数字电路的数制与码制共43页文档
- 格式:ppt
- 大小:5.46 MB
- 文档页数:43
第一章数制和码制1.表示数量大小基本概念:基数数码位权数制几种进制:特点,表示方法转换:二进制模拟按权展开信号十进制小数:乘基数取整法数字表现形式数码整数:除以基数倒取余数法八十六算术运算:+-*/ 想要只用移位和相加全部解决补码正数:原码=反码=补码负数:原码按位取反反码加1 补码补码的运算2.表示不同事物或事物的不同状态,又称“代码”编制规则:码制(各种码制的特点、相互关系)十进制代码:(书上还有5211码)注:8421BCD码和十进制间的转换是直接按位(按组)转换如:(36)10=(0011 0110)8421BCD=(110110)8421BCD(101 0001 0111 1001)8421BCD=(5179)10格雷码(循环码):①相邻性:任意两个相邻码组间仅有一位的状态不同。
②循环性:首尾两个码组也具有相邻性。
ASCII码(美国信息交换标准代码):采用7位二进制编码,用来表示27(即128)个字符。
注意0~9,a~z,A~Z的ASCII码特点第二章逻辑代数基础一、逻辑代数(开关代数、布尔代数)与(逻辑相乘)Y = A·B = AB1.基本运算或(逻辑相加)Y = A+B非(逻辑求反)Y = (A)‘衍生出:与非:BAY+=或非:BAY+=与或非:CDABY+=异或:BAB ABAY+=⊕=互为反运算同或:ABBABAY+=Θ=2.基本公式(定律):衍生出常用公式:注意记忆它们的图形符号3.基本定理:(注意结合例题进行练习、理解)代入定理:任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立。
反演定理:对于任意一个逻辑函数式 F ,做如下处理:①运算符“.”与“+”互换,“”与“⊙”互换②常量“0”换成“1”,“1”换成“0”;③原变量换成反变量,反变量换成原变量。
那么得到的新函数式称为原函数式F 的反函数式对偶定理:若两逻辑式相等,则它们对应的对偶式也相等。
数制与码制1.数制数制即计数体制,是人们进行计数方法和规则的。
数字电路中采用的是二进制,是因为二进制只有“1”和“0”两个数码,可以方便用电流的有无、电压高低、电路通断等两种状态表示。
2.不同数制间的转换2.1 其他进制转化为十进制方法是:转换时,将其他进制按权位展开,然后各项再相加,就可得到相应的十进制数。
例:N=(1011.01)B=( ? )D按权展开:N=1*2^3+0*2^2+1*2^1+1*2^0+0*2*-1+1*2^-2=8+2+1+0.25=(11.25)D B代表二进制,D代表十进制;权:小数点之前从零开始不断增加,小数点之后从-1开始不断减小2.2十进制转化为其他进制方法是:转化时,分整数部分和小数部分,整数部分除基取余逆序,小数部分乘基取整正序。
例:十进制转化为二进制302.8125整数部分: 302/2=151 余0151/2=75 余175/2=37 余137/2=18 余118/2=9 余09/2=4 余14/2=2 余02/2=1 余01/2=0 余1故整数部分转化为二进制为(302)D=(100101110)B小数部分:0.1825*2=1.625 取整10.625*2=1.25 取整10.25*2=0.5 取整00.5*2=1.0 取整1故小数部分转化为二进制为(0.1825)D=(1101)B故(302.8125)D=(100101110.1101)B2.3二进制与八进制、十六进制的相互转化二进制转化为八进制和十六进制时,将要转化的二进制从低位到高位每3位或4位一组,高位不足时在有效位前添“0”,然后把每组二进制数转化为相应的八进制数或十六进制数。
例:(0101/1110.1011/0010)B=(5E.B2)H(8FA.C6)H=(1000/1111/1010.1100/0110)B3.码制码制即编码体制,在数字电路中主要是指用二进制数来表示非二进制数字以及字符的编码方法和规则。
【数电】(⼀)数制和码制⼀、数制常⽤的数制有⼆进制(Binary)、⼗进制(Decimal)、⼗六进制(Hexdecimal)和⼋进制(Octal)。
感觉⼋进制不常⽤啊。
1.1 ⼗进制→⼆进制 (64.03)10=(?)2整数部分:64/2=32——余032/2=16——余016/2 = 8——余08/2 = 4——余04/2 = 2——余02/2 = 1——余01/2 = 0——余1从下往上为整数部分⼆进制结果1000000⼩数部分:0.03x2=0.06——整数部分00.06x2=0.12——00.12x2=0.24——00.24x2=0.48——00.48x2=0.96——00.96x2=1.92——10.92x2=1.84——10.84x2=1.68——10.68x2=1.36——10.36x2=0.72——0从上到下为⼩数部分0.0000011110(精确到了⼩数点后10位有效数字)因此(64.03)10=(1000000.0000011110)21.2 ⼆进制→⼗进制 (101.011)2=(?)10 =22+0x21+20+0x2-1+2-2+2-3 =5.375⼆、编码与码制2.1 原码、反码和补码在数字电路中,⼗进制数字⼀般⽤⼆进制来表⽰,原因就是逻辑电路的输出⾼低电平刚好可以表⽰⼆进制数的1和0。
在⼆进制数前增加⼀位符号位即可区分数字的正负,正数符号位为0,负数符号位为1,这种形式称之为原码。
正数的原码、反码和补码都是⾃⼰。
负数的反、补码规则如下:原码:1 1001(⼆进制增加符号位后的形式)反码:1 0110(符号位对应取反)补码:1 0111(反码+1) //“+1”这⼀操作使得正负相加刚好溢出正数+对应负数的补码=0 !2.2 常⽤编码8421码、余3码、2421码、5211码和余3循环码都属于⼗进制代码。
8421码(BCD码):BCD码的每⼀位上的1都代表⼀个固定的⼗进制数,分别为8、4、2、1,将其代表的数值相加就是8421码对应的⼗进制数,属于恒权代码。