闻堰镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 格式:doc
- 大小:254.50 KB
- 文档页数:20
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列方程是二元一次方程的是()A.B.3y2﹣x=4C.xy+1=5D.2x+y=92.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组3.关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为()A.4B.﹣4C.5D.﹣54.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣25.下列方程的变形中,正确的是()A.方程(x+2)﹣2(x﹣1)=0去括号,得x+2﹣2x﹣2=0B.方程=1去分母,得3x+2x=1C.方程﹣7x=4系数化为1,得x=﹣D.方程2x﹣1=x+5移项,得2x﹣x=5﹣16.当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x7.将方程=1﹣去分母,正确的是()A.2x=4﹣x+1B.2x=4﹣x﹣1C.2x=1﹣x﹣1D.2x=1﹣x+18.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b9.已知方程组的解满足x+y<0,则m的取值范围是()A.m>﹣1B.m>1C.m<﹣1D.m<110.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.二、填空题(每小题3分,共15分)11.已知(3m﹣1)x2n+1+9=0是关于x的一元一次方程,则m、n应满足的条件为m,n =.12.中国CBA篮球赛中,八一队某主力队员在一场比赛中22投14中,得了28分,除了3个三分球全中外,他还投中了个2分球和个罚球.13.写出解是的一个二元一次方程组是.14.若5|x+y﹣4|+(x﹣y)2=0,则x=,y=.15.关于x的不等式组的整数解共有3个,则a的取值范围是.三、解答题(共75分)16.(13分)解方程或方程组:(1)=﹣1;(2)已知二元一次方程:①x+y=4,②2x﹣y=2,③x﹣2y=1,请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.17.(6分)解不等式:4﹣≥,并把解集在数轴上表示出来.18.(7分)求不等式组的所有整数解的和.19.(8分)甲、乙两位同学在解方程组时,甲看错了第一个方程,解得,乙看错了第二个方程,解得.求a、b的值.20.(10分)已知关于x、y的方程组,的解满足﹣2<x+y<5,求k的取值范围.21.(10分)用铁皮做罐头盒,每张铁皮可以做盒身16个或盒底43个,1个盒身与2个盒底配成一套罐头盒,现有150张铁皮,则用多少张张做盒身,多少张做盒底,能使盒身与盒底刚好配套?22.(10分)阅读下列解方程组的方法,然后回答问题.解方程组解:由(1)﹣(2)得2x+2y=2即x+y=1(3)(3)×16得16x+16y=16(4)(2)﹣(4)得x=﹣1,从而可得y=2∴方程组的解是.(1)请你仿上面的解法解方程组.(2)猜测关于x、y的方程组的解是什么,并利用方程组的解加以验证.23.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需元.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列方程是二元一次方程的是()A.B.3y2﹣x=4C.xy+1=5D.2x+y=9【分析】根据二元一次方程的定义对各选项分析判断后利用排除法求解.【解答】解:A、未知数y在分母上,不是整式方程,故本选项错误;B、y的次数是2次,不是一次方程,故本选项错误;C、未知项xy的次数是2次,不是一次方程,故本选项错误;D、2x+y=9是二元一次方程,故本选项正确.故选:D.【点评】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的一的值,从而确定二元一次方程的正整数解.【解答】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=﹣1,所以原二元一次方程的正整数解为,.故选:B.【点评】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.3.关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为()A.4B.﹣4C.5D.﹣5【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=3代入2(x﹣1)﹣a=0中:得:2(3﹣1)﹣a=0解得:a=4故选:A.【点评】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.4.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣2【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,当c<0时,得ac<bc,错误;B、由a>b,得﹣2a<﹣2b,错误;C、由a>b,得﹣a<﹣b,错误;D、由a>b,得a﹣2>b﹣2,正确;故选:D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.5.下列方程的变形中,正确的是()A.方程(x+2)﹣2(x﹣1)=0去括号,得x+2﹣2x﹣2=0B.方程=1去分母,得3x+2x=1C.方程﹣7x=4系数化为1,得x=﹣D.方程2x﹣1=x+5移项,得2x﹣x=5﹣1【分析】各方程变形得到结果,即可作出判断.【解答】解:A、方程(x+2)﹣2(x﹣1)=0去括号,得x+2﹣2x+2=0,不符合题意;B、方程=1去分母,得3x+2x=6,不符合题意;C、方程﹣7x=4系数化为1,得x=﹣,符合题意;D、方程2x﹣1=x+5移项,得2x﹣x=5+1,不符合题意,故选:C.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.6.当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【分析】采取取特殊值法,取x=,求出x2和的值,再比较即可.【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.【点评】本题考查了不等式的性质,有理数的大小比较的应用,能选择适当的方法比较整式的大小是解此题的关键.7.将方程=1﹣去分母,正确的是()A.2x=4﹣x+1B.2x=4﹣x﹣1C.2x=1﹣x﹣1D.2x=1﹣x+1【分析】分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.【解答】解:去分母得:2x=4﹣x+1,故选:A.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b【分析】本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于a 的不等式,就可以求出a的范围.【解答】解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故选:C.【点评】本题是一个方程与不等式的综合题目;解关于x的不等式是本题的一个难点.9.已知方程组的解满足x+y<0,则m的取值范围是()A.m>﹣1B.m>1C.m<﹣1D.m<1【分析】本题可将两式相加,得到3(x+y)关于m的式子,再根据x+y的取值,得出m的取值.【解答】解:两式相加得:3x+3y=2+2m∵x+y<0∴3(x+y)<0即2+2m<0m<﹣1.故选:C.【点评】本题考查的是二元一次方程的解法,根据要求x+y<0,将方程组化成x+y关于m的式子,最后求出m的取值.10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】根据图形,结合题目所给的运算法则列出方程组.【解答】解:图2所示的算筹图我们可以表述为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.二、填空题(每小题3分,共15分)11.已知(3m﹣1)x2n+1+9=0是关于x的一元一次方程,则m、n应满足的条件为m,n=0.【分析】根据一元一次方程的定义知2n+1=1且3m﹣1≠0,据此可以求得m、n的值.【解答】解:∵(3m﹣1)x2n+1+9=0是关于x的一元一次方程,∴2n+1=1且3m﹣1≠0,解得n=0,m≠.故答案是:≠;0.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,且未知数的系数不为零.12.中国CBA篮球赛中,八一队某主力队员在一场比赛中22投14中,得了28分,除了3个三分球全中外,他还投中了8个2分球和3个罚球.【分析】由题意可的本题存在两个等量关系,即投中3分球+投中2分球+罚球=总投中球数,2分球得分+3分球得分+罚球得分=总得分数,根据这两个等量关系可列出方程组.【解答】解:设2分球投中了x个,罚球罚进y个.则可列方程组为,解得:x=8,y=3.故投中了8个2分球和3个罚球.【点评】解题的关键是知道投中一个三分球的3分,投中一个2分球得2分,罚球一次得1分这个体育常识.从而可以轻松的列出方程组.13.写出解是的一个二元一次方程组是.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.在求解时,应先围绕列一组算式,如2+3=5,2﹣3=﹣1,然后用x,y代换,得等.【解答】解:先围绕列一组算式,如2+3=5,2﹣3=﹣1,然后用x、y代换,得等答案不唯一,符合题意即可.【点评】此题是开放题,要学生理解方程组的解的定义,围绕解列不同的算式即可列不同的方程组.14.若5|x+y﹣4|+(x﹣y)2=0,则x=2,y=2.【分析】根据非负数的性质列出方程,求出x、y的值即可.【解答】解:∵5|x+y﹣4|+(x﹣y)2=0,∴x+y﹣4=0,x﹣y=0,∴x=2,y=2.【点评】本题考查的知识点是:某个数的绝对值与另一数的平方的和等于0,那么绝对值里面的代数式的值为0,平方数的底数为0.本题需注意绝对值的正数倍也应是正数或0.15.关于x的不等式组的整数解共有3个,则a的取值范围是﹣3≤a<﹣2.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:由不等式①得x>a,由不等式②得x<1,所以不等式组的解集是a<x<1,∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题(共75分)16.(13分)解方程或方程组:(1)=﹣1;(2)已知二元一次方程:①x+y=4,②2x﹣y=2,③x﹣2y=1,请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【分析】(1)根据一元一次方程的解法即可求答案.(2)根据二元一次方程组的解法即可求出答案.【解答】解:(1)4(2x﹣1)=3(x+2)﹣128x﹣4﹣3x﹣6=﹣125x=﹣2x=(2)①﹣②得:3y=3y=1将y=1代入①得:x=3∴方程组的解为【点评】本题考查方程的解法,解题的关键是熟练运用方程的解法,本题属于基础题型.17.(6分)解不等式:4﹣≥,并把解集在数轴上表示出来.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:4﹣≥,24﹣3(x﹣2)≥2x,24﹣3x+6≥2x,﹣3x﹣2x≥﹣24﹣6,﹣5x≥﹣30,x≤6,该不等式的解集在数轴上表示为:.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.18.(7分)求不等式组的所有整数解的和.【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定出不等式组的解集,然后找出整数解,求其和即可.【解答】解:解不等式5>2(1﹣x),得:x>﹣,解不等式﹣x≤﹣x,得:x≤1,则不等式组的解集为﹣<x≤1,所以不等式组所有整数解的和为﹣1+0+1=0.【点评】此题主要考查了一元一次不等式组的解法,以及整数解,关键是正确确定不等式组的解集.19.(8分)甲、乙两位同学在解方程组时,甲看错了第一个方程,解得,乙看错了第二个方程,解得.求a、b的值.【分析】甲看错了第一个方程,把他解的答案代入第二个方程,乙看错了第二个方程把他解得答案代入第一个方程,把两个方程组成方程组,求a、b的值.【解答】解:由题意得,解得.【点评】解答此题先要根据题意列出方程组,然后求解.20.(10分)已知关于x、y的方程组,的解满足﹣2<x+y<5,求k的取值范围.【分析】把k看作常数,利用加减消元法解关于x、y的二元一次方程组,然后求出x+y,再列出不等式组,求解即可.【解答】解:解方程组,得:,∴x+y=(2k﹣6)+(﹣k+4)=k﹣2,又∵﹣2<x+y<5,∴﹣2<k﹣2<5,解得:0<k<7.【点评】本题考查了二元一次方程组的解法,解一元一次不等式组,把k看作常数求出x、y是解题的关键,也是本题的难点.21.(10分)用铁皮做罐头盒,每张铁皮可以做盒身16个或盒底43个,1个盒身与2个盒底配成一套罐头盒,现有150张铁皮,则用多少张张做盒身,多少张做盒底,能使盒身与盒底刚好配套?【分析】首先设用x张做盒身,则用y张做盒底,根据题意可知题目中的等量关系:制盒身铁皮的张数×每张铁皮可制盒身的个数×2=制盒底铁皮的张数×每张铁皮可制盒底的个数,据此解答.【解答】解:设用x张铁皮做盒身,y张铁皮做盒底,,解得:答:用86张做盒身,64张做盒底.【点评】此题主要考查了二元一次方程组的应用,关键是找出题目中的等量关系式,根据等量关系式列方程组解答.22.(10分)阅读下列解方程组的方法,然后回答问题.解方程组解:由(1)﹣(2)得2x+2y=2即x+y=1(3)(3)×16得16x+16y=16(4)(2)﹣(4)得x=﹣1,从而可得y=2∴方程组的解是.(1)请你仿上面的解法解方程组.(2)猜测关于x、y的方程组的解是什么,并利用方程组的解加以验证.【分析】观察例题中方程组的特点找出规律,利用此规律解方程.【解答】解:(1)①﹣②,得2x+2y=2,即x+y=1③,③×2005,得2005x+2005y=2005④,②﹣④得x=﹣1,从而得y=2.∴方程组的解是.(2).验证把方程组的解代入原方程组,得,即方程组成立.【点评】本题属开放性题目,需要同学们提高观察力,探索题目中的规律从而求得其解题方法.23.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需150元.【分析】(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.【解答】解:(1)设营业员的基本工资为x元,买一件的奖励为y元.由题意得解得即x的值为800,y的值为3.(2)设小丽当月要卖服装z件,由题意得:800+3z=1800解得,z=333.3由题意得,z为正整数,在z>333中最小正整数是334.答:小丽当月至少要卖334件.(3)设一件甲为x元,一件乙为y元,一件丙为z元.则可列将两等式相加得4x+4y+4z=600,则x+y+z=150答:购买一件甲、一件乙、一件丙共需150元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
中扬镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列方程组中,属于二元一次方程组的是()A.B.C.D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;B. 第一个方程不是整式方程,故不是二元一次方程组;C. 符合二元一次方程组的定义,是二元一次方程组;D.含有三个未知数,故不是二元一次方程组。
故答案为:C【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。
2、(2分)如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是()A. 25°B. 65°C. 115°D. 不能确定【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】两直线平行同位魚相等,如果不能确定两直线是平行线则不能确定同位角之间的关系。
由图形可得,不能确定直线m和直线n平行,故不能确定∠1的大小.故答案为:D【分析】两直线平行,同位角相等,但已知条件中,不能确定两条直线的位置关系,因此不能计算出∠1的大小。
3、(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.4、(2分)16的平方根与27的立方根的相反数的差是()A. 1B. 7C. 7或-1D. 7或1【考点】平方根,立方根及开立方【解析】【解答】解:∵16的平方根为±4,27的立方根为3,∴3的相反数为-3,∴4-(-3)=7,或-4-(-3)=-1.故答案为:C.【分析】根据平方根和立方根的定义分别求出16的平方根和27的立方根的相反数,再列式、计算求出答案.5、(2分)下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.【答案】C【考点】图形的旋转,图形的平移【解析】【解答】A、此图案是将左边的图案绕着某一点旋转得到的,故A不符合题意;B、此图案是由一个基本图案旋转60°,120°,180°,240°,300°而得到的,故B不符合题意;C、此图案是由基本图案通过平移得到的,故C符合题意;D、此图案是通过折叠得到的,故D不符合题意;【分析】根据平移和旋转的性质,对各选项逐一判断即可。
城中初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【答案】B【考点】二元一次方程组的其他应用【解析】【解答】解:若馒头每个x元,包子每个y元,由题意得:,故答案为:B【分析】由题意可知5个馒头,3个包子的原价之和为11元;8个馒头,6个包子的原价之和为20元,列方程组即可。
2、(2分)下列计算正确的是()A. B. C. D.【答案】D【考点】算术平方根,立方根及开立方,同底数幂的乘法,同类项【解析】【解答】解:A.∵2a与3b不是同类项,不能合并,故错误,A不符合题意;B.∵=6,故错误,B不符合题意;C.∵≠3,故错误,C不符合题意;D.∵72×73=75,故正确,D符合题意;故答案为:D.【分析】A.同类项:所含字母相同,相同字母指数相同,由此判断是否为同类项;故可判断错误;B.算术平方根只有正,平方根才有正负;故错误;C.9开立方根不会等于3,故错误;D.同底数幂相乘,底数不变,指数相加,由此计算即可.3、(2分)π、,﹣,,3.1416,0. 中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:在π、,﹣,,3.1416,0. 中,无理数是:π,- 共2个.故答案为:B【分析】本题考察的是无理数,根据无理数的概念进行判断。
4、(2分)如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=()A. 28°B. 30°C. 32°D. 35°【答案】B【考点】角的运算,余角、补角及其性质,对顶角、邻补角【解析】【解答】设∠BOD=5x°,∠AOC=2x°,∵OA⊥OB,∴∠AOB=90°,∴∠BOC=(90-2x)°,∵∠BOD+∠BOC=180°,∴90-2x+5x=180,解得:x=30,∴∠BOC=30°,故答案为:B【分析】根据图形得到∠BOD与∠BOC互补,∠BOC与∠AOC互余,再由已知列出方程,求出∠BOC的度数.5、(2分)下列条形中的哪一个能代表圆形图所表示的数据()A. B. C. D.【答案】C【考点】条形统计图【解析】【解答】解:从扇形图可以看出:整个扇形的面积被分成了3分,其中横斜杠阴影部分占总面积的,斜杠阴影部分占总面积的,非阴影部分占总面积的,即三部分的数据之比为::=1:1:2,在条形图中小长方形的高之比应为1:1:2,故答案为:C【分析】根据圆形图确定所占总体的比例,然后确定条形图的大小即可.6、(2分)若m>n,下列不等式不成立的是()A. m+2>n+2B. 2m>2nC.D. -3m>-3n【答案】D【考点】不等式及其性质【解析】【解答】A、m>n,不等式两边加2得:m+2>n+2,故此选项成立;B、m>n,不等式两边乘2得:2m>2n,故此选项成立;C、m>n,不等式两边除以2得:>,故此选项成立;D、m>n,不等式两边乘-3得:-3m<-3n,故此选项不成立.故答案为:D.【分析】根据不等式的性质,对各选项逐一判断。
哈镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果关于x的不等式x>2a﹣1的最小整数解为x=3,则a的取值范围是()A. 0<a<2B. a<2C. ≤a<2D. a≤2【答案】C【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】解:∵关于x的不等式x>2a﹣1的最小整数解为x=3,∴2≤2a﹣1<3,解得:≤a<2.故答案为:C.【分析】由题意可得不等式组2≤2a﹣1<3,解这个不等式组即可求解。
2、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A. ∠1=90°,∠2=30°,∠3=∠4=60°;B. ∠1=∠3=90°,∠2=∠4=30°C. ∠1=∠3=90°,∠2=∠4=60°;D. ∠1=∠3=90°,∠2=60°,∠4=30°【答案】D【考点】对顶角、邻补角【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故答案为:D【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.3、(2分)在下列各数中,无理数是()A. ﹣B. ﹣0.1C.D. 36【答案】C【考点】无理数的认识【解析】【解答】解:A、是分数,是有理数,不符合题意;B、是分数,是有理数,不符合题意;C、是无理数,符合题意;D、是整数,是有理数,不符合题意.故答案为:C.【分析】无理数是无限不循环小数和开方开不尽的数,不能写作两整数之比;得到正确选项.4、(2分)“a<b”的反面是()A.a≠bB.a>bC.a≥bD.a=b【答案】C【考点】命题与定理【解析】【解答】解:a<b的反面是a=b或a>b,即a≥b.故答案为:C【分析】a<b的反面是a=b或a>b,即a≥b.5、(2分)西峰城区出租车起步价为5元(行驶距离在3千米内),超过3千米按每千米加收1.2元付费,不足1千米按1千米计算,小明某次花费14.6元.若设他行驶的路为x千米,则x应满足的关系式为()A. 14.6﹣1.2<5+1.2(x﹣3)≤14.6B. 14.6﹣1.2≤5+1.2(x﹣3)<14.6C. 5+1.2(x﹣3)=14.6﹣1.2D. 5+1.2(x﹣3)=14.6【答案】A【考点】一元一次不等式组的应用【解析】【解答】解:设行驶距离为x千米依题意,得∵14.6>5,∴行驶距离在3千米外.则14.6﹣1.2<5+1.2(x﹣3)≤14.6.故答案为:A【分析】先根据付费可知行驶距离在3千米以上,再用行驶距离表示出付费费用,再根据收费情况列出关于x 的一元一次不等式组.6、(2分)若,则a的取值范围为()A. 正数B. 非负数C. 1,0D. 0【答案】C【考点】算术平方根【解析】【解答】∵,∴a≥0,a= ,即a的算术平方根等于它本身,∴a=1或0.故答案为:C.【分析】由题意知a的算术平方根等于它本身,所以a=1或0.7、(2分)下列不等式中,是一元一次不等式的是()A. 2x-1>0B. -1<2C. 3x-2y≤-1D. y2+3>5【答案】A【考点】一元一次不等式的定义【解析】【解答】解:A、是一元一次不等式;B、不含未知数,不符合定义;C、含有两个未知数,不符合定义;D、未知数的次数是2,不符合定义;故答案为:A【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的最高次数是一次,这样的不等式就是一元一次不等式,即可作出判断。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
巡检镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.2、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()A. 45°B. 60°C. 54°D. 30°【答案】C【考点】扇形统计图【解析】【解答】解:15÷(30+23+15+32)×360°=54°.故答案为:C【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.3、(2分)已知方程组,则(x﹣y)﹣2=()A. 2B.C. 4D.【答案】D【考点】代数式求值,解二元一次方程组【解析】【解答】解:,①﹣②得:x﹣y=2,则原式=2﹣2= .故答案为:D【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。
4、(2分)若26m>2x>23m,m为正整数,则x的值是()A.4mB.3mC.3D.2m【答案】A【考点】不等式及其性质【解析】【解答】解:根据合并同类项法则和不等式的性质,然后根据6m>x>3m,由m为正整数,可知A 符合题意.故答案为:A.【分析】根据不等式的性质和有理数大小的比较可得6m>x>3m,再结合选项可得答案.5、(2分)下列是方程组的解的是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入y=2x+5=3,所以方程组的解为.故答案为:D.【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。
第1页(共21页)2018-2019学年七年级下学期期中考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子中,属于最简二次根式的是( )ABCD2x 的取值范围是( )A .3x <B .3x …C .3x >D .3x …3.下列计算错误的是( )A=B=C= D.3=4.实数a( )A .7B .7-C .215a -D .无法确定 5.已知a =b =,则a 与b 的关系是( )A .a b =B .1ab =C .a b =-D .5ab =-6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形7.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BD的长是( )A .8B .9C .10D .11 8.如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长第2页(共21页)为( )AB .2 CD .39.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .40海里D .50海里10.如图,平行四边形ABCD 中,5AD =,3AB =,AE 平分BAD ∠交BC 边于点E ,则EC 等于( )A .1B .2C .3D .411.如图, 在ABC ∆中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC⊥于H ,8FD =,则HE 等于( )A . 20B . 16C . 12D . 812.如图,已知OP 平分AOB ∠,60AOB ∠=︒,2CP =,//CP OA ,PD OA ⊥于点D ,PE OB⊥于点E .如果点M 是OP 的中点,则DM 的长是( )。
2018-2019 学年度七年级数学期中考试卷一、 (本 共 8 小 ,每小3 分,共 24 分)1、以下四 段中,能 成三角形的是⋯⋯⋯⋯⋯()A 、 2cm , 3 cm ,4 cmB 、 3 cm , 4 cm , 7 cmC 、 4 cm , 6 cm , 2 cmD 、 7 cm , 10 cm , 2 cm2、以下生活中的 象,属于平移的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、抽屉的拉开B 、汽车刮雨器的运动C 、坐在秋千上人的运动D 、投电影的文字经投影变换到屏幕3、 以下各方程中,是二元一次方程的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A 、x2 y 5xB 、 3x 2 y 2 x 2 y3yC 、 1xy 21D 、y3x 5y5464、一只小狗在如 的方 上走来走去,最 停在阴影方 上的概率是⋯⋯⋯()A 、4B 、1C 、1D 、215 3 5 15(第 7 )(第 4 )5 、任何一个三角形的三个内角中最少有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (、一个角大于) A60° B 、两个 角 C 、一个 角 D 、一个直角6、已知以下条件, 不能够作出三角形的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A. 两 及其 角 B 、两角及其 C 、三 D 、两 及除 角外的另一个角7、如 ,∠ AOP=∠BOP ,PD ⊥OB ,PC ⊥OA , 以下 正确的选项是⋯⋯⋯⋯⋯()A 、PD=PCB 、PD ≠PC C 、有 相等,有 不等D 、PD >PC8、已知 x +4y -3z = 0,且 4x -5y + 2z =0,x :y :z ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A 、1:2:3;B 、 1:3:2;C 、2:1:3;D 、 3:1:2二、填空 (本 共8 小 ,每小3 分,共 24 分)9、工人 傅在做完 框后. 防范 形常常像 中所示的那上两条斜拉的木条(即4 中的 AB ,CD 两根木条),依照的数学道理是 _____________________________.10、在 y = 2x - 4 中,若是 x = ,那么 y = _______;3若是 y =0,那么 x =__________.11、由3x-2y=5,获取用 x 表示 y 有式子为y=______________.12、10名学生计划“五一”这天去郊游,任选其中的一人带20 根腊肠,则10 人中的小亮被选中的概率是_________.13、角和线段都是轴对称图形,其中线段有___________条对称轴.x214、已知是方程 5 x- ( k- 1)y - 7 = 0 的一个解,则 k =______.y315、已知方程组x y53x 2 y0 的解,则 k = . 4x3y的解也是方程k 016、如图, AD 是△ ABC的中线,若是△ ABC 的面积是 18cm2, 则△ ADC的A 面积是____ cm 2.三、解答题(共 52 分)17、(每题 5 分,共 10 分)解以下方程组:BCD(1)x y 1(2)3x 2 y 62x y42x 3 y1718、(5分)尺规作图:(不写作法,保留作图印迹)已知:、,求作:∠ ABC,使∠ ABC=+。
七年级下册数学期中考试试题及答案一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,推断■的值()A.不可能是2B.不可能是1C.不可能是0D.不可能是﹣1 2.(3分)如图,射线AB、AC被直线DE所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角3.(3分)下列计算正确的是()A.a3•a2=a6B.3a3+a=3a C.a2﹣a=a D.(﹣a3)2=a6 4.(3分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为()A.2.5×10﹣7米B.2.5×10﹣6米C.2.5×107米D.2.5×106米5.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.x3﹣xy2=x(x﹣y)2B.(x+2)(x﹣2)=x2﹣4C.a2﹣b2+1=(a﹣b)(a+b)+1D.﹣2x2﹣2xy=﹣2x(x+y)6.(3分)不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A.3元B.5元C.8元D.13元7.(3分)小兰是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,2,x2+1,a,x+1,分别对应下列六个字:州,爱,我,美,游,杭,现将2a(x2﹣1)﹣2b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱美B.杭州游C.我爱杭州D.美我杭州8.(3分)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠l=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AD 9.(3分)已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N 的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.(3分)已知关于x,y的方程,给出下列结论:①存在实数a,使得x,y的值互为相反数;②当a=2时,方程组的解也是方程3x+y=4+a的解;③x,y都为自然数的解有3对.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题:本大题有8个小题,每小题4分,共32分.11.(4分)将方程5x﹣y=1变形成用含x的代数式表示y,则y=.12.(4分)多项式m2﹣n2和am﹣am的公因式是.13.(4分)若x,y均为整数,且3x•9y=243,则x+2y的值为.14.(4分)如图将一条两边都互相平行的纸带进行折叠,设∠1为45°,则∠2=°.15.(4分)一个多项式与﹣x3y的积为x6y2﹣3x4y﹣x3y4z,那么这个多项式为.16.(4分)若实数a,b满足a﹣2b=4,ab=2,那么a2+4b2=.17.(4分)下列说法中:①若a m=3,a n=4,则a m+n=7;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t﹣2)2t=1,则t=3或t=0;④平移不改变图形的形状和大小;⑤经过一点有且只有一条直线与已知直线平行.其中,你认为错误的说法有.(填入序号)18.(4分)一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣9,则小正方形卡片的面积是.三、解答题:本大题有6个小题,共58分)19.(12分)(1)计算:2﹣2+(π﹣3.14)0+(﹣)﹣1(2)计算:(﹣2019)2+2018×(﹣2020)(3)解方程组20.(8分)给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.21.(8分)(1)先化简,再求值:(3x﹣6)(x2﹣)﹣6x(x2﹣x﹣6),其中x=﹣.(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.22.(8分)如图,D,E,F,G,H,Ⅰ是三角形ABC三边上的点,且EF∥BC,GH∥AC,DI∥AB,连结EI.(1)判断∠GHC与∠FEC是否相等,并说明理由.(2)若EI平分∠FEC,∠C=54°,∠B=49°.求∠EID的度数.23.(10分)如图,杭州某化工厂与A,B两地有公路,铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.4元/(吨•千米),铁路运价为1.1元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费89100元,求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?24.(12分)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a度/秒,灯B转动的速度是b度/秒,且a,b满足|a﹣3b﹣1|+(a+b﹣5)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若两灯同时转动,经过42秒,两灯射出的光束交于C,求此时∠ACB的度数;(3)若灯B射线先转动10秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(直接写出答案)2018-2019学年浙江省杭州市四校七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:设■的值为a,方程为ax﹣2y=x+5,整理得:(a﹣1)x﹣2y=5,由方程为二元一次方程,得到a﹣1≠0,即a≠1,则■的值不可能是1,故选:B.2.【解答】解:射线AB、AC被直线DE所截,则∠1与∠2是同位角,故选:A.3.【解答】解:A、a3•a2=a5,故此选项错误;B、3a3+a,无法计算,故此选项错误;C、a2﹣a,无法计算,故此选项错误;D、(﹣a3)2=a6,正确.故选:D.4.【解答】解:2.5微米用科学记数可表示为2.5×10﹣6米.故选:B.5.【解答】解:A选项x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),故A错.B选项不符合因式分解的概念,故B错,C选项不符合因式分解的概念,故C错,D选项﹣2x2﹣2xy=﹣2x(x+y),故D正确,故选:D.6.【解答】解:设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得.解得.所以x+y=5+3=8(元)故选:C.7.【解答】解:原式=2(a﹣b)(x﹣1)(x+1),则呈现的密码信息可能是我爱杭州,故选:C.8.【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=45°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:①若x与y互为相反数,则有,解得,即存在实数a,使得x,y的值互为相反数,①正确②当a=2时,方程组有,解得,将x,y代入3x+y=4+a得,3×﹣=6=4+2,②正确③y的方程,x+2y=3﹣a等式两边同时乘以2,得,整理得,3x+y=6,当x=0时,y=6;当x=1时,y=3;当x=2时,y=0,.共有3组自然数解.③正确故选:D.二、填空题:本大题有8个小题,每小题4分,共32分.11.【解答】解:方程5x﹣y=1,解得:y=5x﹣1,故答案为:5x﹣112.【解答】解:多项式m2﹣n2和am﹣am的公因式是m﹣n,故答案为:m﹣n.13.【解答】解:∵3x•9y=243,∴3x•32y=35=3x+2y=35,∴x+2y=5.故答案为:5.14.【解答】解:由题意:∠1=∠3=45°,由翻折可知:∠4=∠5=(180°﹣45°)=67.5°,∴∠2=∠5=67.5°,故答案为67.5.15.【解答】解:根据题意得:(x6y2﹣3x4y﹣x3y4z)÷(﹣x3y)=﹣x3y+3x+y3z.故答案为:﹣x3y+3x+y3z.16.【解答】解:∵实数a,b满足a﹣2b=4,ab=2,∴a2+4b2=(a﹣2b)2+4ab=42+4×2=24.故答案是:24.17.【解答】解:①a m=3,a n=4,则a m+n=a m×a n=12;故此选项错误;②两条直线被第三条直线所截,如果两直线位置不平行,那么一组内错角的角平分线也不平行;故此选项错误;③若(t﹣2)2t=1,则t=3或t=0或t=1;故此选项错误;④平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑤在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故此选项错误;故答案为:①②⑤.18.【解答】解:由图可得,图2中阴影部分的面积是:(2b﹣a)2,图3中阴影部分的面积是:(a﹣b)(a﹣b),则(a﹣b)(a﹣b)﹣(2b﹣a)2=2ab﹣9,化简,得b2=3,故答案为:3.三、解答题:本大题有6个小题,共58分)19.【解答】解:(1)2﹣2+(π﹣3.14)0+(﹣)﹣1=+1﹣3=﹣(2)(﹣2019)2+2018×(﹣2020)=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣12)=1(3)∵,∴,①﹣②,可得:6y=18,解得y=3,把y=3代入①,可得:3x+12=36,解得x=8,∴原方程组的解是.20.【解答】解:①+②得:2x2+4x﹣4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x﹣4+2x2﹣4x=4x2﹣4=4(x+1)(x﹣1);②+③得:2x2+12x+4+2x2﹣4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.21.【解答】解:(1)原式=3x3﹣x﹣6x2+2﹣3x3+6x2+36x,=35x+2,当x=﹣时,原式=﹣7+2=﹣5;(2)∵y2﹣5y+3=0,∴y2﹣5y=﹣3,原式=2(2y2﹣y﹣2y+1)﹣2(y2+2y+1)+7,=4y2﹣2y﹣4y+2﹣2y2﹣4y﹣2+7,=2y2﹣10y+7,=2(y2﹣5y)+7,=﹣6+7=1.22.【解答】解:(1)∠GHC=∠FEC,理由:∵EF∥BC,∴∠FEC+∠C=180°,∵GH∥AC,∴∠GHC+∠C=180°,∴∠GHC=∠FEC;(2)∵EF∥BC,∠C=54°,∴∠FEC+∠C=180°,∴∠FEC=126°,∵EI平分∠FEC,∴∠FEI=63°,∴∠EIC=63°,∵DI∥AB,∠B=49°,∴∠DIC=49°,∴∠EID=14°.23.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)8000×300﹣(1000×400+14000+89100)=1896900(元).答:这批产品的销售款比原料费与运输费的和多1896900元24.【解答】解:(1)∵a、b满足|a﹣3b﹣1|+(a+b﹣5)2=0,∴a﹣3b﹣1=0,且a+b﹣4=0,∴a=4,b=1;(2)同时转动,t=42时,∠PBC=42°,∠MAC=168°,∵PQ∥MN,∴∠ACB=54°,(3)①当0<t<45时,∴4t=10+7,解得t=;②当45<t<90时,∴360﹣4t=10+t,解得t=70;③当90<t<135时,∴4t﹣360=10+t,解得t=;④当135<t<170时,∴720﹣4t=10+t,解得t=142;综上所述:t=或t=70 或t=或t=142;七年级(下)数学期中考试试题【含答案】一、选择题(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑)1.下面的四个图形中,∠1与∠2是对顶角的是2.点P(-2,-5)在A.第一象限B.第二象限C.第三象限D.第四象限3.估计5的值在A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.下列方程组不是二元一次方程组的是A.⎩⎨⎧=+=+42634y x y xB.⎩⎨⎧=-=+44y x y x B.⎪⎩⎪⎨⎧=-=+141y x y x D.⎩⎨⎧=+=+25102553y x y x5在,π,,,,27310414.1- 1.1·4·,3.212212221(每两个1之间多一个2),这些数中无理数的个数为A.3B.2C.5D.46.若点P ()13-+m m ,在x 轴上,则点P 的坐标为A.(0,-2)B.(4,0)C.(2,0)D.(0,-4)7.如图所示,由下列条件不能得到AB ∥CD 的是A.∠B+∠BCD=180°B.∠B=∠5C.∠3=∠4D.∠l=∠28.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是A.(-3,4)B.(4,-3)C.(3,-4)D.(-4,3)9.下列说法中正确的是A.9的平方根是3B.4平方根是2±C.16的算术平方根是4D.-8的立方根是2±10.已知y x 、是二元一次方程组⎩⎨⎧=+=+83123y x y x 的解,那么y x +的值是 A.0 B.5 C.-1 D.11l.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为A.50°B.60°C.40°D.30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是A.(5,6)B.(6,0)C.(6,3)D.(3,6)二、填空题(本大题6个小题,每小题4分,共24分,将答案直接填在答卷屮对应的橫线上)13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知y x 、是实数,且(),0322=-+-y x 则xy 的值是_______. 15.如果,,477.530732.13≈≈那么≈300_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图所示,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点______.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题(本大题2个小题,19题10分,20题6分,共16分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)19.计算(每题5分,共10分) (1)328323++-(2)已知(),1622=-x 求x 的值.四、解答题(本大题4个小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)20.(10分)已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111C B A △;(3)计算111C B A △的面积。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
2018-2019学年七年级(下)期中数学试卷一、选择题:每题3分,共45分。
在每小题的四个选项中,只有一项是符合题目要求的。
请把正确的选项填涂在答题卡上。
1.下列代数运算正确的是()A.x?x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x32.已知a=()﹣2,b=(﹣2)3,c=(x﹣2)0(x≠2),则a,b,c的大小关系为()A.b<a<c B.b<c<a C.c<b<a D.a<c<b3.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.14.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.235.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.06.下列说法正确的是()A.相等的角是对顶角B.一个角的补角必是钝角C.同位角相等D.一个角的补角比它的余角大90°7.地球的体积约为1012立方千米,太阳的体积约为×1018立方千米,地球的体积约是太阳体积的倍数是()A.×10﹣6B.×10﹣7C.×106D.×1078.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形形(不重叠无缝隙),则该长方形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°10.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°11.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°12.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个14.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s15.如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α二.填空题:每题3分,共18分,将答案填在各题的横线上.16.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据用科学记数法表示为.17.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.18.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.19.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.20.如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数°.21.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.三、解答题:共7小题,满分57分,解答应写出文字说明,说理过程或演算步骤。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
闻堰镇初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)不等式组的所有整数解的和是()A. 2B. 3C. 5D. 6【答案】D【考点】一元一次不等式组的特殊解【解析】【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故答案为:D【分析】先解不等式组求得不等式组的解集,再取在解集范围内的整数解即可.2.(2分)将不等式组的解集在数轴上表示,下列表示中正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解不等式组可得-1≤x<1,A符合题意。
【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(2分)用代入法解方程组的最佳策略是()A.消y,由②得y= (23-9x)B.消x,由①得x= (5y+2)C.消x,由②得x= (23-2y)D.消y,由①得y= (3x-2)【答案】B【考点】解二元一次方程组【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,所以用代入法解方程组的最佳策略是:由①得再把③代入②,消去x.故答案为:B【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=02.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.73.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=64.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.25.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和26.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣49.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()A.98B.99C.100D.101二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是.12.在2x+3y=3中,若用y表示x,则x=.13.不等式5x+14≥0的负整数解是.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.若方程组的解也是x+y=1的一个解,则a=.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?22.(6分)解方程组:.23.(7分)满足方程组的x和y的值之和是2,求k的值.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=0【分析】根据一元一次方程的定义判断即可;【解答】解:A、该方程符合一元一次方程的定义,故本选项正确;B、该方程化简后符合一元一次方程的定义,故本选项正确;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程为分式方程,故本选项错误;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1.2.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.7【分析】由x=2为方程的解,将x=2代入方程即可求出m的值.【解答】解:将x=2代入方程得:6+1=m+4,解得:m=6.故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.4.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.2【分析】将x=2、y=1代入kx+3y=5求出k的值,从而得出答案.【解答】解:将x=2、y=1代入kx+3y=5,得:2k+3=5,解得:k=1,所以k的相反数为﹣1,故选:B.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和2【分析】根据同类项的定义建立方程求解即可得出结论.【解答】解:∵单项式2a x﹣2b与﹣3a3b3﹣y是同类项,∴x﹣2=3,3﹣y=1,∴x=5,y=2,故选:B.【点评】此题主要考查了同类项的意义,解简单的一次方程,建立方程求解是解本题的关键.6.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣4【分析】等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.【解答】解:若每组有7人,实际人数为7x+2;若每组有8人,实际人数为8x﹣4,∴可列方程为7x+2=8x﹣4.故选:A.【点评】考查列一元一次方程;根据学生的实际人数得到等量关系是解决本题的关键.9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元【分析】设1听果奶为x元,1听可乐y元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【解答】解:设1听果奶为x元,1听可乐y元,由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()A.98B.99C.100D.101【分析】设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.【解答】解:设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,即3(x+y),99为3的整数倍,而98,100,101不是,故选:B.【点评】本题考查了一次方程(组)的应用:利用表中数据的排列规律合理设未知数是解决问题的关键.二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是x≥﹣7.【分析】先根据题意列出关于x的不等式,移项,合并同类项,把x的系数化为1即可.【解答】解:∵代数式4x+13的值不小于代数式2x﹣1的值,∴4x+13≥2x﹣1,移项得,4x﹣2x≥﹣1﹣13,合并同类项得,2x≥﹣14,把x的系数化为1得,x≥﹣7.故答案为:x≥﹣7.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.在2x+3y=3中,若用y表示x,则x=.【分析】根据移项、系数化为1,可得答案.【解答】解:2x+3y=3,移项,得2x=3﹣3y,系数化为1,得x=.故答案为:.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x 的形式.13.不等式5x+14≥0的负整数解是﹣2,﹣1.【分析】先求出不等式的解集,再求出符合条件的负整数解即可.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.【点评】此题比较简单,解答此题的关键是正确求出不等式的解集,借助于数轴便可直观解答.14.方程mx+ny=10有两组解和,则2m﹣n2=﹣80.【分析】把x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,代入原式计算即可.【解答】解:根据题意得:,解得:,则2m﹣n2=20﹣100=﹣80.故答案为:﹣80.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.若方程组的解也是x+y=1的一个解,则a=﹣.【分析】利用二元一次方程组的解的定义得到方程组的解也是方程组的解,然后解方程组后把x、y的值代入9﹣2a=10中可求出a的值,【解答】解:∵方程组的解也是x+y=1的一个解,∴方程组的解也是方程组的解,解方程组得,把x=3,y=﹣2代入3x+ay=10得9﹣2a=10,解得a=﹣.故答案为﹣.【点评】本题考查了解二元一次方程组:熟练掌握代入消元法和加减消元法解二元一次方程组.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是72cm.【分析】设小长方形的长为xcm,宽为ycm,由图形可列方程组,可求出x,y的值,即可求每块小长方形地砖的周长.【解答】解:设小长方形的长为xcm,宽为ycm根据题意可得:解得:∴小长方形地砖的周长=2(27+9)=72cm故答案为:72cm【点评】本题考查了二元一次方程组的应用,根据题意列出正确的方程组是本题的关键.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为﹣5.【分析】根据方程组同解得出,解之求得x、y的值,代入另外两个方程得出a+b、a ﹣b的值,代入计算可得.【解答】解:根据题意,得:,解得:,则,∴a2﹣b2=(a+b)(a﹣b)=1×(﹣5)=﹣5,故答案为:﹣5.【点评】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.【点评】本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x﹣)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【点评】本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.22.(6分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:3y=﹣3,即y=﹣1,把y=﹣1代入②得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(7分)满足方程组的x和y的值之和是2,求k的值.【分析】方程组消去k表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,②×2﹣①得:x+y=5﹣5k,代入x+y=2得:5﹣5k=2,解得:k=.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.【分析】解不等式求出x的范围,从而得出不等式的最小整数解,代入方程求得a的值,最后代入代数式求值即可.【解答】解:去括号,得:5x﹣10+8≤6x﹣6+7,移项,得:5x﹣6x≤﹣6+7+10﹣8,合并同类项,得:﹣x≤3,系数化为1,得:x≥﹣3,则该不等式的最小整数解为x=﹣3,根据题意,将x=﹣3代入方程3x﹣ax=﹣3,得:﹣9+3a=﹣3,解得:a=2,则原式=﹣|10﹣4|=﹣6.【点评】本题考查的是解一元一次不等式和一元一次方程及代数式的求值,正确求出每一个不等式解集是基础得出a的值是解答此题的关键.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?【分析】设人数为x,则可得10≤x≤25,从而可得甲旅行社需要花费:200x×0.75,乙旅行社:200(x﹣1)×0.8,让两式相等可求出人数x为何值时两家相等,从而据此讨论x取其他值的情况.【解答】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.【点评】本题考查一元一次不等式的应用,与实际结合得比较紧密,解答本题需要先了解两家花费一样的人数的值,这是关键.。
2018-2019学年度七年级下学期期中进行反馈数学试卷一.选择题1.若一个数的平方根等于它本身,则这个数是()A.0 B.1 C.0 或1 D.0 或±12.(3分)已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1 B.2 C.3 D.43.下列计算正确的是()A.=﹣2 B.=±3 C.=﹣2 D.﹣=4.在给出的一组﹣3,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个5.如图,下列判断正确的是()A.∠1,∠2,∠6互为邻补角B.∠2与∠4是同位角C.∠3与∠6是同旁内角D.∠5与∠3是内错角6.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣27.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4 D.∠A=∠38.实数a,b在数轴上的位置如图所示,则化简|a﹣b|﹣的结果是()A.2a﹣b B.b C.﹣b D.﹣2a+b9.(3分)如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°10.如图,P为△ABC内一点,∠BAC=70°,∠BPC=120°,BD是∠ABP的平分线,CE是∠ACP的平分线,BD 与CE交于F,则∠BFC=()A.85°B.90°C.95°D.100°11.(3分)如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°12.(3分)如图,已知∠1=∠2,∠D=78°,则∠BCD=()A.98°B.62°C.88°D.102°二.填空题13.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AC与直线DE相交于点O,若∠BOC=35°,BO⊥DE,垂足为O,则∠AOD=度.15.(3分)若|3﹣a|+=0,则a+b的立方根是.16.如图,若将△ABC沿CA方向平移CA长得△EF A,若△ABC的面积为3cm2,则四边形BCEF的面积是cm2.17.(3分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.18.(3分)规定符号[a]表示实数a的整数部分,[]=0,[4.15]=4.按此规定[+2]的值为.三.解答题19.(8分)计算:|﹣2|+(﹣1)×(﹣3)20.(6分)如图,直线AB,CD交于点O,OB平分∠DOE,OF是∠BOC的角平分线.(1)说明:∠AOC=∠BOE;(2)若∠AOC=46°,求∠EOF的度数;(3)若∠EOF=30°,求∠AOC的度数.21.(1)如图1,△ABC中,∠A=60°,点E是两条内角平分线的交点,求∠BEC的度数;(2)如图2,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化范围.(3)图3画两条相交的直线OX、OY,使∠XOY=60°,②在射线OX、OY上分别再任意取A、B两点,③作∠ABY 的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数.若发生变化,求出变化范围.22.如图,AE∥BD,∠1=115°,∠2=35°,求∠C的度数.23.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数参考答案一.选择题1.A;2.C;3.C;4.C;5.C;6.D;7.B;8.A;9.C;10.C;11.B;12.D;二.填空题13.连接直线外一点与直线上所有点的连线中,垂线段最短;14.55;15.1;16.9;17.45°;18.5;三.解答题19.解:原式=2﹣2+3=3.20.解:(1)∵OB平分∠DOE,∴∠BOE=∠BOD,∵∠AOC=∠BOD,∴∠AOC=∠BOE;(2)∵∠AOC=46°,∴∠BOC=180°﹣∠AOC=134°,∠BOE=46°,∵OF是∠BOC的角平分线,∴∠BOF=∠BOC=67°,∴∠EOF=∠BOF﹣∠BOE=21°;(3)设∠AOC=α,则∠BOE=α,∵∠EOF=30°,∴∠BOF=α+30°,∵OF是∠BOC的角平分线,∴∠BOC=2∠BOF=2α+60°,∴α=180°﹣(2α+60°),∴α=40°,∴∠AOC=40°.21.解:(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°.∵点E是两条内角平分线的交点,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°;(2)不变.∵在△AOB中,∠MON=80°,∴∠OAB+∠OBA=100°,又∵AC、BD为角平分线,∴∠P AB+∠PBA=∠OAB+∠OBA=×100°=50°,∴∠APB=180°﹣(∠P AB+∠PBA)=130°,即随着点A、B位置的变化,∠APB的大小始终不变,为130°;(3)不变.令∠OAC=∠CAB=x,∠ABD=∠BDY=y,∵∠ABY是△AOB的外角,∴2y=n+2x,同理,∠ABD是△ABC的外角,有y=∠C+x,∴∠C===30°.22.解:∵AE∥BD,∠2=35°,∴∠CEA=∠2=35°,又∵∠1=115°,∴∠C=180°﹣∠CEA﹣∠1=180°﹣115°﹣35°=30°.23.解:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠BDE=∠DEF,又∵∠DEF=∠A,∴∠BDE=∠A.∴DE∥AC,∴∠ACB=∠DEB=60°.。
闻堰镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
2、(2分)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】D【考点】平移的性质,利用平移设计图案【解析】【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故答案为:D【分析】根据平移的定义及平移的性质,可出答案。
3、(2分)如果a>b,c≠0,那么下列不等式成立的是()A. a-c>b-cB. c-a>c-bC. ac>bcD.【答案】A【考点】不等式及其性质【解析】【解答】解:A、不等式的两边都加(或减)同一个数(或整式),故A符合题意;B、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,故B不符合题意;C、c<0时,不等号的方向改变,故C不符合题意;D、c<0时,不等号的方向改变,故D不符合题意;故答案为:A【分析】根据不等式的性质:不等式的两边都加(或减)同一个数(或整式),不等号方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,根据性质一一判断即可。
4、(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),这7个数中,无理数共有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】无理数的认识【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
闻堰镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,下列结论正确的是()A.B.C.D.【答案】B【考点】实数在数轴上的表示,实数大小的比较,实数的绝对值【解析】【解答】解:A. ,不符合题意.B. ,符合题意.C. ,不符合题意.D. ,不符合题意.故答案为:B.【分析】A 根据数轴上表示的实数,右边的总比左边的数大即可作出判断。
B 利用分子相同的两个数,分母大的反而小即可判断。
C 根据一个数的绝对值就是数轴上的点到原点的距离即可作出判断即可。
D 几个有理数相乘,积的符号由负因数的个数确定,当负因数的个数是偶数时,积为正,当负因数的个数是奇数时,积为负,据此作出判断即可。
2、(2分)如图为张小亮的答卷,他的得分应是()A. 100分B. 80分C. 60分D. 40分【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
3、(2分)适合下列二元一次方程组中的()A. B. C. D.【答案】C【考点】二元一次方程组的解【解析】【解答】把分别代入各个方程组,A、B、D都不适合,只有C适合.故答案为:C.【分析】将x=2、y=-1,分别代入各个方程组A、B、C、D中,判断即可。
4、(2分)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∠A=120°,∴∠DCA=180°﹣∠A=60°,∵CE平分∠ACD,∴∠ECD= ∠DCA=30°,故答案为:D.【分析】先根据两直线平行,同旁内角互补,求出∠DCA的度数,再根据角平分线的定义得出∠ECD= ∠DCA,计算即可求解。
5、(2分)如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是()A. 大于2千克B. 小于3千克C. 大于2千克且小于3千克D. 大于2千克或小于3千克【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:由图可知,物体的质量大于两个砝码的质量,故物体质量范围是大于2千克.故答案为:C【分析】由图知:第一个图,天平右边高于左边,从而得出物体的质量大于两个砝码的质量,从第二个图可知:天平右边低于左边,物体的质量小于三个砝码的质量,从而得出答案。
6、(2分)设方程组的解是那么的值分别为()A.B.C.D.【答案】A【考点】解二元一次方程组【解析】【解答】解:解方程组,由①×3+②×2得19x=19解之;x=1把x=1代入方程①得3+2y=1解之:y=-1∴∵方程组的解也是方程组的解,∴,解之:故答案为:A【分析】利用加减消元法求出方程组的解,再将x、y的值分别代入第一个方程组,然后解出关于a、b的方程组,即可得出答案。
7、(2分)在下列不等式中,是一元一次不等式的为()A. 8>6B. x²>9C. 2x+y≤5D. (x-3)<0【答案】D【考点】一元一次不等式的定义【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;B、未知数的指数不是1,不是一元一次不等式,不符合题意;C、含有两个未知数,不是一元一次不等式,不符合题意;D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.故答案为:D.【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。
8、(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()A. 63B. 58C. 60D. 55【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,由题意得:,由①得:y-x=34-z,由②得:x-y=92-z,即34-z+92-z=0,解得z=63;即桌子的高度是63.故答案为:A.【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。
9、(2分)如图,与∠B互为同旁内角的有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】解:∵当直线AB、AC被直线BC所截,∠B与∠C是同旁内角;当直线BC、DE被直线AB所截,∠B与∠EDB是同旁内角;当直线BC、AC被直线AB所截,∠B与∠A是同旁内角;∴与∠B互为同旁内角的有∠C、∠EDB、∠A故答案为:C【分析】根据同旁内角的定义,两个角在两直线之内,在第三条直线的同旁,即可求解。
10、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()A. 1B.C. 5D. 7【答案】A【考点】解二元一次方程组【解析】【解答】解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.故答案为:A.【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
11、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
12、(2分)在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】D【考点】点的坐标,点的坐标与象限的关系【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.故答案为:D.【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.二、填空题13、(1分)请写出一个大于-4而小于-3的无理数________.【答案】【考点】估算无理数的大小【解析】【解答】大于-4而小于-3的无理数.【分析】由题意可知,写出的这个无理数大于而小于即可。
14、(1分)我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[﹣0.56]=﹣1,则按这个规律[﹣]=________.【答案】-4【考点】实数的运算,定义新运算【解析】【解答】∵2<<3,∴﹣4<﹣﹣1<﹣3,∴[﹣]=﹣4.故答案为:﹣4.【分析】先求得的范围是,于是可得的范围是,然后由题中的材料可知,原式=-4.15、(2分)若两个无理数的和是有理数,则这两个无理数可以是:________ ________.【答案】﹣;【考点】实数的运算【解析】【解答】∵﹣+ =0,0是有理数,∴这两个无理数可以是﹣和,故答案为:﹣;.【分析】(答案不唯一)由题意两个无理数的和是有理数,可得这两个数互为相反数,只要两个数互为相反数即可。
16、(2分)________ 9, ________ -4.(填“>”“<”或“=”)【答案】<;>【考点】实数大小比较【解析】【解答】解:∵,,∴故答案为:<,>【分析】根据9=,=-4,再根据实数的大小比较方法,即可求解。
17、(1分)下表是某校初一(7)班20名学生某次数学成绩的统计表:若这20名学生平均成绩为a(a 是整数),则a至少是________分.【考点】解二元一次方程【解析】【解答】解:由题意得:x+y=20-1-5-2,整理得:x+y=12,∵x,y都代表学生的人数,故都为自然数,∴所有符合条件的x,y的值为:x=0,y=12;x=1,y=11;x=2,y=10;x=3,y=9;x=4,y=8;x=5,y=7;x=6,y=6;x=7,y=5;x=8,y=4,x=9,y=3;x=10,y=2;x=11,y=1;x= 12,y=0;根据题意要求平均数的最小值,则y取最小;故y=0,x=12;当x=12,y=0的时候,这20名同学的平均成绩为:(60×1+70×5+80×12+90×0+100×2)÷20=78.5≈79分;故答案为:79,【分析】根据初一(7)班共有20人,列出关于x,y的二元一次方程,根据x,y都代表学生的人数,故都为自然数,从而得出所有符合条件的x,y的值,再根据要求平均数的最小值,则y取最小;从而利用平均数的计算方法算出这20名同学的数学平均成绩的最低分。
18、(1分)若,且,则的取值范围是________.【答案】【考点】不等式及其性质【解析】【解答】解:∵,且,∴k-5<0,∴k<5.故答案为:k<5.【分析】根据不等式的性质③:不等式的两边都乘以或除以同一个负数,不等号的方向改变。
可知k-5<0,然后再解不等式即可。
三、解答题19、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求∠BOD.【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE∴∠BOD=∠AOE-∠COE=90º-55º=35º【考点】角的运算,对顶角、邻补角【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。
20、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.【答案】证明:过C作AB∥CF,∴∠ABC+∠BCF=180°,∵∠ABC+ ∠BCD+ ∠EDC=360°,∴∠DCF+ ∠EDC=180°,∴CF∥DE,∴ABF∥DE.【考点】平行公理及推论,平行线的判定与性质【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.21、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计图.(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件(2)解:如图所示:(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%【考点】条形统计图,折线统计图【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;(2)根据第三组对应的数据即可补全统计图;(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.22、(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).,0,,,【答案】解:【考点】实数在数轴上的表示,实数大小的比较【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。