北师大版数学八年级上册4.1函数
- 格式:doc
- 大小:234.50 KB
- 文档页数:3
北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。
本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。
通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。
但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。
三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。
四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。
2.难点:函数的概念的理解,函数的性质的推导。
五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。
2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。
3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。
2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。
3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。
4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。
北师大版八年级数学上册:4.1《函数》教案1一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节课的主要内容是让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。
通过本节课的学习,使学生能够理解生活中的一些现象和问题,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了代数的基础知识,对一些数学概念和符号有一定的理解。
但部分学生可能对生活中的实际问题与数学知识的联系还不够明确,对函数的概念和性质的理解可能存在一定的困难。
三. 教学目标1.让学生了解函数的概念,理解函数的性质,掌握函数的表示方法。
2.培养学生运用数学知识解决生活中问题的能力。
3.培养学生合作交流、积极思考的学习习惯。
四. 教学重难点1.函数的概念和性质。
2.函数的表示方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,培养学生的数学思维能力。
六. 教学准备1.课件、教案。
2.与生活相关的函数实例。
3.小组讨论的准备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引导学生思考这些现象与数学知识的联系,激发学生的学习兴趣。
2.呈现(10分钟)通过课件展示函数的概念和性质,让学生初步了解函数的定义,以及函数的表示方法。
3.操练(10分钟)让学生通过自主学习,理解函数的概念和性质,学会用函数表示一些实际问题。
4.巩固(10分钟)学生分组讨论,分析生活中的实际问题,运用函数的知识解决问题,巩固所学内容。
5.拓展(10分钟)引导学生思考函数在其他领域的应用,如经济学、物理学等,拓宽学生的知识视野。
6.小结(5分钟)对本节课的主要内容进行总结,使学生明确函数的概念、性质和表示方法。
7.家庭作业(5分钟)布置一些有关函数的练习题,巩固所学知识,提高学生的应用能力。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
教学过程中每个环节所用的时间如上所示,供您参考。
北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初步接触到函数概念后,进一步深入研究函数性质和图像的重要章节。
本节内容主要包括函数的定义、函数的性质、函数的图像等,是学生理解函数概念、掌握函数解题方法的关键。
二. 学情分析学生在学习本节内容时,已具备一定的数学基础知识和初步的函数概念,但对于函数的深入理解和灵活运用还有待提高。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过自主学习、合作探讨等方式,逐步理解和掌握函数的相关知识。
三. 教学目标1.理解函数的定义,掌握函数的性质和图像。
2.培养学生运用函数解决实际问题的能力。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的特点和绘制方法。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数在实际生活中的应用。
2.启发式教学法:引导学生主动思考、探究函数的性质和图像。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作包含函数定义、性质、图像等内容的PPT。
2.教学素材:准备一些与生活相关的函数实例,如温度、身高等。
3.练习题:挑选一些具有代表性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的函数实例,如温度随时间的变化、身高与年龄的关系等,引导学生关注函数在实际生活中的应用。
提问:这些实例中有什么共同特点?从而引出函数的定义。
2.呈现(10分钟)通过PPT展示函数的定义、性质和图像,让学生初步了解函数的基本概念。
同时,教师进行讲解,确保学生能够理解函数的相关概念。
3.操练(10分钟)让学生独立完成一些具有代表性的练习题,检验学生对函数概念的理解。
教师在过程中进行个别辅导,帮助学生解决问题。
4.巩固(10分钟)学生进行小组讨论,让学生分享自己的解题心得,互相学习。
北师大版八年级上4.1函数
知识点总结
1、函数
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3、函数的三种表示法及其优缺点
关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法
用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤
列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
图文导学。
第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.[例1-1] 下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x 的函数的是< >.A.①②③ B.①② C.②③ D.①②[例1-2] 已知y=2x2+4,<1>求x取错误!和-错误!时的函数值;<2>求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式<解析式>左边只含一个变量y,右边是含x的代数式.[例2]已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围<1>使函数有意义的自变量的全体取值叫做自变量的取值范围.<2>自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.[例3]若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,y与x的函数关系式为y=错误!<50-x>,则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.<1>列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.<2>图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.<3>解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.[例4]你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是< >.5.怎样判定函数关系<1>从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x 和y ,对于x 每一个确定的值,y 都有且只有一个值与之对应,当x 取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.<2>从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.<3>从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.[例5-1] 下列表格中能反映y 是x 的函数的是< >.A x -1 1 2 3 -1 y 0 2 4 8 10B x 0 1 2 3 0 y -2 2 3 4 6C x 2 2 2 2 2 y -1 0 1 1 3D x -1 1 2 3 4 y 0 2 4 8 10[例5-2] y x 6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:<1>自变量的取值范围完全相同.<2>函数值的取值范围完全相同.<3>变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.[例6-1] 下列函数中,与y =x 表示同一个函数的是< >.A .y =错误!B .y =|x |C .y =<错误!>2D .y =错误![例6-2]下列各组函数中,哪些是同一函数:①y x =与1y x =+;②1,y x x =-为实数,与1,y x x =-为自然数;③24y x =-与22y x x =-+④11y x =+与11u x =+; ⑤2y x x =2y x =; ⑥2||y x =与2,02,0x x y x x ≥⎧=⎨-<⎩; 7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.[例7]父亲节,学校"文苑"专栏登出了某同学回忆父亲的小诗:"同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还."如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是< >.………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x的一次函数<x是自变量>.谈重点一次函数的条件函数是一次函数必须符合下列两个条件:<1>关于两个变量x,y的次数是1;<2>必须是关于两个变量的整式.[例1]下列函数中,是一次函数的是< >.A.y=7x2B.y=x-9 C.y=错误! D.y=错误!2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx<k为常数,且k≠0>时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.[例2]下列函数中,是正比例函数的是< >.A.y=-2x B.y=-2x+1 C.y=-2x2D.y=-错误!辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx +b<k≠0>的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx<k≠0>的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.[例3] 甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.<1>试分别确定甲、丙两地距离s1<km>及丙、乙两地距离s2<km>与时间t<h>之间的函数关系式.<2>它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x 的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.__①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.[例4-1]在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?<1>y=3x;<2>y=错误!;<3>y=-3x+1;<4>y=x2.[例4-2] 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.[例5] 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h后发现已耗油1.5 L.<1>求油箱中的剩余油量Q<L>与行驶的时间t<h>之间的函数关系式,并求出自变量t的取值范围;<2>如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系<1>函数图象上的任意点P<x,y>必满足该函数关系式.<2>满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.<3>判定点P<x,y>是否在函数图象上的方法是:将点P<x,y>的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.[例1] 判断下列各点是否在函数y=2x-1的图象上.A<2,3>, B<-2,-3>.2.函数图象的画法画函数图象的一般步骤:<1>列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.<2>描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.<3>连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的"平滑曲线",现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较"平""滑"的线,实际上有时是直线.[例2] 作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表:x …-2-101…y …31-1-3…描点:以表中各组对应值作为点的坐标,在坐标系中描出相应的点.连线:把这些点连起来.注:一次函数y=-2x-1的图象是直线,连线时,两端要露头.3.一次函数的图象和性质<1>一次函数的图象和性质①一次函数的图象:一次函数y=kx+b<k≠0>的图象是一条直线.由于两点确定一条直线,因此画一次函数的图象,只要描出图象上的两个点错误!,过这两点作一条直线就行了.我们常常把这条直线叫做"直线y=kx+b".②一次函数中常量k,b<k≠0>:直线y=kx+b<k≠0>与y轴的交点是<0,b>,当b>0时,直线与y轴的正半轴相交;当b<0时,直线与y轴的负半轴相交;当b=0时,直线经过原点,此时一次函数即为正比例函数.一次函数y=kx+b中的k,决定了直线的倾斜程度,k的绝对值越大,则直线越接近y轴,反之,越靠近x轴.③一次函数y=kx+b<k≠0>的性质:当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小.<2>正比例函数的图象和性质①正比例函数的图象:一般地,正比例函数y=kx<k是常数,k≠0>的图象是一条经过原点的直线,我们称它为直线y=kx.在画正比例函数y=kx的图象时,一般是经过点<0,0>和<1,k>作一条直线.②正比例函数y=kx的性质:当k>0时,直线y=kx经过第一、三象限,从左往右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即y随x 的增大而减小.[例3-1]作出一次函数y=-3x+3的图象.[例3-2]若一次函数y=<2m-6>x+5中,y随x增大而减小,则m的取值范围是________.[例3-3]下图表示一次函数y=kx+b与正比例函数y=kx<k,b是常数,且k≠0>图象的是< >.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b<k≠0>,我们知道一次函数图象经过哪些象限是由k,b的符号决定的.一般分为四种情况:<1>k>0,b>0时,图象过第一、二、三象限;<2>k>0,b<0时,图象过第一、三、四象限;<3>k<0,b>0时,图象过第一、二、四象限;<4>k<0,b<0时,图象过第二、三、四象限.析规律 k,b的符号与直线的关系根据一次函数y=kx+b中k,b的符号可以确定图象所经过的象限;根据函数图象所经过的象限,可以确定k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所经过象限的几个类型,并能灵活应用.[例4-1] 一次函数y=kx+b的图象经过第二、三、四象限,则正比例函数y=kbx图象经过哪个象限?[例4-2]如图是一次函数y=kx+b的图象的大致位置,试分别确定k,b的正负号,并判断一次函数y=<-k-1>x-b的图象所经过的象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x轴交于点错误!,与y轴交于点<0,b>.考查直线与两坐标轴的交点的问题常见的有三类:<1>判定直线所过的象限,一般给出函数关系式,判定直线经过哪几个象限或确定不经过哪个象限.<2>求直线的解析式,一般先设出函数关系式为y=kx+b<k≠0>,把已知的两点的坐标分别代入,求出k,b的值即可.<3>求两交点与坐标轴围成的三角形的面积,由于这个三角形是直角三角形,利用面积公式即可.[例5] 如图,已知直线y=kx-3经过点M<-2,1>,求此直线与x轴,y轴的交点坐标,并求出与坐标轴所围的三角形的面积.6.关于一次函数的最值问题对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大、最小值<简称"最值">,但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大值或最小值.求解这类问题,先分析问题中两个变量之间的关系是否适合一次函数模型,再在自变量允许的取值范围内建立一次函数模型.运用一次函数解决实际问题的关键是根据一次函数的性质来解答.除正确确定函数表达式外,利用自变量取值范围去分析最值是解题的关键."在生活中学数学,到生活中用数学",是新课标所倡导的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同学们利用所学知识求解实际问题的能力.[例6] 某报刊销售亭从报社订购晚报的价格是0.7元,销售价是每份1元,卖不掉的报纸可以以每份0.2元的价格退回报社,若每月按30天计算,有20天每天可卖出100份报纸,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,报亭每天从报社订购多少份报纸,才能使每月所获得的利润最大?………………………………………………………………………………◆4.4一次函数的应用1.确定一次函数表达式<1>借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx<k≠0>;若不过原点,则为一次函数,可设其关系式为y=kx+b<k≠0>;然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.<2>确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx<k≠0>中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b<k≠0>有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.[例1]如图,直线AB对应的函数表达式是< >.A.y=-错误!x+3 B.y=错误!x+3 C.y=-错误!x+3 D.y=错误!x+3点技巧用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b<k≠0>的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法<1>定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.<2>用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程<组>,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.[例2-1] 一次函数图象如图所示,求其解析式.[例2-2] 在直角坐标系中,一次函数y=kx+b的图象经过三点A<2,0>,B<0,2>,C<m,3>,求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用<1>通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.<2>一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b<k≠0>的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.[例3-1]甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y<m>与挖掘时间x<h>之间的关系如图所示,请根据图象所提供的信息解答下列问题:<1>乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.<2>请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.<3>当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?[例3-2] 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象<两条射线>如图,观察图象回答下列问题:<1>每月行驶的路程在什么范围内时,租国有出租车公司的车合算?<2>每月行驶的路程等于多少时,租两家车的费用相同?<3>如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b<k≠0>中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.[例4] 某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y<L>与行驶时间t<h>的关系如下表,与行驶路程x<km>的关系如下图.请你根据这些信息求A行驶时间t<h>012 3油箱余油量y<L>1008468525一次函数y=kx+b<k≠0>的图象可以看做由直线y=kx平移|b|个单位长度而得到<当b >0时,向上平移;当b<0时,向下平移>.实际上就是指一次函数y=kx+b的图象沿y轴平移时,在b的位置上按照"上加下减"的规律进行.如:一次函数l1:y=错误!x+2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向上平移2个单位长度得到的;一次函数l2:y=错误!x-2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向下平移2个单位长度得到的.思考:函数图像左右移动解析式如何变化呢?[例5] 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从"数"的角度看,由于任何一元一次方程都可以转化为ax+b=0<a,b为常数,且a≠0>的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大<小>于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大<小>于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.[例6] 已知一次函数x -2-1012 3y 6420-2-4。
北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节主要介绍了函数的概念、性质和简单的函数图像。
函数是初中数学的重要内容,也是高中数学的基础。
通过本节的学习,学生能够理解函数的基本概念,了解函数的性质和图像,为后续学习更复杂的函数知识打下基础。
二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于函数这一概念,学生可能比较陌生,难以理解函数的的本质。
因此,在教学过程中,需要引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的性质和图像。
三. 教学目标1.了解函数的概念,能够说出函数的定义。
2.了解函数的性质,能够判断一个函数的性质。
3.能够画出一些简单函数的图像,了解函数图像的特点。
4.能够运用函数解决实际问题。
四. 教学重难点1.函数的概念和性质。
2.函数图像的画法和特点。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。
2.实例教学法:通过大量的例子让学生理解函数的性质和图像。
3.小组合作学习:让学生在小组内讨论和探究函数的问题,培养学生的合作能力。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示函数的定义、性质和图像。
2.实例材料:准备一些实际的例子,让学生分析和探究。
3.练习题:准备一些练习题,让学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如电梯的运行、温度变化等,引导学生思考这些问题背后的数学模型。
通过学生的思考和讨论,引出函数的概念。
2.呈现(10分钟)用PPT课件呈现函数的定义,让学生了解函数的基本概念。
然后,用PPT课件展示一些简单函数的图像,让学生观察和分析函数图像的特点。
3.操练(10分钟)让学生分组讨论和探究,分析给定的实际问题中的函数关系。
每组选择一个实际问题,分析其中的函数关系,并画出函数的图像。
一、单元学习主题本单元是“数与代数”领域“函数”主题中的“一次函数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学语言表达现实世界的重要载体.《标准2022》对一次函数的学习要求是:结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式;会运用待定系数法确定一次函数的表达式;能画出一次函数的图象,根据图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时图象的变化情况;理解正比例函数;体会一次函数与二元一次方程的关系,进一步发展建模意识;能用一次函数解决简单实际问题,发展应用意识.函数的教学,要通过对现实问题中变量的分析,建立两个变量之间变化的依赖关系,让学生理解用函数表达变化关系的实际意义;要引导学生借助平面直角坐标系中的描点,理解函数图象与表达式的对应关系,理解函数与对应的方程、不等式的关系,增强几何直观;会用函数表达现实世界事物的简单规律;注重学生对必要的数学语言和符号的理解与准确应用.运用数学语言和符号去理解、描述现实世界中问题的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.经历用数学的语言表达现实世界的过程,提升学生学习数学的兴趣,进一步发展应用意识.2.本单元教学内容分析北师大版教材八年级上册第四章“一次函数”,本章包括四个小节:4.1函数;4.2一次函数与正比例函数;4.3一次函数的图象;4.4一次函数的应用.函数学习在中学数学中占据重要地位,既是教学的重点,也是教学的难点.本章是学生第一次接触函数,是后续学习反比例函数、二次函数的基础.函数的概念和函数的图象贯穿整个函数的教学,是学习函数的重点,同时函数概念中体现出的变化与对应的思想、数形结合思想是决定函数学习是否顺利的关键.一次函数是学生接触的第一类函数,在教学中, 一般利用函数图象归纳函数性质,利用函数性质和图象来解决问题,这种从特殊到一般再回到特殊的研究方法是研究函数的基本方法.函数是数学中重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型.本章是学习函数的入门,也是进一步学习的基础.教材通过具体的实例引入一次函数的概念,并通过练习巩固对一次函数意义的认识;通过让学生动手操作,让学生认识到一次函数的图象是一条直线,从而得出两点法作一次函数图象;通过具体的取值结合函数的图象,让学生逐步得出一次函数的性质,体会一次函数在实际生活中的应用.教材注重让学生参与知识的形成过程,自始至终都采用让学生动手尝试、交流、归纳的方式,鼓励学生通过观察、猜想、验证,主动获取知识,真正体会到函数是反映现实世界的有效数学模型.一次函数是初中学生将要学习的各类函数中最简单的一种函数,它反映了函数的特点及函数的思维方式、研究方法和应用模式,因此学好一次函数是学好其他函数的基础.研究一次函数离不开对图象特征的研究.数形结合是学习一次函数时必须体现的一种重要思想.要通过设置较多实际问题的一次函数图象,让学生观察、自己描点画图、研究变量的变化规律,探讨函数中的数与形的对应关系,逐步掌握解决一次函数问题的技能.由于一次函数在现实生活中有着广泛的应用,因此,在具体的教学过程中,可以利用生活中的素材加深学生对函数现实意义的理解,促进其函数建模、数形结合等重要数学思想方法的形成,加强对知识之间内在联系的认识,体会函数观点的统领作用,也可以利用所学的函数知识解决现实生活中的一些问题.三、单元学情分析本单元内容是北师大版教材数学八年级上册第四章一次函数,本单元是在学习了实数、平面直角坐标系的基础上学习的,学生对数形结合思想有了一定的认识,它为本章的学习作了铺垫,一次函数的学习又为后续函数的学习作了铺垫,因此本章内容起着承上启下的作用.本单元让学生进一步认识用图象法表示函数关系,并开始学习一类最基本的函数——一次函数.学习一次函数,意味着从常量数学进入变量数学的学习.学生的思维要随之改变,这是对学生思维能力的考验,也是对数学认识的一次飞跃.学生在学习一次函数的过程中,对简单问题往往能根据课堂所学的概念知识,画出相应的函数图象解决,看不出学生对一次函数的理解程度.但随着时间的推移,随着问题情境复杂化,他们就会表现出对一次函数知识理解深度不够,停留在感性认识多些,理性认识少些,对一次函数表达式的直接应用多些,对表达式与图象间的内在联系运用薄弱些,需要多练、多探、多问、多总结经验.学生在学习过程中遇到困难主要有:复杂问题情景化转移到一次函数图象;结合题意理解一次函数所表达的信息;结合题意将图象信息转换为数量关系.因此,本单元教学应注意数形结合,需要多练、多问、多总结.四、单元学习目标1.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展符号意识.2.经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作交流的意识和能力.3.初步理解函数的概念,在实际背景中感受自变量取值范围的意义.4.能画一次函数的图象,经历利用一次函数及其图象解决实际问题的过程,发展应用意识,体会数形结合的思想.六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
北师大版八年级数学上册:4.1《函数》教学设计2一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初中函数概念的基础上,进一步深入研究函数性质和图像的重要内容。
本节课的内容主要包括函数的概念、函数的性质和函数的图像。
函数是数学中的重要概念,它在现实生活中有着广泛的应用。
通过学习本节课的内容,学生能够更好地理解函数的本质,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基础知识,对函数的概念和图像有一定的了解。
但学生在理解函数的性质和运用函数解决实际问题方面还存在一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,采取适当的教学方法,引导学生深入理解函数的性质,提高解决实际问题的能力。
三. 教学目标1.理解函数的概念,掌握函数的性质。
2.能够运用函数解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.函数的概念和性质。
2.运用函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生通过观察、思考、讨论,自主探索函数的性质。
3.案例教学法:通过典型例题,引导学生运用函数解决实际问题。
六. 教学准备1.教学课件:制作生动有趣的课件,帮助学生直观地理解函数的性质。
2.教学素材:收集相关的实际问题,作为课堂练习和拓展的内容。
3.板书设计:合理安排板书内容,突出函数的性质。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如气温变化、物体运动等,引导学生回顾已学的函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师引导学生观察、思考、讨论,探索函数的性质。
通过教师的引导,学生能够自主得出函数的性质。
3.操练(10分钟)教师出示典型例题,引导学生运用函数的性质解决问题。
在解决问题的过程中,教师要注意引导学生运用函数的性质,提高学生的解题能力。
八年级数学上册4.1函数教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四单元第一节“函数”是学生在初中阶段首次接触函数概念。
在此之前,学生已学习了代数知识,为本节函数的学习奠定了基础。
本节课的主要内容是让学生了解函数的定义、性质及表示方法,通过实例让学生理解函数的概念,并能够运用函数解决实际问题。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于新知识有一定的求知欲和好奇心。
但是,由于函数概念较为抽象,学生可能一时难以理解和接受。
因此,在教学过程中,需要教师通过具体实例和生活中的问题,引导学生理解和掌握函数的概念。
三. 教学目标1.让学生了解函数的定义、性质及表示方法。
2.培养学生运用函数解决实际问题的能力。
3.提高学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.函数的概念和性质。
2.函数的表示方法。
3.运用函数解决实际问题。
五. 教学方法1.实例教学:通过具体实例引入函数概念,使学生更容易理解和接受。
2.问题驱动:提出生活中的问题,引导学生运用函数解决实际问题。
3.小组讨论:分组讨论函数的性质和表示方法,培养学生合作学习能力。
4.练习巩固:课后布置适量习题,巩固所学知识。
六. 教学准备1.准备相关实例和图片,用于导入和讲解。
2.准备PPT,用于展示函数的性质和表示方法。
3.准备习题,用于课后巩固。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化、物体的高度随时间的变化等,引导学生思考这些现象背后的数学规律。
让学生意识到函数可以用来描述这些变化规律。
2.呈现(10分钟)讲解函数的定义、性质及表示方法。
通过PPT展示函数图像,让学生直观地理解函数的概念。
同时,给出一些实际问题,让学生尝试用函数来解决。
3.操练(10分钟)学生分组讨论,探究函数的性质和表示方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)课后布置适量习题,让学生巩固所学知识。
北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。
函数是数学中的一个重要概念,也是初中数学的核心内容之一。
通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。
二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。
但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。
三. 教学目标1.理解函数的概念,掌握函数的表示方法。
2.能够判断两个相关联的变量之间的关系是否为函数。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。
2.函数的表示方法。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。
2.实例教学法:通过具体的实例,使学生理解函数的表示方法。
3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。
2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考并回答问题,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。
通过具体的实例,让学生理解函数的表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。
八年级数学第一学期导学案
4.1 函数
班级:姓名:
【学习目标】
1.结合具体情景理解函数的概念,能判断两个变量之间的关系是否可看做函数.
2.逐步形成利用函数观点认识现实世界的意识和能力.
学习重点:理解函数的概念,能判断两个变量之间的关系是否可看做函数.
学习难点:培养利用函数观点认识现实世界的意识和能力.
【复习引入】
1.若面积用S,半径用r表示,则表示圆的面积的关系式是,在这个关系式中,常量是;变量是.
2.小明骑车从家到学校速度是15千米/时,他走过的路程s与时间t之间的变化关系是.在路程s与时间t的两个变量中,是自变量,是因变量.
3.图4-1反映了摩天轮上一点的高度h(m)与旋转时间t(min)之间的关系.
(1)根据图4-1填表:
t/分012345…
h/米
(2)对于给定的时间t,相应的高度h确定吗?
【自主学习】
1.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。
随着层数的增加,物体的总数是如何变化的?填写下表:
2.一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.
(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?
(2)给定一个大于-273 ℃的t值,你能求出相应的T值吗?
【探究学习】
1.认真阅读课本P76的内容,并与同伴进行交流:上面的几个例子有什么共同的特征?你是怎么理解函数的?它的表示方法有哪些?函数值是什么?
【巩固练习】
1.完成课本P77的“随堂练习”.
2.若1吨民用自来水的价格为2.8元,则所交水费金额y(元)与使用自来水的数量x(吨)之间的函数关系式为________________,自变量是.
3.已知矩形的周长为12,它的长与宽之间存在着函数关系.当长为4时,宽是;当
宽为1时,长是.
4.完成课本P77习题4.1的第1题.
5.(选做题) 完成课本P78习题4.1的第4题.
【课堂小结】
说说你是如何理解函数关系的?
【布置作业】。