28μA IQ、三输出、降压/降压/升压型同步DC/DC控制器在汽车启/停系统中保持稳定
- 格式:pdf
- 大小:77.42 KB
- 文档页数:1
基于D C D C的大电流升压电路方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]引言由于移动通信等技术的迅猛发展,对车载设备电源提出了更高的要求。
急需一种将汽车电瓶的12V电压转换为16V,,24V等多路输出的电源,要求每路输出的电流可以达到7A。
由于市面上的升压DC/DC达不到电流需求,目前常采用将12V电瓶电压逆变到交流220V,再由交流220V产生直流等多路输出的方法,虽然其可以达到电流需求,但电源经过两次转换后,电源效率将大幅度降低,大约只有60%左右,这样的转换效率对汽车电瓶供电是很难接受的。
针对这一问题,该文提出基于两相步进升压型DC/DC控制器LT3782设计大电流输出的升压型DC/DC模块的方法。
1 LT3782简介LT3782是美国凌力尔特公司生产的两相步进升压型DC/DC控制器,28引脚SSOP封装芯片,开关频率在150~500kHz之间可编程,由于采用两相BOOST拓扑结构。
对输出场效应管漏电流和肖特基二极管通过电流的要求都减少一半,即两个输出相位差180°,两个输出间互相抑制输出纹波电流,输出纹波是单相BOOST转换电路的1/3。
电源效率高,对散热的要求小。
图1是LT3782的管脚图,第29引脚是芯片底部的散热脚。
27引脚连接输入电源;4引脚接地;11引脚用来设定开关频率;20和23BGATE引脚用来驱动场效应管的栅极;8,9,12和13SENSE引脚用来反馈场效应管的输出电流;16引脚是输出电压反馈引脚,该脚电压为,通过反馈电阻可以设定输出电压值。
17引脚是低电压关断引脚,当该引脚的电压大于时,器件才开始工作,当该引脚的电压小于时,器件进入低电压关断模式。
14引脚是软启动引脚,当加电时,输出电压从0V渐变到设定的输出电压值,典型的启动时间可以由下式计算:式中:C为连接14引脚到地的电容值,单位为μF;t为典型的启动时间。
2 电路实现开关电源总体设计电路实现如图2所示,12V汽车电瓶电压经过插头JP1和R5给LT3782供电,LT3782产生的两相振荡输出驱动N沟道场效应管Q1和Q2,场效应管输出分别经肖特基二极管D1和D2整流后,由电容C7滤波输出。
150KHz 40V 3A开关电流降压型DC-DC转换器XL1507特点⏹ 4.5V到40V宽输入电压范围⏹输出版本固定5V和ADJ可调⏹输出电压1.23V到37V可调⏹最大占空比100%⏹最小压差1.5V⏹固定150KHz开关频率⏹最大3A开关电流⏹内置功率三极管⏹高效率⏹出色的线性与负载调整率⏹EN脚TTL关机功能⏹EN脚迟滞功能⏹内置热关断功能⏹内置限流功能⏹内置二次限流功能⏹TO252-5L封装应用⏹LCD电视与显示屏⏹数码相框⏹机顶盒⏹路由器⏹通讯设备供电描述XL1507是一款高效降压型DC-DC转换器,固定150KHz开关频率,可以提供最高3A输出电流能力,具有低纹波,出色的线性调整率与负载调整率特点。
XL1507内置固定频率振荡器与频率补偿电路,简化了电路设计。
PWM控制环路可以调节占空比从0~100%之间线性变化。
内置使能功能、输出过电流保护功能。
当二次限流功能启用时,开关频率从150KHz降至50KHz。
内部补偿模块可以减少外围元器件数量。
图1.XL1507封装150KHz 40V 3A 开关电流降压型DC-DC 转换器 XL1507引脚配置EN GND SW VINFB 12345TO252-5LMetal Tab GND图2. XL1507引脚配置表1.引脚说明引脚号 引脚名称 描述1 VIN 电源输入引脚,支持DC4.5V~40V 宽范围电压操作,需要在VIN 与GND 之间并联电解电容以消除噪声。
2 SW 功率开关输出引脚,SW 是输出功率的开关节点。
3 GND 接地引脚。
4 FB 反馈引脚,通过外部电阻分压网络,检测输出电压进行调整,参考电压为1.23V 。
5 EN使能引脚,低电平工作,高电平关机,悬空时为低电平。
150KHz 40V 3A 开关电流降压型DC-DC 转换器 XL1507方框图EA1.23V ReferenceGNDFB3.3V 1.23VEA COMPOscillator 150KHz3.3V Regulator Start UpLatchCOMP2COMP1DriverThermal ShutdowninENSW220mV 200mV44m ΩCurrent LimitR2R1=2.5K5V R2=7.6KADJ R2=0 R1=OPENSwitch图3. XL1507方框图典型应用XL1507-5.0CIN 470uf 35VC1 105330uf 35VD1 L1 33uh/3A+12VLOAD13524GNDVINFBSWEN ON OFF 5V/3ACOUT 1N5820图4. XL1507系统参数测量电路(12V-5V/3A )150KHz 40V 3A 开关电流降压型DC-DC 转换器 XL1507订购信息产品型号 打印名称封装方式包装类型 XL1507-ADJE1 XL1507-ADJE1 TO252-5L 2500只每卷 XL1507-5.0E1 XL1507-5.0E1TO252-5L2500只每卷XLSEMI 无铅产品,产品型号带有“E1”后缀的符合RoHS 标准。
MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIODS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADCMAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313,MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和POR MAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233,MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241,MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3645EVKIT MAX3645评估板MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4079EVKIT MAX4079评估板MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSEMAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLLMAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8533EVKIT MAX8533评估板MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8727EVKIT MAX8727评估板MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9501EVKIT MAX9501评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。
DCDC和LDO的区别LDO:LOW DROPOUT VOLTAGE LDO(是low dropout voltage regulator的缩写,整流器)低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。
也就是输出电压必需小于输入电压。
优点:稳定性好,负载响应快。
输出纹波小。
缺点:效率低,输入输出的电压差不能太大。
负载不能太大,目前最大的LDO为5A(但要保证5A的输出还有很多的限制条件)DC/DC:直流电压转直流电压。
严格来讲,LDO也是DC/DC的一种,但目前DC/DC 多指开关电源。
具有很多种拓朴结构,如BUCK,BOOST,等。
优点:效率高,输入电压范围较宽。
缺点:负载响应比LDO差,输出纹波比LDO大。
DC/DC和LDO的区别是什么?DC/DC转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。
DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。
DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。
根据需求可采用三类控制。
PWM控制型效率高并具有良好的输出电压纹波和噪声。
PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。
PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。
目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。
DC-DC,(简述原理)其实内部是先把DC直流电源转变为交流电电源AC。
通常是一种自激震荡电路,所以外面需要电感等分立元件。
然后在输出端再通过积分滤波,又回到DC电源。
由于产生AC电源,所以可以很轻松的进行升压跟降压。
两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。
对比:1、DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
NB68028V, Low Iq, High Current, Fixed 3.3V-8ASynchronous Buck ConverterDESCRIPTIONThe NB680 is a fully integrated, high-frequency, synchronous, rectified, step-down, switch-mode converter with a fixed 3.3 V Vout. It offers a very compact solution to achieve an 8 A continuous output current and a 10 A peak output current over a wide input supply range with excellent load and line regulation.The NB680 operates at high efficiency over a wide output current load range based on MPS proprietary switching loss reduction technology and internal low Ron power MOSFETs. Adaptive constant-on-time (COT) control mode provides fast transient response and eases loop stabilization. The DC auto-tune loop provides good load and line regulation.NB680 provides a fixed 3.3 V LDO, which can power the external peripheries, such as the keyboard controller in the laptop.Also, a 250 kHz CLK is available; its output can drive an external charge pump, generating gate drive voltage for the load switches without reducing the main converter’s eff iciency.Full protection features include OC limit, OVP,UVP, and thermal shutdown.NB680 requires a minimum number of externalcomponents and is available in a QFN2mm x 3mm package.FEATURES∙ Wide 4.8 V to 28 V Operating Input Range ∙ Fixed 3.3 V Vout∙ Ultrasonic Mode with Fs over 25 kHz ∙ 100 μA Low Quiescent Current ∙ 8 A Continous Output Current ∙ 10 A Peak Output Current∙ Adaptive COT for Fast Transient ∙ DC Auto-Tune Loop∙ Stable with POSCAP and Ceramic Output Capacitors∙ 250 kHz CLK for External Charge Pump ∙ Built-In 3.3 V, 100 mA LDO with Switch Over∙ 1% Reference Voltage ∙ Internal Soft Start ∙ Output Discharge∙ 700 kHZ Switching Frequency∙ OCL, OVP, UVP, and Thermal Shutdown. ∙ Latch-Off Reset via EN or Power Cycle. ∙QFN 2mm x 3mm Package APPLICATIONS∙ Laptop Computers ∙ Tablet PCs∙ Networking Systems ∙Servers∙Personal Video Recorders∙Flat Panel Television and Monitors ∙Distributed Power SystemsAll MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. “MPS” and “The Future of Analog IC Technology” are registered trademarks of Monolithic Power Systems, Inc.TYPICAL APPLICATIONORDERING INFORMATION* For Tape & Reel, add suffix –Z (e.g. NB680GD –Z)TOP MARKINGALV: Product code of NB680GD Y: Year code LLL: Lot numberPACKAGE REFERENCEABSOLUTE MAXIMUM RATINGS (1) Supply voltage (V IN) .................................... 28 V V SW (DC) ......................................... -1 V to 26 V V SW (25 ns) .................................. -3.6 V to 28 V V BST ................................................. V SW + 4.5 V All other pins ............................. -0.3 V to +4.5 V Continuous power dissipation (T A=+25°C) (2) QFN-12 (2mm x 3mm) .............................. 1.8 W Junction temperature ............................... 150︒C Lead temperature .................................... 260︒C Storage temperature ................ -65︒C to +150︒C Recommended Operating Conditions (3) Supply voltage .............................. 4.8 V to 24 V Operating junction temp. (T J). .. -40°C to +125°C Thermal Resistance (4)θJA θJCQFN-12 (2mm x 3mm) ........... 70 ...... 15 ... ︒C/W NOTES:1) Exceeding these ratings may damage the device.2) The maximum allowable power dissipation is a function of themaximum junction temperature T J(MAX), the junction-to-ambient thermal resistance θJA, and the ambient temperature T A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P D(MAX)=(T J(MAX)-T A)/θJA. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.3) The device is not guaranteed to function outside of itsoperating conditions.4) Measured on JESD51-7, 4-layer PCB.ELECTRICAL CHARACTERISTICS V = 12 V, T = 25 C, unless otherwise noted.ELECTRICAL CHARACTERISTICS (continued) V = 12 V, T = 25︒C, unless otherwise noted.NOTE:5) Guaranteed by design.PIN FUNCTIONS NB680V IN = 12 V, V OUT = 3.3 V, L = 1.5 µH/10 mΩ, F S = 700 kHz, T J=+25°C, unless otherwise noted.V IN = 12 V, V OUT = 3.3 V, L = 1.5 µH/10 mΩ, F S = 700 kHz, T J=+25°C, unless otherwise noted.V IN=12 V, V OUT =3.3 V, L=1.5 µH/10 mΩ, F S=700 kHz, T J=+25°C, unless otherwise noted.FUNCTIONAL BLOCK DIAGRAMNB680Figure 1—Functional block diagramOPERATIONPWM OperationThe NB680 is a fully integrated, synchronous, rectified, step-down, switch-mode converter with a fixed 3.3 V output. Constant-on-time (COT) control provides fast transient response and eases loop stabilization. At the beginning of each cycle, the high-side MOSFET (HS-FET) is turned on when the feedback voltage (V FB) is below the reference voltage (V REF), which indicates insufficient output voltage. The on period is determined by the output voltage and the input voltage to make the switching frequency fairly constant over the input voltage range.After the on period elapses, the HS-FET is turned off or enters an off state. It is turned on again when V FB drops below V REF. By repeating operation this way, the converter regulates the output voltage. The integrated low-side MOSFET (LS-FET) is turned on when the HS-FET is in its off state to minimize the conduction loss. There is a dead short between the input and GND if both the HS-FET and the LS-FET are turned on at the same time (shoot-through). In order to avoid shoot-through, a dead time (DT) is generated internally between the HS-FET off and the LS-FET on period or the LS-FET off and the HS-FET on period.Internal compensation is applied for COT control for stable operation even when ceramic capacitors are used as output capacitors. This internal compensation improves the jitter performance without affecting the line or load regulation.CCM OperationFigure 2—CCM operationContinuous conduction mode (CCM) occurswhen the output current is high, and the inductorcurrent is always above zero amps (see Figure 2).When V FB is below V REF, the HS-FET is turned onfor a fixed interval. When the HS-FET is turnedoff, the LS-FET is turned on until the next period.In CCM operation, the switching frequency isfairly constant (PWM mode).DCM OperationWith the load decreases, the inductor current willdecrease as well. Once the inductor currentreaches zero, the device transitions from CCM todiscontinuous conduction mode (DCM).DCM operation is shown in Figure 3. When V FB isbelow V REF, the HS-FET is turned on for a fixedinterval, which is determined by the one-shot ontimer. See Equation (1). When the HS-FET isturned off, the LS-FET is turned on until theinductor current reaches zero. In DCM operation,the V FB does not reach V REF when the inductorcurrent is approaching zero. The LS-FET driverturns into tri-state (high Z) whenever the inductorcurrent reaches zero. A current modulator takesover the control of the LS-FET and limits theinductor current to less than -1 mA. Hence, theoutput capacitors discharge slowly to GNDthrough the LS-FET. As a result, the efficiencyduring a light-load condition is improved greatly.The HS-FET is not turned on as frequently duringa light-load condition as it is during a heavy-loadcondition (skip mode).At a light-load or no-load condition, the outputdrops very slowly, and the NB680 reduces theswitching frequency naturally, achieving highefficiency at light load.Figure 3—DCM OperationAs the output current increases from the light- load condition, the time period within which the current modulator regulates becomes shorter. The HS-FET is turned on more frequently. Hence, the switching frequency increases accordingly. The output current reaches the critical level when the current modulator time is zero. The critical level of the output current is determined with Equation (1):IN OUT OUTOUTSW IN(V V )V I 2L F V -⨯=⨯⨯⨯ (1) The part enters PWM mode once the output current exceeds the critical level. After that, the switching frequency stays fairly constant over the output current range. DC Auto-Tune LoopThe NB680 applies a DC auto-tune loop to balance the DC error between V FB and V REF by adjusting the comparator input REF to make V FB always follow V REF . This loop is quite slow, so it improves the load and line regulation without affecting the transient performance. The relationship between V FB , V REF , and REF is shown in Figure 4.Figure 4—DC auto-tune loop operation Ultrasonic Mode (USM)Ultrasonic mode (USM) keeps the switching frequency above an audible frequency area during light-load or no-load conditions. Once the part detects that both the HS-FET and the LS-FET are off (for about 32 µs), it shrinks the Ton to keep Vout under regulation with optimal efficiency. If the load continues to decrease, the part discharges Vout to make sure FB is less than 102 percent of the internal reference. The HS-FET turns on again once the internal FB reaches VREF and then stops switching.USM is selected by the EN voltage level. When EN is in the range of 1.38 V to 1.8 V, it enters USM. If EN is in the range of 2.6 V to 3.6 V, it enters normal mode.Configuring the EN ControlThe NB680 has two enable pins to control the on/off of the internal regulators and CLK. For NB680, the 3V3 LDO is always on when Vin passes UVLO. EN controls both the buck and the CLK. Once EN is on, the ENCLK is able to control the CLK on/off. See Table1 for the NB680 EN logic control.Table 1—ENCLK/EN controlFor automatic start-up, EN can be pulled up to the input voltage through a resistive voltage divider. Refer to the “UVLO Protection ” section for more details. Soft Start (SS)The NB680 employs a soft-start (SS) mechanism to ensure smooth output during power-up. When EN goes high, the internal reference voltage ramps up gradually; hence, the output voltage ramps up smoothly as well. Once the reference voltage reaches the target value, the soft start finishes, and the part enters steady-state operation.If the output is pre-biased to a certain voltage during start-up, the IC disables the switching of both the high-side and the low-side switches until the voltage on the internal reference exceeds the sensed output voltage at the internal FB node. 3.3 V Linear RegulatorThere is a built-in 100 mA standby linear regulator with a fixed output at 3.3 V, controlled by VIN UVLO. Once Vin passes its UVLO, it is on. The 3.3 V LDO is not controlled by EN or ENCLK. This LDO is intended mainly for an auxiliary 3.3 V supply for the notebook system in standby mode. Add a ceramic capacitor with a value between 4.7 μF and 22 uF placed close to the LDO pins to stabilize the LDOs.LDO Switch OverWhen the output voltage becomes higher than 3.15 V and the power good (PG) is ok, the internal LDO regulator is shut off, and the LDO output is connected to VOUT by the internal switch-over MOSFET, reducing power loss from the LDO.CLK for Charge PumpThe 250 kHz CLK signal drives an external charge pump circuitto generate approximately 10 V-12 V DC voltage. The CLK voltage becomes available once Vin is higher than the UVLO threshold, and ENCLK is pulled high (see Figure 5).Figure 5—Charge pump circuitPower Good (PG)The NB680 has power-good (PG) output used to indicate whether the output voltage of the buck regulator is ready. PG is the open drain of a MOSFET. It should be connected to V CC or another voltage source through a resistor (e.g. 100k). After the input voltage is applied, the MOSFET is turned on so that PG is pulled to GND before SS is ready. Once FB voltage rises to 95 percent of the REF voltage, PG is pulled high after 750 µs.When the FB voltage drops to 85 percent of the REF voltage, PG is pulled low.Over-Current Protection (OCP)NB680 has cycle-by-cycle over-current limiting control. The current-limit circuit employs a "valley" current-sensing algorithm. The part uses the Rds(on) of the LS-FET as a current-sensing element. If the magnitude of the current-sense signal is above the current-limit threshold, the PWM is not allowed to initiate a new cycle. The trip level is fixed internally. The inductor current is monitored by the voltage between GND and SW. GND is used as the positive currentsensing node, so GND should be connected to the source terminal of the bottom MOSFET. Since the comparison is done during the HS-FET off state and the LS-FET on state, the OC trip level sets the valley level of the inductor current. Thus, the load current at the over-current threshold (I OC ) is calculated with Equation (2):∆=+inductorOC I I I_limit 2(2) In an over-current condition, the current to the load exceeds the current to the output capacitor; thus, the output voltage tends to fall off. Eventually, it ends up crossing the under-voltage protection threshold and shuts down. Fault latching can be reset by EN going low or the power cycling of VIN.Over/Under-Voltage Protection (OVP/UVP) NB680 monitors the output voltage to detect over and under voltage. Once the feedback voltage becomes higher than 122 percent of the target voltage, the OVP comparator output goes high, and the circuit latches as the HS-FET driver turns off, and the LS-FET driver turns on, acting as an -1.8 A current source.To protect the part from damage, there is an absolute OVP on VOUT (usually set at 6.2 V). Once Vout > 6.2 V, the controller turns off both the HS-FET and the LS-FET. This protection is not latched off and will keep switching once the Vout returns to its normal value.When the feedback voltage drops below 75 percent of the Vref but remains higher than 50 percent of the Vref, the UVP-1 comparator output goes high, and the part latches if the FB voltage remains in this range for about 32 µs (latching the HS-FET off and the LS-FET on). The LS-FET remains on until the inductor current hits zero. During this period, the valley current limit helps control the inductor current.When the feedback voltage drops below 50 percent of the Vref, the UVP-2 comparator output goes high, and the part latches off directly after the comparator and logic delay (latching the HS-FET off and the LS-FET on). The LS-FET remains on until the inductor current hits zero. Fault latching can be re-set by EN going low or the power cycling of VIN.UVLO ProtectionThe part starts up only when the Vin voltage is higher than the UVLO rising threshold voltage. The part shuts down when the VIN is lower than the Vin falling threshold. The UVLO protection is non-latch off. Fault latching can be re-set by EN going low or the power cycling of VIN.If an application requires a higher under-voltage lockout (UVLO), use EN to adjust the input voltage UVLO by using two external resistors (see Figure 6).Figure 6—Adjustable UVLOTo avoid too much sink current on EN, the EN resistor (Rup) is usually in the range of 1 M-2 MΩ.A typical pull-up resistor is 2 MΩ.Thermal ShutdownThermal shutdown is employed in the NB680. The junction temperature of the IC is monitored internally. If the junction temperature exceeds the threshold value (140ºC, typically), the converter shuts off. This is a non-latch protection. There is about 25ºC hysteresis. Once the junction temperature drops to about 115ºC, it initiates a SS.Output DischargeNB680 discharges the output when EN is low, or the controller is turned off by the protection functions UVP, OCP, OCP, OVP, UVLO, and thermal shutdown. The part discharges outputs using an internal MOSFET.APPLICATION INFORMATIONInput CapacitorThe input current to the step-down converter is discontinuous, and therefore requires a capacitor to supply the AC current to the step-down converter while maintaining the DC input voltage. Ceramic capacitors are recommended for best performance and should be placed as close to the V IN pin as possible. Capacitors with X5R and X7R ceramic dielectrics are recommended because they are fairly stable with temperature fluctuations.The capacitors must have a ripple-current rating greater than the maximum input ripple current of the converter. The input ripple current can be estimated with Equation (3) and Equation (4):CIN OUT I I =The worst-case condition occurs at V IN = 2V OUT , where:OUTCIN I I 2=(4) For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.The input capacitance value determines the input voltage ripple of the converter. If there is an input voltage ripple requirement in the system, choose an input capacitor that meets the specification. The input voltage ripple can be estimated with Equation (5) and Equation (6):OUT OUT OUT IN SW IN IN INI V VV (1)F C V V ∆=⨯⨯-⨯ (5)The worst-case condition occurs at V IN = 2V OUT,where:OUT IN SW INI 1V 4F C ∆=⨯⨯ (6)Output CapacitorThe output capacitor is required to maintain the DC output voltage. Ceramic or POSCAP capacitors are recommended. The output voltage ripple can be estimated with Equation (7):OUT OUT OUT ESR SW INSW OUTV V 1V (1)(R )F LV 8F C ∆=⨯-⨯+⨯⨯⨯ (7)When using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is caused mainly by the capacitance. For simplification, the output voltage ripple can be estimated using Equation (8):OUT OUT OUT 2SW OUT INV VV (1)8F L C V ∆=⨯-⨯⨯⨯ (8) When using POSCAP capacitors, the ESRdominates the impedance at the switching frequency. The output ripple can be approximated using Equation (9):OUT OUT OUTESRSW INV V V (1)R F L V ∆=⨯-⨯⨯ (9)The maximum output capacitor limitation should be considered in design application. For a small soft-start time period (if the output capacitor value is too high), the output voltage cannot reach the design value during the soft-start time, causing it to fail to regulate. The maximum output capacitor value (C o_max ) can be limited approximately with Equation (10):O _MAX LIM_AVG OUT ss OUT C (I I )T /V =-⨯ (10)Where I LIM_AVG is the average start-up currentduring the soft-start period, and T ss is the soft-start time. InductorThe inductor is necessary to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current, resulting in a lower output ripple voltage. However, a larger value inductor has a larger physical footprint, a higher series resistance, and/or a lower saturation current. A good rule for determining the inductance value is to design the peak-to-peak ripple current in the inductor to be in the range of 30 percent to 50 percent of the maximum output current, with the peak inductor current below the maximum switch current limit. The inductance value can be calculated with Equation (11): OUT OUT SW L INV VL (1)F I V =⨯-⨯∆ (11)Where ΔI L is the peak-to-peak inductor ripple current.The inductor should not saturate under the maximum inductor peak current (including short current), so it is suggested to choose Isat > 10 A. PCB Layout GuidelinesEfficient PCB layout is critical for optimum IC performance. For best results, refer to Figure 7 and follow the guidelines below:1. Place the high-current paths (GND, IN, andSW) very close to the device with short, direct, and wide traces. The PGND trace should be as wide as possible (This should be the number one priority).2. Place the input capacitors as close to IN andGND as possible on the same layer as the IC. 3. Place the decoupling capacitor as close toVCC and GND as possible. Keep the switching node (SW) short and away from the feedback network.4. Keep the BST voltage path as short aspossible with a >50 mil trace.5. Keep the IN and GND pads connected with alarge copper plane to achieve better thermal performance. Add several vias with 8 mil drill/16 mil copper width close to the IN and GND pads to help thermal dissipation.6. A 4-layer layout is strongly recommended toachieve better thermal performance.Figure 7— Recommend PBC layoutTYPICAL APPLICATIONNOTE: If the charge pump function is not used, leave CLK open.Figure 8—Typical application schematic with ceramic output capacitorsNOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.PACKAGE INFORMATIONQFN-12 (2mm x 3mm)SIDE VIEWBOTTOM VIEWNOTE:1) ALL DIMENSIONS ARE IN MILLIMETERS.2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.4) JEDEC REFERENCE IS MO-220.5) DRAWING IS NOT TO SCALE.TOP VIEW PIN 1 IDINDEX AREARECOMMENDED LAND PATTERN。
直流母线电压控制的统一电能质量调节器采用PI模糊自整定控制器FERDI Brahim1, BENACHAIBA Chellali2, BERBAOUI Brahim2, DEHINI Rachid2 1University科技(大家),电机系,奥兰(31000)阿尔及利亚电子邮件:**********************摘要 - 统一电能质量调节器(UPQC),对缓解配电系统的电压和电流谐波问题的最佳解决方案之一。
PI控制器是很常见的直流母线电压控制的UPQC。
然而,这种传统控制器的一个缺点是在调整其收益(KP和Ki)的难度。
为了克服这个问题,提出PI模糊逻辑的自整定控制器。
该控制器是模糊和PI控制器的组合。
根据错误和错误率的控制系统和模糊控制规则,模糊控制器可以在线调整PI控制器的两个增益,以获得更好的直流母线电压调节性能的任何电压或电流的谐波失真。
使用MATLAB/ SIMULINK的仿真结果进行了验证所提出的控制器的性能。
结果表明,该控制器具有动态响应快,精度高跟踪直流母线电压参考。
关键词:UPQC直流母线电压,模糊自整定PI控制器的电压和电流谐波。
引言基于电力电子设备/负载几乎在各个领域的广泛使用高度扭曲的公共耦合点(PCC)[1]。
这多产的非线性电力电子负载,如静态整流器,可调速驱动器,DC / AC转换器,等等,不分青红皂白地使用量增加了配电系统的电压和电流失真。
这些扭曲,所造成的谐波,在电力行业的主要电能质量问题之一。
为了解决这些问题,无源滤波器得到了广泛的使用很长一段时间。
尽管它们是结构简单,并具有相对较低的投资成本,它们可以导致不必要的谐振和放大谐波电流。
为了克服无源滤波器的缺点和限制他们的表现,在有源电力滤波器的研究已经进行了积极。
并行的系统配置。
串联和并联有源电力滤波器的组合,被称为统一电能质量调节器(UPQC)。
虽然其主要缺点是其成本高且复杂的控制,UPQCs兴趣正在增长,由于其优越的性能[2]。
可供电动汽车驱动选用的隔离电压型/隔离电流型DC-DC变换器介绍现如今电动汽车的研发和设计正逐渐升温,尤其是在带你东汽车燃料电池驱动系统的设计方面,DC-DC变换器的选择至关重要。
只有最合适的DC-DC变换器才能满足燃料电池分布式并网发电系统的需求。
本文就详细探讨了一下几种可供电动汽车驱动选用的DC-DC变换器。
隔离电压型DC-DC变换器隔离电压型的DC-DC变换器是目前比较常见的变换器类型之一,这一大类型中又可以分为半桥、全桥两种小分类,下面我们来分别进行介绍。
首先来看电压型半桥DC-DC变换器,这种变换器的电路结构如下图图1所示。
半桥变换器具有电路简单,而且与推挽和全桥相比,可利用输入电容的充、放电特性自动调整两个输入电容上的电压,使变压器在工作周期的正、负半周伏-秒平衡,因此在中大功率范围内受到青睐。
图1 电压型半桥DC-DC变换器电路结构接下来我们再来看一下电压型全桥DC-DC变换器的特点。
这种全桥DC-DC变换器的电路结构如下图图2所示。
在实际的应用过程中,这种变换器具有开关管器件电压应力、电流应力较小,高频功率变压器的利用率高等优点。
而且全桥DC-DC变换器适合做软开关管控制,减小变换器中的开关管损耗提高转化效率。
如图3所示为一种三相全桥DC-DC变换器结构,三相的结构将电流、损耗均分到每相中,适合大功率DC-DC变换。
同时三相全桥中的开关管也可以获得软开关管工作条件。
可以说,电压型的DC-DC变换器是非常适合电动汽车燃料电池的分布式并网发电系统进行选用的隔离电流型DC-DC变换器在介绍了隔离电压型DC-DC变换器的两种常见类型和特点后,接下来我们来看一下隔离电流型DC-DC变换器的特点和应用情况。
与电压型DC-DC变换器一样,隔离电流型变换器也同样在结构上分为全桥和半桥两种。
电流型半桥DC-DC变换器如下图图4所示。
因为在任何时刻,两个开关管必须保证有一个开关管是导通的,即开关管的导通占空比不能小于0.5,导致两个输入电感总是有一个处于充电状态,输入电流总是大于零,这意味着系统有一个最低输出功率的限制。
广本云学APP答案1、电动车常称为“三电”的系统不包括:(6.67 分)BA动力电池B车载充电器C电机控制器D电动机2、DCDC控制器的功能是?(6.67 分)DA起到整车高压电控制、分流、保护作用B接收整车高压/低压附件信号,对整车进行控制C检测动力电池状态,控制动力电池输入/输出D将动力电池内高压直流电转化为12V,供低压用电器使用3、以下关于EA6的维修设备工具及资料说法正确的是?(6.67 分)CA HDS可以对EA6车型进行故障诊断B可登录MARIS2查看EA6车型的维修手册C诊断需要使用专用的CoreXS VCI诊断仪D通过广本零部件系统采购EA6车型专用诊断仪4、EA6的PDI车辆如何进入多媒体主界面?(6.67 分A按AVNT上的开关按钮B打开ON档,自动进入主界面C按压顶灯处E/BCALL按键,点击屏幕取消按钮,用语音说“回到主界面”D按方向盘上的语音按钮,语音说“回到主界面”5、EA6冷却液的更换周期是?(6.67 分)AA每40000公里/2年更换B每60000公里/3年更换C每80000公里/4年更换D首次200000公里/10年更换,后续每100000公里/5年更换6、EA6车型的IPS是指?(6.67 分)DA电池管理单元,检测动力电池状态,控制动力电池输入/输出B电动空调压缩机,对冷媒进行压缩C高压配电盒,起到整车高压电控制、分流、保护作用✔D集成电源系统,包含了车载充电器和高压直流转低压直流的功能7、相对于磷酸铁锂电池,三元锂电池的优点是?(6.67 分)B A循环寿命更长B能量密度更大C正极材料稳定性更高D成本更低8、以下关于IP67的说法错误的是?(6.67 分)CA IP是指一个界面对液态和固态微粒的防护能力B 6是指防尘的级别,该级别代表可完全隔绝灰尘C 7是指防水级别,该级别代表可持续浸泡在1米深的水里D 7是指防水级别,该级别代表可短时浸泡在最深1米的水里9、EA6采用了哪一种电动机?(6.67 分)AA永磁同步电机B异步电机C感应电机D直流电机10、假设电池包的标称电压是300V,额定容量是150Ah,则该电池包的总电量是()KWh?(6.67 分)(A)A45B20C300D15011、T-box更换后如何进行与车辆重新绑定?(6.67 分)(D)A不需要进行重新绑定B在多媒体显示屏上点击车辆设置进行解绑和重新绑定C在手机端APP上的车辆设置进行解绑和重新绑定D在诊断系统上的Tbox信息绑定进行解绑和重新绑定12,关于EA6胎压监测系统说法错误的是?(6.67 分)AA车轮换位不需要重新标定B采用诊断系统进行胎压标定操作C充气后不需要重新标定D能够定期测量轮胎压力、温度和加速度信息并反馈BCM13,SOC是指电池的?(6.67 分)AA充电状态B健康状态C能量状态D绝缘状态14、以下哪项说明了EA6车型交流慢充的充电路径?(6.67 分)BA 220V电网→充电桩→充电接口→IPS→电池包B 220V电网→充电桩→充电接口→IPS→PDU→电池包C 220V电网→充电桩→充电接口→电池包D 220V电网→充电桩→充电接口→PDU→电池包15,EA6车型采用了多种CAN网络,以下哪个部件是CAN网络之间的网关?(6.67 分)AA网关控制器B仪表C VCUD T-box16,动力电池的最佳工作温度范围是?(6.67 分)AA 15-35℃B 35-55℃C 30-55℃D 20-55℃17,关于EA6车型的介绍错误的是?(6.67 分)CA从广汽本田中资股东广汽集团一方导入B基于G品牌Aion S电动化专属平台基础上研发革新C属于FHEV车型D广汽本田特约店提供售后服务18、以下关于高压电安全操作的描述正确的有?(6.67 分)(CD)A可以穿着化纤衣服B如没有绝缘手套,可用棉手套替代C拆卸任何的高电压系统部件前,必须首先执行高电压断电操作D要求操作新能源车辆的维修技师,必须持有低压电工证19、以下哪些情况可能会导致高压绝缘失效?(6.67 分)(BCD)A高压线束插接器断开B高压线束破损导致正极与车身接触C高压线束破损导致负极与车身接触D高压线束挤压后导致负极与屏蔽层接触20、EA6的三合一电驱系统是由哪三个部件构成?(6.67 分)(ABD)A电机B电机控制器C高压配电盒D差减速器21、关于EA6车型的I-PEDAL模式的说明正确的有?(6.62分)(ABD)A又名单踏板模式B油门踏板变成制动辅助踏板,想加速行驶就踩下油门踏板,而想减速行驶就松开油门踏板C能量回收级别默认为“高”,且不可修改D有利于延长续航里程22,关于EA6车型的智能蓝牙控制的说明正确的有?(6.67 分)ABDA使用蓝牙钥匙启动车辆,仪表上会显示蓝牙钥匙指示灯B需要下载手机端APP并使用蓝牙与车辆连接匹配,方可激活蓝牙钥匙C蓝牙钥匙只能启动车辆,若要开走车辆,还须把实体钥匙带进车内D系统部件包括左前门蓝牙传感器、右前门蓝牙传感器、车身蓝牙传感器、智能蓝牙模块23,手机端APP可以实现的远程交互功能包括:(6.62分)ABCDA 车辆控制B 预约充电C 地图和位置服务D OTA24,关于EA6车型的电池温控模式描述正确的有?(6.62分)A南方的车型没有电池加热器B电池温度过高时,利用电池冷却器与空调制冷循环进行热交换,实现“快冷”的模式C当车辆处于相对柔和的工况时,电池发热量小,电池热管理系统进入慢冷模式D当车辆长时间停在温度较低的室外时,为避免动力电池温度过低,影响其性能,建议不使用车辆时连接充电枪对动力电池进行保温。
射频工程师应该要懂得的LDO和DC/DC电源的知识LDO:LOW DROPOUT VOLTAGE LDO(是low dropout voltage regulator的缩写,整流器)低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中.也就是输出电压必需小于输入电压。
优点:稳定性好,负载响应快。
输出纹波小.缺点:效率低,输入输出的电压差不能太大。
负载不能太大,目前最大的LDO为5A(但要保证5A的输出还有很多的限制条件)DC/DC:直流电压转直流电压。
严格来讲,LDO也是DC/DC的一种,但目前DC/DC多指开关电源。
具有很多种拓朴结构,如BUCK,BOOST,等.优点:效率高,输入电压范围较宽。
缺点:负载响应比LDO差,输出纹波比LDO大。
DC/DC和LDO的区别是什么?DC/DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容构成。
DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。
DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器.根据需求可采用三类控制。
PWM控制型效率高并具有良好的输出电压纹波和噪声。
PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。
PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制.目前DC—DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中.DC—DC,(简述原理)其实内部是先把DC直流电源转变为交流电电源AC。
通常是一种自激震荡电路,所以外面需要电感等分立组件.然后在输出端再通过积分滤波,又回到DC电源。
由于产生AC电源,所以可以很轻松的进行升压跟降压。
两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC—DC效率的问题。
对比:1、DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
DC/DC和LDO的区别LDO :LOW DROPOUT VOLTAGE低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。
也就是输出电压必需小于输入电压。
优点:稳定性好,负载响应快。
输出纹波小缺点:效率低,输入输出的电压差不能太大。
负载不能太大,目前最大的LDO 为5A(但要保证5A的输出还有很多的限制条件)DC/DC:直流电压转直流电压。
严格来讲,LDO也是DC/DC的一种,但目前DC/DC多指开关电源。
具有很多种拓朴结构,如BUCK,BOOST。
等。
优点:效率高,输入电压范围较宽。
缺点:负载响应比LDO差,输出纹波比LDO大。
DC / DC 和LDO的区别是什么?DC/DC 转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。
DC/DC 转换器为转变输入电压后有效输出固定电压的电压转换器。
DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。
根据需求可采用三类控制。
PWM控制型效率高并具有良好的输出电压纹波和噪声。
PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。
PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。
目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。
LDO是low dropout voltage regulator的缩写,整流器.DC-DC,其实内部是先把DC直流电源转变为交流电电源AC。
通常是一种自激震荡电路,所以外面需要电感等分立元件。
然后在输出端再通过积分滤波,又回到DC电源。
由于产生AC电源,所以可以很轻松的进行升压跟降压。
两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。
1.DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC 转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
便携式军事应用中的电源管理解决方案随着数字技术的进步,战场上士兵的背包设计迅速发展。
一方面,部队需要有效的通信和即时访问战略信息。
另一方面,设备需要在极端条件下存活,同时保持便携性而不影响性能。
图1:对于数字战场上的现代士兵来说,可靠的电子设备同样重要有效的武器。
锂电池长期以来一直被认为是军事战场上便携式设备的最佳电源。
虽然专业的军用级一次锂电池不易用于商业用途,但有一些商业级单元被指定用于满足极端温度,并且可以用于类似的坚固应用。
Tadiran电池的TL系列就是一个例子。
然而,随着功率密度的增加和成本的降低,可充电锂电池现在变得更加可行。
一个关键优势是它们可以从各种电源进行充电,包括便携式和可穿戴式太阳能电池板以及其他能量收集源。
更轻的锂电- 随着GPS,先进传感器和无线网络等技术的发展,现在战场上部署的军事人员可以使用的便携式电子设备种类繁多。
越来越多的专用军用级可穿戴计算设备正在利用商业技术。
尽管在背包和现场总部中为士兵使用的坚固耐用的便携式计算机的开发做出了相当大的努力,但今天的商用智能手机的剪切功能性能具有巨大的吸引力,尽管尚未得到广泛部署。
同时,为士兵的背包充满电子设备维持电源需要仔细设计和考虑。
低功耗操作和移动充电能力是关键考虑因素。
在所有电池技术中,锂已被证明是小巧轻便的,适用于manpack应用。
当高性能军事系统需要时,它们可以快速释放足够高的功率。
此外,他们可以在长期存储或休眠活动中维持其充电水平。
更重要的是,它们坚固耐用,可在极端温度下工作,同时在损坏时也不会爆炸或点燃,例如用子弹。
直到最近,充电电池还不适合许多军事系统,主要是因为他们没有功率密度,使电池组更大更重。
成本也是一个因素。
然而,可充电设备的性能已得到改善,并且它们在现在部署的越来越多的便携式军用电子系统中被证明特别有用,例如夜视设备,紧急定位信标和基于GPS的跟踪器,以及便携式战术计算机和通信系统。
与非可充电电池相比,它们的较。
新能源整车控制系统习题
一、填空
1、纯电动汽车VCU控制策略主要分一下八个部分上下电控制,起步控制,驱动控
制,制动能量回馈控制,外接充电控制,辅助系统控制,________,__________
答案故障与失效控制,CAN通信控制.
2、直流电机的运行特性主要包括直流电机的工作特性和直流电机的___________.
答案机械特性。
3、再生制动系统的结构由驱动轮,主减速器,变速器,电动机,AD/AD转换机,
_________,___________组成。
答案能量储存系统和控制器。
4、飞轮电池系统由飞轮,_______,_________共同组成。
答案电动机、发电机和输入输出电子装置。
5、根据新能源汽车的车辆驱动原理,可以将其分为________,___________和燃料电池
汽车。
答案纯电汽车混合动力汽车
6、电动汽车使用的蓄电池主要有_______,_______和_________等电池。
答案铅酸蓄电池锂离子镍氢蓄电池
7、新能源汽车使用的电动机主要有______、_________和永磁同步电动机和开关磁阻
电动机等。
答案直流电动机异步电动机
二、判断题
1、小型高尔夫球车主要装备的电动机是异步电机()
2、无论混合动力还是纯电动车,踩刹车就相当于给蓄电池充电()
3、新能源汽车的电动机要求在低速时有小扭矩()
4、直流电动机最早发明,所以现在新能源汽车广泛采用直流电动机()
5、直流电动机因为没有机械摩擦,所以寿命长,不需要经常维护()
6、异步电动机,也叫三相异步电动机,在新能源汽车里通常采用鼠笼型异步电动机()
答案错对错错错对。
XL7005A概述XL7005A是一款高效的降压型DC-DC转换器芯片,适用于汽车电子、工业电子和便携式电子设备等多种应用场景。
该芯片采用先进的Buck拓扑结构,具有高效率、低功耗和稳定性的特点。
本文档将对XL7005A的特性、应用场景和使用方法进行详细介绍。
特性•输入电压范围广:4.5V至28V•输出电压可调:0.8V至20V•高转换效率:高达97%•最大输出电流:5A•低静态功耗:仅75μA•过热保护和短路保护功能应用场景XL7005A适用于多种电子设备的电源管理系统,特别是那些对电池寿命和功耗有较高要求的场景。
以下是一些常见的应用场景:汽车电子由于汽车电子系统需要处理各种输入电压条件和电源干扰,XL7005A的高输入电压范围和稳定性使其成为理想的选择。
它可以用于汽车音频系统、导航系统和行车记录仪等设备的电源管理。
工业电子工业电子设备通常需要使用稳定的直流电压,XL7005A可以提供高效的降压转换,适合用于PLC(可编程逻辑控制器)、传感器和工控机等设备的电源管理。
便携式电子设备随着便携式电子设备如智能手机、平板电脑和蓝牙耳机的普及,对电池寿命和充电效率的要求越来越高。
XL7005A具有高转换效率和可调的输出电压范围,非常适合用于便携式电子设备的充电管理和电源管理。
使用方法连接图以下是使用XL7005A的典型连接图:+-----------------+| || Vin |+--+---|---+ || | | | || | | | || | | | |V V | | C1 | +---- Vout Vin ---+-------+---+---||---+-------|----L Cin Co || | || | |+--+---|---+---+ | +---- GND | | | | | | || | | | | | || | | | | | C2 |V V R1 R2 R3 V |ADJ ---+-------+---|---+-------+---|----| | || +-----------+|GND典型电路参数以下是使用XL7005A构建DC-DC转换器的一些典型参数:•输入电压(Vin):12V•输出电压(Vout):5V•输入电流(Iin):1A•输出电流(Iout):0.5A•输入电容(Cin):10μF•输出电容(Co):100μF•感性元件(L):33μH硬件设计注意事项使用XL7005A时,请注意以下几点:1.输入电压范围应适合应用场景,不要超过芯片规定的最大输入电压。
400KHz 60V 2A 开关电流升压/升降压型DC-DC转换器XL6007特点⏹ 3.6V到24V宽输入电压范围⏹集成单反馈引脚的正或负输出电压编程⏹电流模式控制提供出色的瞬态响应⏹ 1.25V基准电压输出可调⏹固定400KHz开关频率⏹最大2A开关电流⏹SW脚内置过压保护功能⏹出色的线性与负载调整率⏹EN脚TTL关机功能⏹内置功率MOS⏹效率高达90%⏹内置频率补偿功能⏹内置软启动功能⏹内置热关断功能⏹内置限流功能⏹SOP8封装应用⏹汽车和工业转换器⏹便携式电子设备描述XL6007稳压器是一种宽输入范围、电流模式DC/DC转换器,能够产生正输出电压或负输出电压。
它可以配置为升压、反激、SEPIC 或反相转换器。
XL6007内置N沟道功率MOSFET和固定频率振荡器,电流模式架构可在宽输入电压范围和输出电压范围内稳定运行。
XL6007稳压器是专为便携式电子设备设计的。
图1.XL6007封装400KHz 60V 2A 开关电流升压/升降压型DC-DC 转换器 XL6007引脚配置XL600713524SWEN FB VIN NC678SW GNDGND图2. XL6007引脚配置表1.引脚说明引脚号 引脚名称 描述1 EN 使能引脚,低电平关机,高电平工作,悬空时为高电平。
2 VIN 电源输入引脚,支持DC3.6V~24V 宽范围电压操作,需要在VIN 与GND 之间并联电解电容以消除噪声。
3 FB 反馈引脚,参考电压为1.25V 。
4 NC 无连接。
5,6 SW 功率开关输出引脚,SW 是输出功率的开关节点。
7,8 GND接地引脚。
400KHz 60V 2A 开关电流升压/升降压型DC-DC 转换器 XL6007方框图EA2.5V Regulator 1.25V ReferenceSWGND2.5V 1.25VEA COMPOscillator400KHzDriverFBOVPNDMOSENOCPRS LatchThermal ShutdownSlop CompensationPhase CompensationUVLOSoft StartVIN图3. XL6007方框图典型应用XL6007C IN 47uf /50VD1 1N5822L 33uh/4AVIN27,8135,6GNDVINSWC1105EN ON OFF Boost Converter Input 12V ~ 16VOutput 18.5V / 0.5A VOUT=1.25*(1+R2/R1)R1 1KC OUTR2 13.8KVOUT 18.5VC2105FB图4. XL6007系统参数测量电路(Boost 转换器)400KHz 60V 2A开关电流升压/升降压型DC-DC转换器XL6007订购信息产品型号打印名称封装方式包装类型XL6007E1 XL6007E1 SOP8 2500/4000只每卷XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。
一文带你认识新能源汽车充配电总成由于关乎车辆的性能和成本,汽车零部件的集成化、标准化一直是业界努力的方向,要实现快速的产品迭代和平台化应用,标准化和集成化都是两大利器。
所谓集成化,就是对原本分立的系统进行集成,从而使得汽车相关组件数量精简,体积变小,质量变轻,效率提升。
比如比亚迪基于“e 平台”打造的电动汽车,正是通过高度集成、一体控制,实现了整车重量的减轻、整车布局的优化,能耗效率的提升和可靠性的提高,最终加速推动电动汽车的普及。
高压充配电总成三合一一般包括车载充电机(OBC)、高压配电盒(PDU)以及DC-DC转换器。
有些充配电总成还会在三合一的基础之上再集成双向交流逆变式电机控制器(VTOG),也就是俗称的四合一。
一、车载充电机的组成和原理车载充电机内部可分为主电路、控制电路、线束及标准件三部分。
主电路前端将交流电转换为恒定电压的直流电,主电路后端为DC/DC变换器,将前端转出的直流高压电变换为合适的电压及电流供给动力蓄电池。
新能源汽车的车载充电机控制电路具有控制场效应管开关,它与BMS之间进行通信,监测充电机工作状态以及与充电桩握手等。
线束及标准件用于主电路与控制电路的连接,固定元器件及电路板。
车载充电机工作原理如图所示。
车载充电机的工作均由BMS发出指令进行控制,包括工作模式指令、动力蓄电池允许最大电压、充电充许最大电流、加热状态的电流值等。
充电机通过CAN总线与车辆进行通信,通信内容包括蓄电池单体、模块和总成的相关技术参数,充电过程中动力蓄电池的状态参数,充电机工作状态参数以及车辆基本信息等。
充电前,系统会自动检测动力蓄电池箱体内部的动力蓄电池温度,若温度高于55℃或低于0℃时,动力蓄电池管理系统将自动切断充电回路,此时无法充电。
若有低于0℃的温度点,则启动加热模式,加热继电器闭合进行加热,待所有电芯温度点都高于5℃时停止加热,然后启动充电程序,充电过程中充电桩电流显示为12~13A。