电动力学 3第三章 静 磁 场.
- 格式:doc
- 大小:3.88 MB
- 文档页数:25
电动力学习题解答参考 第三章 静磁场1. 试用A r 表示一个沿z 方向的均匀恒定磁场0B r写出A r的两种不同表示式证明两者之差是无旋场解0B r 是沿z 方向的均匀的恒定磁场即ze B B r r =0且AB r r×∇=0在直角坐标系中zx y y z x x y z e yA x A e x A z A e z A y A A r r rr )()()(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇如果用A r 在直角坐标系中表示0B r 即=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂000y A x A x A z A z A y A xy zx yz 由此组方程可看出A r有多组解如解1)(,00x f y B A A A x Z y +−=== 即 xe xf y B A rr )]([0+−= 解2)(,00y g x B A A A Y z x +=== 即 ye y g x B A rr )]([0+=解1和解2之差为yx e y g x B e x f y B A r r r )]([)]([00+−+−=∆则zx y y z x x y z e y A xA e x A z A e z A y A A r r r r ])()([])()([])()([)(∂∆∂−∂∆∂+∂∆∂−∂∆∂+∂∆∂−∂∆∂=∆×∇这说明两者之差是无旋场2.均匀无穷长直圆柱形螺线管每单位长度线圈匝数为n电流强度为I 试用唯一性定理求管内外磁感应强度B解根据题意得右图取螺线管的中轴线为z 轴本题给定了空间中的电流分布故可由∫×='43dV r rJ B rr r πµ求解磁场分布又J r 在导线上所以∫×=34r r l Jd B r r r πµ1 螺线管内由于螺线管是无限长理想螺线管故由电磁学的有关知识知其内部磁内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场场是均匀强磁场故只须求出其中轴线上的磁感应强度即可知道管内磁场 由其无限长的特性不妨取场点为零点以柱坐标计算x y x e z e a e a r r r r r ''sin 'cos −−−=ϕϕyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−=)''sin 'cos ()'cos ''sin '(x y x y x e z e a e a e ad e ad r l d r r r r r r r −−−×⋅+⋅−=×∴ϕϕϕϕϕϕ zy x e d a e d az e d az rrr'''sin '''cos '2ϕϕϕϕϕ+−−= 取由'''dz z z +−的以小段此段上分布有电流'nIdz ∫++−−=∴232220])'([)'''sin '''cos '('4z a e d a e d az e d az nJdz B z y x rr r r ϕϕϕϕϕπµ I n az a z d nI e nI z a dz a d z 0232023222200]1)'[()'(2])'([''4µµϕπµπ=+=⋅+=∫∫∫∞+∞−∞∞−r 2)螺线管外部:由于是无限长螺线管不妨就在xoy 平面上任取一点)0.,(ϕρP 为场点)(a >ρ 222')'sin sin ()'cos cos ('z a a x x r +−+−=−=∴ϕϕρϕϕρrr )'cos(2'222ϕϕρρ−−++=a z a ('=−=x x r r r r x e a r )'cos cos ϕϕρ−zy e z e a rr ')'sin sin (−−ϕϕρyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−= zy x e d a a e d az e d az r l d r r r r r ')]'cos([''sin '''cos '2ϕϕϕρϕϕϕϕ−−+−−=×∴+−+−⋅=∴∫∫∫∫∞∞−∞∞−'''sin '''''cos ''[43203200dz e r d az d dz e r d az d nI B y x rr r ϕϕϕϕϕϕπµππ]')'cos('3220∫∫∞∞−−−+z e dz r a a d rϕϕρϕπ由于磁场分布在本题中有轴对称性而螺线管内部又是匀强磁场且螺线管又是无限长故不会有磁力线穿出螺线管上述积分为0所以0=B r内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场3. 设有无穷长的线电流I 沿z 轴流动以z<0空间充满磁导率为µ的均匀介质z>0区域为真空试用唯一性定理求磁感应强度B 然后求出磁化电流分布解本题的定解问题为×∇=×∇=<−=∇>−=∇===010020212201211)0(,)0(,z z z A A AA z J A z J A r r r rrr rr µµµµ由本题具有轴对称性可得出两个泛定方程的特解为∫∫==rl Id x A rl Id x A rr r rr r πµπµ4)(4)(201由此可推测本题的可能解是<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 验证边界条件1)(,12021=−⋅==B B n A A z r rr r r 即 题中,=⋅=θe e e n z z rr r r 且所以边界条件1满足2)(,11120102=−××∇=×∇==H H n A A z z r r rr r即µµ本题中介质分界面上无自由电流密度又θθπµπµe r I B H e rI B H r r r r r r 2222011====,012=−∴H H r r 满足边界条件0)(12=−×H H n r r r综上所述由唯一性定理可得本题有唯一解<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 在介质中MB H r r r −=0µ故在z<0的介质中22H B M r rr −=µ内部资料料料内部资料内部即θθθµππµπe r e r e r M )1(22200−=−⋅= ∴介质界面上的磁化电流密度r z M e r I e e r I n M r r r r r r )1(2)1(200−=×−=×=µµπµµπαθ总的感应电流)1()1(20200−=⋅⋅⋅−=⋅=∫∫µµϕµµππθθI e d r e r I l d M J Mr r rr 电流在z<0的空间中沿z 轴流向介质分界面4. 设x<0 半空间充满磁导率为µ的均匀介质x>0 空间为真空今有线电流I 沿z 轴流动求磁感应强度和磁化电流分布解假设本题中得磁场分布仍呈轴对称则可写作ϕπµe rI B vv 2′=其满足边界条件0)(0)(1212==−×=−⋅αvv v v v vv H H n B B n 即可得在介质中ϕµπµµe r I B H vv v 22′== 而Me r I M B H v v v v v −′=−=ϕµπµµ0022∴在x<0的介质中ϕµµµµπµe r I M vv 002−′= 则∫=ld M I Mvv 取积分路线为B A C B →→→的半圆,ϕe AB vQ ⊥ AB ∴段积分为零 002)(µµµµµ−′=I I M ϕπµe r I I B M v v 2)(0+=∴∴由ϕϕπµπµe rI B e r I I M v v v 22)(0′−==+可得02µµµµµ+=′内部资料料料内部资料内∴空间ϕπµµe rB 0+= I I M 0µµµµ+−=沿z轴5.某空间区域内有轴对称磁场在柱坐标原点附近已知)21(220ρ−−≈z C B Bz 其中B 0为常量试求该处的ρB 提示用,0=⋅∇B r 并验证所得结果满足0Hr×∇解由B v 具有轴对称性设zz e B e B B v v v +=ρρ其中 )21(220ρ−−=z c B B z 0=⋅∇B v Q 0)(1=∂∂+∂∂∴z B zB ρρρρ即02)(1=−∂∂cz B ρρρρ A cz B +=∴2ρρρ(常数) 取0=A 得ρρcz B =z e z c B e cz B vv v )]21([220ρρρ−−+=∴10,0==D j v vQ 0=×∇∴B v 即 0)(=∂∂−∂∂θρρe B z B z v2代入1式可得2式成立∴ρρcz B = c 为常数6. 两个半径为a 的同轴线圈形线圈位于L z ±=面上每个线圈上载有同方向的电流I1 求轴线上的磁感应强度2 求在中心区域产生最接近于均匀的磁场时的L 和a 的关系提示用条件022=∂∂z B z解1由毕萨定律L 处线圈在轴线上z 处产生得磁感应强度为内部资料料料内部资料内,11z z e B B = ∫∫−+==θπαπd L z a r B z 232231])([4sin 4 232220])[(121a z L Ia +−=µ同理L 处线圈在轴线上z处产生得磁感应强度为zz e B B vv 22=2322202])[(121a z L Ia B z++=µ∴轴线上得磁感应强度zz z e a z L a z L Ia e B B v v v++++−==2322232220])[(1])[(121µ 20=×∇B vQ 0)()(2=∇−⋅∇∇=×∇×∇∴B B B v v v 又0=⋅∇Bv0,0222=∂∂=∇∴z B zB v 代入1式中得62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−+−−++−+−−−+−−−62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−++−−++ ++++++−−0取z得)(12])(2)(2[)(22522212222122322=+++−+−+−L a L a L L a L a L 2225a L L +=∴内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场a L 21=∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上试解矢势A r的微分方程设导体的磁导率为0µ导体外的磁导率为µ解定解问题为×∇=×∇=∞<>=∇<−=∇外内内外内外内A A A A A a r A a r J A a a v v v vvv vv µµµ11)(,0)(,00202选取柱坐标系该问题具有轴对称性且解与z 无关令ze r A A v v )(内内=z e r A A vv )(外外代入定解问题得=∂∂∂∂−=∂∂∂∂0))(1))((10r r A r rr J r r A r r r 外内µ 得43212ln )(ln 41)(C r C r A C r C Jr r A +=++−=外内µ由∞<=0)(r r A 内 得01=C 由外内A A v v ×∇=×∇µµ110 得 232Ja C µ−=内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场由aaA A 内外v v =令0==aaA A 内外v v 得 a Ja C Ja C ln 2,4124202µµ==−=∴ra a J A r a J A ln 2)(412220v v v vµµ外内8.假设存在磁单极子其磁荷为Qm它的磁场强度为304r rQ H m r r πµ=给出它的矢势的一个可能的表示式并讨论它的奇异性解rm m e rQ r r Q H v v v 2030144πµπµ== 由rm e rQ H B A v v v v 204πµ===×∇ 得=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂0])([10)](sin 1[14])(sin [sin 12θφθπφθθθθφθφrr m A rA r r rA r A r r Q A A r (1)令,0==θA A r得rQ A m πθθθφ4sin )(sin =∂∂θθπθπθθφθφsin cos 144sin sin 0r Q A d rQ A mm −=∴=∴∫显然φA 满足1式∴磁单极子产生的矢势φθθπe r Q A m vv sin cos 14−=内部资料料料内部资料内部当2πθ→时φπe rQ A m v v 4→当πθ→时∞→A v故A v的表达式在πθ=具有奇异性A v不合理9. 将一磁导率为µ半径为R 0的球体放入均匀磁场0H r内求总磁感应强度B r 和诱导磁矩mr解根据题意以球心为原点建立球坐标取0H v 的方向为zev此球体在外界存在的磁场的影响下极化产生一个极化场并与外加均匀场相互作用最后达到平衡保持在一个静止的状态呈现球对称本题所满足的定解问题为−=∞<=∂∂=∂∂=>=∇<=∇∞==θϕϕϕµϕµϕϕϕϕcos )(,,,0,0000002221212121R H R R R R R R R R R m R m m m m m m m 由泛定方程和两个自然边界条件得∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++−=010)(cos cos 2n nn nm P R d R H θθϕ由两个边界条件有+−−=+−=∑∑∑∑∞=+∞=−∞=+∞=0200001100100000)(cos )1(cos )(cos )(cos cos )(cos n n n nn n n n n nn n n n nn P R d n H P nR a P R d R H P R a θµθµθµθθθ得内部资料料料内部资料内≠==+−=+)1(,0223000101n d a R H d n n µµµµµµ>⋅+−+−=<+−=∴00230000000,cos 2cos ,cos 2321RR H R R R H R R R H m m θµµµµθϕθµµµϕ+==+=+−+=−∇=00011000000012323sin 23cos 231H H B H e H e H H r m v v v v vv v µµµµµµµµθµµµθµµµϕθ−⋅+−+==−⋅+−+=⋅+−−−⋅+−+=−∇=])(3[2])(3[2sin ]21[cos ]221[3050300000020230503000003300003300022R H R R R H R H H B R H R R R H R H e H R R e H R R H r m v v v v v v v vv v v v vv v µµµµµµµµµµµθµµµµθµµµµϕθ >−⋅+−+<+=∴)()(3[2)(,230305030000000000R R R H R R R H R H R R H B vv v v v vv µµµµµµµµµµ当B v在R>R 0时表达式中的第二项课看作一个磁偶极子产生的场θµµµµϕcos 20230002H RR m ⋅+−∴中可看作偶极子m v产生的势即R H R R H R R R Rm v v v v ⋅⋅+−=⋅+−=⋅⋅02300002300032cos 241µµµµθµµµµπ HR m v v300024⋅+−=∴µµµµπ10. 有一个内外半径为R 1和R 2的空心球位于均匀外磁场0H r内球的磁导率为µ求空内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场腔内的场Br讨论0µµ>>时的磁屏蔽作用解根据题意以球心为原点取球坐标选取0H v的方向为z e v在外场0H v的作用下 球壳极化产生一个附加场并与外场相互作用最后达到平衡B v的分布呈现轴对称定解问题−=∞<∂∂=∂∂∂∂=∂∂==>=∇<<=∇<=∇∞======θϕϕϕµϕµϕµϕµϕϕϕϕϕϕϕcos ,,,0,0,00000322121231223121232121321R H RR R R R R R R R R R R m R m R R m m R R m m R R m m R R m m m m m 由于物理模型为轴对称再有两个自然边界条件故三个泛定方程的解的形式为∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++=01)(cos (2n n n nn n m P Rc R b θϕ∑∞=++−=010)(cos cos 3n nn nm P Rd R H θθϕ因为泛定方程的解是把产生磁场的源0H v做频谱分解而得出的分解所选取的基本函数系是其本征函数系)}(cos {θn P 在本题中源的表示是)(cos cos 100θθRP H R H −=−所以上面的解中)0(,0≠====n d c b a n n n n 故解的形式简化为θθϕθϕθϕcos cos cos )(cos 2102111321RdR H Rc R b R a mm m +−=+==内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场代入衔接条件得−=−−−=+−=++=2(22(32113210031110122120221212111111R c b R d H R c b a R d R H R c R b R c R b R a µµµµµ解方程组得3200312032000320001)2)(2()(2)(3)2(3R R R H R H a µµµµµµµµµµµµ++−−−++= 32003120320001)2)(2()(2)2(3R R R H b µµµµµµµµµ++−−+= 3200312031320001)2)(2()(2)(3R R R R H c µµµµµµµµµ++−−−= 320320031203132000620001)2)(2()(2)(3)2(3R H R R R R H R H d +++−−−++=µµµµµµµµµµµµ而 )3,2,1(,00=∇−==i H B i m i i ϕµµvv ze a B v v 101µ−=∴ 003212000321])()(2)2)(2()(11[HR R R R v µµµµµµµ−−++−−=当0µµ>>时1)(2)2)(2(2000≈−++µµµµµµ 01=∴B v 即球壳腔中无磁场类似于静电场中的静电屏障11. 设理想铁磁体的磁化规律为000,M M H B µµ+=rr 是恒定的与H r无关的量今将一个内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场理想铁磁体做成均匀磁化球0M为常值浸入磁导率为'µ的无限介质中求磁感应强度和磁化电流分布解根据题意取球心为原点做球坐标以0M v的方向为z e v本题具有球对称的磁场分布满足的定解问题为=∞<=∂∂′−∂∂=>=∇<=∇∞===0cos ,,0,021021021*******02R m R m R m m R R m m m m M R RR R R R ϕϕθµϕµϕµϕϕϕϕ ∴∑∞==0)(cos 1n n n nm P R aθϕ∑∞=+=01)(cos )(2n n n nm P R b θϕ代入衔接条件对比)(cos θn P 对应项前的系数得)1(,0≠==n b a nn µµµ+′=2001Ma 30012R M b µµµ+′=)(,cos 20001R R R M m <+′=∴θµµµϕ)(,cos 20230002R R RR M m>+′=θµµµϕ由此µµµµµµ+′′=+=<22,0000110M M H B R R v r v v ,0R R > )(3[2305030022RM R R R M R B m v r v v v −⋅+′′=∇′−=µµµµϕµ >−⋅+′′<+′′=∴)()(3[2)(,2203050300000R R R M R R R M R R R M B v r v v vv µµµµµµµµ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场又0)()(0120其中αααµv v v vv v+=−×M R B B n 代入B v的表达式得ϕθµµµαe M Mvv sin 230′′12. 将上题的永磁球置入均匀外磁场0H r中结果如何解根据题意假设均匀外场0H v 的方向与0M v的方向相同定为坐标z 轴方向定解问题为−=∞<=∂∂−∂∂=>=∇<=∇∞===θϕϕθµϕµϕµϕϕϕϕcos cos ,,0,00000002022102102121R H M R RR R R R R m R m R m m R R m m m m 解得满足自然边界条件的解是)(,cos 011R R R a m <=θϕ)(,cos cos 02102R R R d R H m >+−=θθϕ代入衔接条件0013010020100012M a R d H R d R H R a µµµµ=+++−=得到 0000123µµµµ+−=H M a 3000012)(R H M d µµµµµ+−+=)(,cos 23000001R R R H M m <+−=∴θµµµµϕ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场)(,cos 2)(cos 0230000002R R RR H M R H m>+−++−=θµµµµµθϕ]sin 23cos 23[000000000011θθµµµµθµµµµϕe H M e H M H r m v v v +−−+−−=−∇=∴ µµµµ+−−=0000023H M v v )(,22230002000001R R M H M H B <+++=+=v v v v v µµµµµµµµµ−+−+−−−=−∇=r m e R R H M H H v v )cos 22)(cos [(23000000022θµµµµµθϕ 350230000000)(3])sin 2)(sin (Rm R R R m H e R R H M H v v r r v v−⋅+=+−++−−θθµµµµµθ ])(3[3500202RmR R R m H H B v v r r v v v −⋅+==µµ030003000022H R R M m v vv µµµµµµµ+−++=13. 有一个均匀带电的薄导体壳其半径为R 0总电荷为Q今使球壳绕自身某一直径以角速度ω转动求球内外的磁场Br提示本题通过解m ϕ或A r的方程都可以解决也可以比较本题与5例2的电流分布得到结果解根据题意取球体自转轴为z 轴建立坐标系定解问题为=∞<=∂∂=∂∂−=∂∂−∂∂>=∇<=∇∞===0)(,4sin )(1,0,021211221000000202R m R m m m R R m m m m R R R R R Q R R R R R ϕϕϕµϕµπθωθϕθϕϕϕ其中4sin R Q πθωσ=是球壳表面自由面电流密度解得满足自然边界条件的解为内部资料料料内部资料内部)(,cos 0212R R Rb m >=θϕ代入衔接条件=+−=−024301102101R b a R Q R b R a πω解得 016R Q a πω−= πω12201R Q b =)(,cos 6001R R R R Q m <−=∴θπωϕ)(,cos 1202202R R R R Q m>=θπωϕ00016sin 6cos 61R Q e R Q e R Q H r m πωθπωθπωϕθv vv v =−=−∇=∴ωπµµvr v 001016R Q H B == ])(3[41sin 12cos 1223532032022Rm R R R m e R R Q e R R Q H r r m r v v v vv v −⋅=+=−∇=πθπωθπωϕ其中ωvv 320QR m =])(3[4350202RmR R R m H B r v v v v v −⋅==πµµ14. 电荷按体均匀分布的刚性小球其总电荷为Q 半径为R 0它以角速度ω绕自身某以直径转动求1 它的磁矩2 它的磁矩与自转动量矩之比设质量M 0是均匀分布的 解1磁矩∫×=dV x J x m )(21v v v v内部资料料料内部资料内又 rR x e R == )(34)(30R R v x J ×==ωπρ∫∫×=××=∴φθθπωφθθωπφd drd R e e R Q d drd R R R R Q m r 2430230sin )(4321sin )(4321v v v v r v 又 )sin cos (cos sin y x z r e e e e e e vv v v v v φφθθθφ−−+=−=×∫∫∫−−+=∴ππφθθφφθθπω20243sin )sin cos (cos [sin 83R y x z d drd R e e e R Q m vv v v ωφθθπωππv v 5sin 8320200043300QR d drd R e R Q R z ==∫∫∫2)自转动量矩∫∫∫∫××=×=×==dV R R R M dm v R P d R L d L )(43300v v v v v v v v vωπ52sin 43sin )sin cos (cos [sin 43sin )(sin 43sin )sin (43sin )(43200203430200024302230022300223000ωφθθπωφθθφφθθπωφθθθωπφθθθωπφθθωπππππθφv v vv v v v v v v v R M d drd R R M d drd R e e e R M d drd R e R R M d drd R e e R R M d drd R e e e R R M R R y x z r r z r ==−−+=−=×−=××=∫∫∫∫∫∫∫∫∫ 0200202525M Q R M QR L m ==∴ωωv v v v15. 有一块磁矩为m r的小永磁体位于一块磁导率非常大的实物的平坦界面附近的真空中求作用在小永磁体上的力F r.内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场解根据题意因为无穷大平面的µ很大则可推出在平面上所有的H v均和平面垂直类比于静电场构造磁矩m r 关于平面的镜像m ′r则外场为=⋅=∇−=2304cos 4r m R R m B m m e πθπϕϕµv v v)sin cos (4]sin cos 2[430330θθθθαπµθθπµe e r m e r e r m B rr e vv r v v +=−−−=∴m v∴受力为za r ee a m B m F v v vv )cos 1(643)(24022απµαθ+−=⋅∇⋅===内部资料料料内部资料内部。
《电动力学》教学大纲课程名称:电动力学课程编号:073132003总学时:54学时适应对象:科学教育(本科)专业一、教学目的与任务教学目的:电动力学是物理学本科专业开设的一门理论课程,是物理学理论的一个重要组成部分。
通过对本课程的学习,(1)使学生掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解;(2)获得本课程领域内分析和处理一些基本问题的能力,为解决实际问题打下基础;(3)通过对电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性。
教学任务:本课程主要阐述宏观电磁场理论。
第一章主要分析各个实验规律,从其中总结出电磁场的普遍规律,建立麦克斯韦方程组和洛仑兹力公式。
第二、三章讨论恒定电磁场问题,着重讲解恒定场的基本性质和求解电场和磁场问题的基本方法。
第四章讨论电磁波的传播,包括无界空间中电磁波的性质、界面上的反射、折射和有界空间中电磁波问题。
第五章讨论电磁波的辐射,介绍一般情况下势的概念和辐射电磁场的计算方法。
第六章狭义相对论,首先引入相对论时空观,由协变性要求把电动力学基本方程表示为四维形式,并得出电磁场量在不同参考系间的变换。
二、教学基本要求通过本课程的教学,使学生了解电磁场的基本性质、运动规律以及与物质的相互作用。
掌握求解恒定电磁场的基本方法;掌握电磁波在无界和有界空间的传播规律;掌握一般情况下势的概念和求解电偶极辐射,理解相对论的时空理论;掌握电磁场量的四维形式和电动力学规律的四维形式,加深对电动力学规律的认识。
三、教学内容及要求绪论矢量场分析初步第一章电磁现象的普遍规律第一节引言及数学准备第二节电荷和电场第三节电流和磁场第四节麦克斯韦方程第五节介质的电磁性质第六节电磁场的边值关系第七节电磁场能量和能流教学重点:电磁场的普遍规律,麦克斯韦方程组,电磁场的边值关系。
教学难点:位移电流概念,能量守恒定律的普遍式。
本章教学要求:通过本章学习,要使学生了解各实验定律及其意义,掌握电磁场散度、旋度的计算方法及意义,理解麦克斯韦方程的重要意义和地位,以及积分和微分形式的麦克斯韦方程适用的范围。
电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
第三章 静磁场1. 试用A 表示一个沿z 方向的均匀恒定磁场0B ,写出A 的两种不同表示式,证明二者之差为无旋场。
解:0B 是沿 z 方向的均匀恒定磁场,即 z B e B 00=,由矢势定义B A =⨯∇得0//=∂∂-∂∂z A y A y z ;0//=∂∂-∂∂x A z A z x ;0//B y A x A x y =∂∂-∂∂三个方程组成的方程组有无数多解,如:○10==z y A A ,)(0x f y B A x +-= 即:x x f y B e A )]([0+-=; ○20==z x A A ,)(0y g x B A y += 即:y y g x B e A )]([0+= 解○1与解○2之差为y x y g x B x f y B e e A )]([)]([00+-+-=∆ 则 0)//()/()/()(=∂∂-∂∂+∂∂+∂-∂=∆⨯∇z x y y x x y y A x A z A z A e e e A 这说明两者之差是无旋场2. 均匀无穷长直圆柱形螺线管,每单位长度线圈匝数为n ,电流强度I ,试用唯一性定理求管内外磁感应强度B 。
解:根据题意,取螺线管的中轴线为 z 轴。
本题给定了空间中的电流分布,故可由⎰⨯='430dV r rJ B πμ 求解磁场分布,又 J 只分布于导线上,所以⎰⨯=304r Id r l B πμ1)螺线管内部:由于螺线管是无限长理想螺线管,所以其内部磁场是均匀强磁场,故只须求出其中轴 线上的磁感应强度,即可知道管内磁场。
由其无限长的特性,不z y x z a a e e e r ''sin 'cos ---=φφ, y x ad ad d e e l 'cos ''sin 'φφφφ+-= )''sin 'cos ()'cos ''sin '(z y x y x z a a ad ad d e e e e e r l ---⨯+-=⨯φφφφφφz y x d a d az d az e e e '''sin '''cos '2φφφφφ+--=取''~'dz z z +的一小段,此段上分布有电流'nIdz⎰++--=∴2/32220)'()'''sin '''cos '('4z a d a d az d az nIdz z y x e e e B φφφφφπμ ⎰⎰⎰+∞∞-+∞∞-=+=+=z z I n a z a z d nI nI z a dz a d e e 02/3202/3222200])/'(1[)/'(2)'(''4μμφπμπ2)螺线管外部:由于螺线管无限长,不妨就在过原点而垂直于轴线的平面上任取一点)0,,(φρP 为场点,其中a >ρ。
郭硕鸿《电动力学》课后答案第 2 页电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(cc A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=cc c c B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:AA A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x zuu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du z u y u x u u A u A u A z y x z z y y x x dd)()d d d d d d (e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=第 3 页(3)u A u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=zx y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学中的静电场与静磁场电动力学(Electrodynamics)是物理学中的一个重要分支,研究电荷与电磁场之间的相互作用。
在电动力学中,静电场与静磁场是两个核心概念。
在本文中,我们将深入探讨静电场与静磁场的特性及其应用。
一、静电场静电场是由固定的电荷所产生的电场。
在静电场中,电荷会相互作用,产生电力线和电势。
电荷分正负两种,它们具有相互吸引或相互排斥的特性。
根据库仑定律,带电粒子之间的电力与它们之间的距离呈反比,与它们的电荷量的乘积呈正比。
所以,静电场的特点是距离越近,相互作用力越大。
静电场广泛应用于静电感应、电容器等。
静电场还与电势有密切关系。
电势是描述电场能量分布的物理量。
在静电场中,电势差是电荷单位测点由A点移到B点时所做的功。
根据电势差定义式ΔV = W/q,可以计算出单位电荷在电场中的运动能力。
二、静磁场静磁场是由静止的电荷与电流所产生的磁场。
在静磁场中,磁场的性质与静电场有所不同。
磁力线是圆形的闭合曲线,从北极到南极。
磁场中的带电粒子受到一个叫做洛伦兹力的力的作用。
磁场的强度可以用磁感应强度B来表示。
根据洛伦兹力公式F = qvB,可以得知磁场对带电粒子的作用力与粒子的电荷量、速度以及磁感应强度都有关系。
与静电场不同,静磁场中没有单独存在的磁荷。
磁感应强度是由电流产生的,电流是指在导体中电荷的流动。
根据安培定律,通过导体的电流与该导体所绕的闭合曲线的曲面积分成正比,可以通过这个定律计算出静磁场的强度。
三、电动力学的应用电动力学的应用非常广泛。
静电场和静磁场的相互作用是很多设备和技术的基础。
以下是电动力学在不同领域的一些应用:1. 静电喷涂技术:通过利用静电场的特性,可以将带电粒子(如涂料颗粒)通过静电力喷射到目标物体上,实现涂料的均匀分布。
2. 传感器技术:静电场和静磁场可以用来设计和制造各种传感器,例如电容传感器、磁场传感器等。
这些传感器在工业、医疗和科学研究中发挥重要作用。
3. 医学成像:医学影像技术中的X射线、CT扫描、磁共振成像等都是基于电动力学的原理设计的。
《电动力学》课程教学大纲Electrodynamics课程编号:130501002学时:64学分:4.0适用对象:核物理本科专业先修课程:电磁学、高等数学、数学物理方法。
一、课程的性质和任务该课程可以支撑能力要求第1、2条以及素质要求第2、3条的达成,《电动力学》是核物理本科专业的一门专业必修课,它比电磁学有着更严谨更完整的理论结构,更多地使用高等数学语言表述定律、定理和物理结论。
通过电动力学的教学,使学生在形成更为清晰的物理概念、掌握严密的物理规律的同时熟练地运用高等数学、矢量代数以及数学物理方程(包括特殊函数)等知识表述和求解物理问题,学会在具体条件下对物理问题进行近似处理。
培养学生严密的抽象思维能力和运用数学工具进行科学思维的能力,为学生进一步学习其它专业课程和继续深造打下良好的理论基础。
二、教学目的与要求电动力学是高等院校物理学本科专业理论物理课程的一部份,是重要的基础课之一。
通过本课程的教学,应达到以下的目的和要求。
1,掌握电磁运动的基本特点,规律和研究方法,加深对电磁场性质的理解,了解狭义相对论的时空观及有关的基本理论。
2,获得在本课程领域内分析和处理一些最基本问题的初步能力,为学习后续课程和从事教学和研究工作打下必要的基础。
3,通过对电动力学相对论不变性和相对论力学的讲述,使学生能完整和系统地掌握和理解经典物理与相对论物理的辨证关系,从而树立正确的科学世界观。
三、教学内容第0章:矢量分析1、基本内容:标量和矢量的定义,基本运算规律,三度(梯度、散度、旋度)的数学和物理定义,基本运算规律,算符。
2、教学基本要求:理解和掌握矢量的基本运算法则,熟练掌握矢量算符的基本运算。
3、教学重点难点:算符的运算。
4、教学建议:采用课堂讲授、课后讨论、课后做习题等相结合的教学方式。
第一章:电磁现象的基本规律1、基本内容:三个实验定律,真空和介质中电磁现象的基本方程,介质分界面上的边界条件,电磁场能量、能流及能流密度矢量。
判断题第一章 电磁现象的普遍规律1. 无论是稳恒磁场还是变化的磁场,磁感应强度总是无源的。
(√)2. 无论是静电场还是感应电场,都是无旋的。
(×)3. 在任何情况下电场总是有源无旋场。
(×)4. 在无电荷分布的区域内电场强度的散度总为零。
(√)5. 任何包围电荷的曲面都有电通量,但是散度只存在于有电荷分布的区域内。
(√)6. 电荷只直接激发其临近的场,而远处的场则是通过场本身的内部作用传递出去的。
(√)7. 稳恒传导电流的电流线总是闭合的。
(√)8. 在任何情况下传导电流总是闭合的。
(×)9. 非稳恒电流的电流线起自于正电荷减少的地方。
(√)10. 极化强度矢量p 的矢量线起自于正的极化电荷,终止于负的极化电荷。
(×)11. 均匀介质内部各点极化电荷为零,则该区域中无自由电荷分布。
(√)12. 在两介质的界面处,电场强度的切向分量总是连续的。
(√)13. 在两均匀介质分界面上电场强度的法向分量总是连续的。
(×)14. 在两介质的界面处,磁感应强度的法向分量总是连续的。
(√)15. 无论任何情况下,在两导电介质的界面处,电流线的法向分量总是连续的。
(×)16. 两不同介质表面的面极化电荷密度同时使电场强度和电位移矢量沿界面的法向分量不连续。
(×)17. 电介质中,电位移矢量D 的散度仅由自由电荷密度决定,而电场的散度则由自由电荷密度和束缚电荷密度共同决定。
(√)18. 两不同介质界面的面电流密度不改变磁场强度和磁感应强度的连续性。
(×)19. 关系式P E D +=0ε适用于各种介质。
(√)20. 静电场的能量密度为ρϕ21。
(×) 21. 稳恒电流场中,电流线是闭合的。
( √ )22. 电介质中E D ε=的关系是普遍成立的。
( × )23. 跨过介质分界面两侧,电场强度E 的切向分量一定连续。
《电动力学》课程教学大纲课程名称:电动力学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《电动力学》是物理学专业的专业主干课。
电动力学是理论物理学的一个重要组成部分,与理论力学、统计物理学和量子力学合称为四大力学。
电动力学在电磁学的基础上系统介绍电磁场理论的基本概念和基本方法。
课程教学内容主要涉及电磁场的基本性质、运动规律以及电磁场与带电物体之间的相互作用,对完善学生的知识体系具有重要意义。
其具体的课程教学目标为:课程教学目标1:掌握电磁运动的基本规律,加深对电磁场物质性的认识。
课程教学目标2:了解狭义相对论的时空观及有关的基本理论。
课程教学目标3:获得在本课程领域内分析和处理一些基本问题的初步能力。
课程教学目标4:为学习后继课程和独立解决实际工作中的有关问题打下必要的基础。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求由于本课程是理论物理课程的一部份,因而在教材内容的选取上要注意与后续课程的衔接。
在电动力学课程中,讨论了如何从经典物理过度到相对论物理,因此,在介绍这些内容时重要的是要从物理上加以阐述,以使学生真正掌握狭义相对论的物理精髓,达到培养学生辨证思维的目的。
通过介绍如何把学过的数学知识用于解决物理问题,达到提高学生分析问题、解决问题的能力。
结合课程内容,加强学生的理论推导能力三、先修课程高等数学、矢量分析与场论、数学物理方法、电磁学。
四、课程教学重、难点重点:1.明确电动力学的知识结构和逻辑体系。
2.掌握各种不同条件下电磁场的空间分布和运动变化规律。
难点:1.电动力学属理论物理范畴.其逻辑体系是以演绎推理为主线,这与普通物理电磁学有着明显的差异。
从电磁学到电动力学的学习,在思维方式上应有较大的转变,这对初学理论物理的学生是一难点。
电动⼒学判断题判断题第⼀章电磁现象的普遍规律1. ⽆论是稳恒磁场还是变化的磁场,磁感应强度总是⽆源的。
(√)2. ⽆论是静电场还是感应电场,都是⽆旋的。
(×)3. 在任何情况下电场总是有源⽆旋场。
(×)4. 在⽆电荷分布的区域内电场强度的散度总为零。
(√)5. 任何包围电荷的曲⾯都有电通量,但是散度只存在于有电荷分布的区域内。
(√)6. 电荷只直接激发其临近的场,⽽远处的场则是通过场本⾝的内部作⽤传递出去的。
(√)7. 稳恒传导电流的电流线总是闭合的。
(√)8. 在任何情况下传导电流总是闭合的。
(×)9. ⾮稳恒电流的电流线起⾃于正电荷减少的地⽅。
(√)10. 极化强度⽮量p 的⽮量线起⾃于正的极化电荷,终⽌于负的极化电荷。
(×)11. 均匀介质内部各点极化电荷为零,则该区域中⽆⾃由电荷分布。
(√)12. 在两介质的界⾯处,电场强度的切向分量总是连续的。
(√)13. 在两均匀介质分界⾯上电场强度的法向分量总是连续的。
(×)14. 在两介质的界⾯处,磁感应强度的法向分量总是连续的。
(√)15. ⽆论任何情况下,在两导电介质的界⾯处,电流线的法向分量总是连续的。
(×)16. 两不同介质表⾯的⾯极化电荷密度同时使电场强度和电位移⽮量沿界⾯的法向分量不连续。
(×)17. 电介质中,电位移⽮量D 的散度仅由⾃由电荷密度决定,⽽电场的散度则由⾃由电荷密度和束缚电荷密度共同决定。
(√)18. 两不同介质界⾯的⾯电流密度不改变磁场强度和磁感应强度的连续性。
(×)19. 关系式P E D +=0ε适⽤于各种介质。
(√)20. 静电场的能量密度为ρ?21。
(×) 21. 稳恒电流场中,电流线是闭合的。
( √ )22. 电介质中E D ε=的关系是普遍成⽴的。
( × )23. 跨过介质分界⾯两侧,电场强度E 的切向分量⼀定连续。