ϩthan that in the absence of cation,indicating the aggregation of Tau 244–372was significantly altered by higher concentrations of Zn 2ϩ.Both cases indicated that the presence of Zn 2ϩ,compared with other cations,signif-icantly altered the aggregation of Tau in reducing conditions and factors other than electrostatic interactions must play a role in this phenomenon.To get a better understanding about the effect of zinc on Tau aggregation,we performed ThT binding assays at various con-centrations of Zn 2ϩ.As shown in Fig.1C ,the addition of 5–20M Zn 2ϩaccelerated fibril formation of wild-type Tau 244–372under reducing conditions,but the enhancing effect of Zn 2ϩwas most significant when the concentration of Zn 2ϩwas 10M ,which is equal to that of Tau fragment.When the concen-tration of Zn 2ϩwent higher,the kinetic curves still went up instantly,almost without a lag phase,but the final ThT intensi-ties decreased 65and 76%for 50and 100M Zn 2ϩ,respectively (Fig.1C ).The phenomenon that the presence of Zn 2ϩsignifi-cantly reduced the lag phase indicated that Zn 2ϩhad a strong enhancing effect on the nucleation of Tau protein.However,smaller exponential growth at higher molar ratios of Zn 2ϩto Tau suggested fewer filaments but other forms of Tau aggre-gates were formed,compared with no Zn 2ϩ.To semi-quantify the aggregates of Tau protein formed in the presence of Zn 2ϩat different concentrations,we carried out Sarkosyl-insoluble SDS-PAGE experiments and assessedLow Micromolar Zinc Accelerates Tau Fibrillizationby guest on January 13, 2015/Downloaded fromTau 244–372aggregation under reducing conditions by meas-uring the Sarkosyl-insoluble Tau as described (31).As shown in Fig.1D ,a clear band corresponding to Sarkosyl-insoluble Tau filaments was observed when wild-type Tau 244–372was incu-bated in the absence of Zn 2ϩfor 40min,whereas the Sarkosyl-insoluble Tau band was observed when Tau 244–372was incu-bated with Zn 2ϩat low micromolar concentrations (5–10M )for a much shorter time (15–10min).Furthermore,when Tau 244–372was incubated for 40min,the intensity of the Sar-kosyl-insoluble Tau band in the presence of 10M Zn 2ϩwas remarkably higher than that in the absence of Zn 2ϩ.This find-ing further supports the observation mentioned above that lowmicromolar concentrations of Zn 2ϩdramatically accelerate fibril forma-tion of wild-type Tau 244–372in reducing conditions,compared with no Zn 2ϩ.At higher concentra-tions of Zn 2ϩ(50–100M ),how-ever,no Sarkosyl-insoluble Tau band was observed even at 40min (Fig.1D ),indicating that fewer fila-ments but other forms of Tau aggre-gates,Sarkosyl-soluble Tau aggre-gates,were formed at higher molar ratios of Zn 2ϩto Tau under reduc-ing conditions.Morphology of Tau Aggregates Varied with Molar Ratios of Zn 2ϩto Tau —TEM and AFM were employed to study the morphology of wide-type Tau 244–372incubated with Zn 2ϩat different concentra-tions for 60min (Fig.2).The addi-tion of low micromolar concentra-tions of Zn 2ϩ(5or 10M )had no significant effect on the morphology of Tau samples monitored by TEMand AFM,and long and branched fibrils as well as a few short fila-ments (Fig.2,A–C )and some fila-ments with a length of 200–500nm (Fig.2,G–I )were observed in these three samples.When the concen-tration of Zn 2ϩincreased (50or 100M )until the molar ratio of Zn 2ϩto Tau exceeded equality,however,FIGURE 1.The presence of Zn 2؉altered Tau 244–372fibrillization kinetics.A ,10M Tau 244–372was incubated with 10M cation (open circle ,Mg 2ϩ;filled triangle ,Mn 2ϩ;filled inverted triangle ,Ca 2ϩ;filled circle ,Zn 2ϩ;filled square ,Fe 3ϩ;and open triangle ,Cu 2ϩ)or without cation (open square );B ,10M Tau 244–372was incubated with 100M cation (open circle ,Mg 2ϩ;filled triangle ,Mn 2ϩ;filled inverted triangle ,Ca 2ϩ;filled circle ,Zn 2ϩ;filled square ,Fe 3ϩ;and open triangle ,Cu 2ϩ)or without cation (open square );C ,10M Tau 244–372was incubated with 0–100M Zn 2ϩ(open square ,0M ;filled triangle ,5M ;filled circle ,10M ;filled inverted triangle ,20M ;filled rhombus ,50M ;and filled square ,100M ).The buffer used was 50m M Tris-HCl buffer (pH 7.5)containing 1m M DTT,2.5M heparin,and 20M ThT,and ThT binding assays were carried out at 37°C.D ,10M Tau 244–372was incubated with 0–100M Zn 2ϩcontaining 2.5M heparin and 1m M DTT in 50m M Tris-HCl buffer (pH 7.5)at 37°C.Aliquots were taken at 0,5,10,15,30,and 40min,respectively,and then incubated with Tris-HCl buffer containing 1%Sarkosyl followed by centrifuging at 150,000ϫg for 30min.Pellets were re-suspended with sample buffercontaining 5%2-mercaptoethanol and subjected to 15%SDS-PAGE.Gels were stained with CoomassieBlue.FIGURE 2.Transmission electron micrographs (A–F )and AFM images (G–L )of Tau 244–372aggregates formed with Zn 2؉.10M Tau 244–372was incubatedwith 0–100M Zn 2ϩ(A and G ,0M ;B and H ,5M ;C and I ,10M ;D and J ,20M ;E and K ,50M ;and F and L ,100M )containing 2.5M heparin and 1m M DTT in 50m M Tris-HCl buffer (pH 7.5)at 37°C for 60min.A 2%(w/v)uranyl acetate solution was used to negatively stain the fibrils (A–F ).The scale bars represent 200nm.Low Micromolar Zinc Accelerates Tau Fibrillizationby guest on January 13, 2015/Downloaded fromTau 244–372filaments became much fewer and shorter,and abundant granular aggregates (ϳ30nm in diameter)were observed (Fig.2,E ,F ,K ,and L ).Maeda and co-workers (36)have observed similar aggregates and have suggested that such granular Tau aggregates may be an intermediate form of Tau bining the results from TEM and AFM,we concluded that the morphology of wild-type Tau 244–372aggregates varied with molar ratios of Zn 2ϩto Tau in reducing conditions.At lower molar ratios,Tau aggregates were mainly composed of filaments,which was similar to those in the absence of Zn 2ϩ.But at higher molar ratios,filaments became much fewer and shorter,and granular aggregates became prevalent.In other words,higher concentrations of Zn 2ϩinduced wild-type Tau 244–372to form granular aggregates under reducing conditions.Characterization of the Effect of Zinc on Tau Aggregation at Differ-ent Stages —We then checked whether the enhancing effect of Zn 2ϩon the aggregation of Tau was dependent on the incubation time or different compositions of Tau protein.We added 10or 100M Zn 2ϩafter incubation for 5,15,and 30min,when Tau 244–372was no longer pure monomers.As shown in Fig.3(A–D ),Zn 2ϩadded at 15min in the growth phase or at 30min in the final equilibrium phase did not facilitate fibril formation of Tau 244–372under reducing condi-tions;on the contrary,it slowed down or even blocked the growth phase.Furthermore,10M Zn 2ϩadded at 5min in the lag phase had no obvious effect on fibril formation of Tau 244–372,and 100M Zn 2ϩadded at 5min slowed down the growth phase in reducing condi-tions (data not shown).The above results suggested that the enhancing effect on fibrillization kinetics of Tau by low micromolar concentra-tions of Zn 2ϩwas mainly due to its direct interaction with Tau mono-mers,but not protofibrils or fibrils.It is this interaction that accelerated the nucleation of Tau protein.To verify whether the effect of Zn 2ϩwas chelator-reversible,we added 1m M EDTA into systems containing Tau 244–372incubated with 10or 100M Zn 2ϩseparately.As shown in Fig.3(E and F ),the addition of EDTA at 15min in thegrowth phase did not change fibrillization kinetics of Tau in the presence of 10M Zn 2ϩ,suggesting that,once the nucle-ation of Tau had been finished,the binding of Zn 2ϩto Tau was no longer necessary for the filament elongation and matura-tion.But in the presence of 100M Zn 2ϩ,the addition of EDTA at 15min did alter the fibrillization kinetics by accelerating the elongation of Tau protein remarkably and reaching a final ThT intensity ϳ17%larger than that in the absence of Zn 2ϩ.Higher concentrations of Zn 2ϩinduced Tau to form granular aggre-gates under reducing conditions (Fig.2).Moreover,such non-fibrillar aggregates assembled into mature Tau filaments when Zn 2ϩhad been chelated by EDTA (Fig.3F).FIGURE 3.Effect of Zn 2؉on Tau 244–372fibrillization at various time points.10M Tau 244–372was incubatedwithout Zn 2ϩ(black curves )and then titrated with 10M Zn 2ϩor 100M Zn 2ϩat 15min (A and C )or 30min (Band D )respectively (red curves ).E ,10M Tau 244–372was incubated with 10M Zn 2ϩ(black curves )and then titrated with aliquots of 1m M EDTA at 15min (red curves ).F ,10M Tau 244–372was incubated with 100M Zn 2ϩ(black curves )and then titrated with 1m M EDTA at 15min (red curves ).The beginning of titrations is indicated by black arrows ,and the curves are compared with 10M Tau 244–372incubated without Zn 2ϩ(green curves ).The buffer used was 50m M Tris-HCl buffer (pH 7.5)containing 1m M DTT,2.5M heparin,and 20M ThT,and ThT binding assays were carried out at 37°C.Low Micromolar Zinc Accelerates Tau Fibrillizationby guest on January 13, 2015/Downloaded fromEffect of Zn 2ϩon Tau Aggregation under Reducing or Oxida-tive Conditions —Neuronal cells normally have a reducing envi-ronment maintained by an excess of glutathione (1,5,37).To mimic the reducing environment present in normal neuronal cells and block the formation of an intramolecular disulfide bond,DTT,a strong reducing agent,was used in this study.We carried out ThT binding assays in the presence and absence of DTT to compare the effect of Zn 2ϩon Tau aggregation under reducing conditions with that in oxidizing conditions.Addi-tionally,100m M NaCl was added into the polymerization mix-ture to mimic the physiological salinity.It has been reported that Tau aggregation is highly sensitive to elevated ionic strength (38).As shown in Fig.4A ,in the presence of DTT and 100m M NaCl,the results were quite similar to those obtained in the presence of DTT but without salt (Fig.1),except that the lag time of Tau fibrillization was much longer than that in the absence of salt as expected.When wild-type Tau 244–372was incubated with low micromolar concentrations of Zn 2ϩ,the kinetic curves of Tau fibrillization grew much faster and reached a plateau around 3h,compared with Ͼ8h in the absence of Zn 2ϩ,once again indicating that low micromolar concentrations of Zn 2ϩdramatically accelerated fibril forma-tion of wild-type Tau 244–372under physiological reducing conditions.While in the absence of DTT (Fig.4E ),the kinetic curve of Tau fibrillization showed no detectable increase within 3h in the absence of Zn 2ϩ.But when Tau 244–372was incubated with different concentrations of Zn 2ϩ,the kinetic curves showed instant increases in oxidizing conditions even at higher molar ratios of Zn 2ϩto Tau.It is quite different from those obtained inreducing conditions,which showed smaller exponential growth and much lower final ThT intensities at higher molar ratios of Zn 2ϩto Tau (Fig.4A ).This comparison suggests that higher concentrations of Zn 2ϩinduced Tau to form granular aggregates only under reducing conditions.Cys-291and Cys-322Are Key Residues in the Interaction of Zn 2ϩwith Tau —There are two cysteine residues,Cys-291and Cys-322,in full-length human Tau protein (441amino acids).They are located in repeats 2and 3of the four-repeat microtu-bule binding domain (37,39).Little is known about the role of such cysteine residues in Tau assembly,because their substitu-tion with other amino acids has no effect on Tau filament mor-phology (40).In this study,Tau 244–372mutants containing sin-gle and double cysteine mutations were designed,and ThT binding assays using such mutants were performed to provide information about the binding sites of zinc in Tau protein and the role of Cys-291and Cys-322in Tau assembly.Table 1sum-marizes the kinetic parameters obtained for fibril formation of wild-type Tau 244–372and its cysteine mutants in the presence of low micromolar concentrations of Zn 2ϩunder reducing con-ditions.Unlike wild-type Tau 244–372,4–10M Zn 2ϩhad no obvious effects on fibrillization kinetics of single mutants C291A and C322A and double mutant C291A/C322A in reduc-ing conditions (Fig.4,B –D ,and Table 1),indicating that low micromolar zinc accelerated the fibrillization of human Tau protein via bridging Cys-291and Cys-322.But higher concen-trations of Zn 2ϩdid not have uniform effects on fibrillization kinetics of Tau 244–372mutants under reducing conditions:an inhibitory effect on C291A (Fig.4B ),an enhancing effect on C322A (Fig.4C ),and no obvious enhancing effect onC291A/FIGURE 4.Cys-291and Cys-322are key residues in the interaction of Zn 2؉with Tau 244–372.The top panels show the ThT binding assays of 20M wild-type (WT )Tau 244–372(A ),20M single mutants C291A (B ),and C322A (C )or double mutant C291A/C322A (D )incubated with 0–80M Zn 2ϩ(black ,0M ;red ,4M ;green ,10M ;blue ,20M ;cyan ,40M ;and magenta ,80M )in the presence of 1m M DTT.The bottom panels show the ThT binding assays of 20M WT Tau 244–372(E ),20M single mutants C291A (F ),and C322A (G )or double mutant C291A/C322A (H )incubated with 0–80M Zn 2ϩ(black ,0M ;red ,4M ;green ,10M ;blue ,20M ;cyan ,40M ;and magenta ,80M )in the absence of DTT.The assays were carried out at 37°C,and the samples were incubated in 50m M Tris-HCl buffer (pH 7.5)containing 100m M NaCl,5M heparin and 50M ThT.Low Micromolar Zinc Accelerates Tau Fibrillizationby guest on January 13, 2015/Downloaded from。