圆周率π的简介
- 格式:pdf
- 大小:137.91 KB
- 文档页数:4
圆周率用字母π(读作pài),圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比。
是精确计算圆的周长、圆的面积、圆柱体的体积、圆锥体的体积等几何形状的关键值。
是无限不循环小数。
就是π≈3.14,在日常生活中,通常都用3.14代表圆周率去进行近似计算。
π×1=3.14×1=3.14 ,π×2=3.14×2=6.28 , π×3=3.14×3=9.42 ,π×4=3.14×4=12.56 , π×5=3.14×5=15.7 , π×6=3.14×6=18.84 ,π×7=3.14×7=21.98 , π×8=3.14×8=25.12 , π×9=3.14×9=28.26 ,π×10=3.14×10=31.4 ,圆周率用字母π(读作pài),圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比。
是精确计算圆的周长、圆的面积、圆柱体的体积、圆锥体的体积等几何形状的关键值。
是无限不循环小数。
就是π≈3.14,在日常生活中,通常都用3.14代表圆周率去进行近似计算。
π×1=3.14×1=3.14 ,π×2=3.14×2=6.28 , π×3=3.14×3=9.42 ,π×4=3.14×4=12.56 , π×5=3.14×5=15.7 , π×6=3.14×6=18.84 ,π×7=3.14×7=21.98 , π×8=3.14×8=25.12 , π×9=3.14×9=28.26 ,π×10=3.14×10=31.4 ,。
圆周率π的起源
圆周率π是一个无理数,它的值约为3.1415926... π的起源可以追溯到古代的数学研究中。
在古代波斯,一位名叫阿里·伊本·伊萨·阿尔·塔巴里(Ali ibn Isa al-Tusi)的数学家首次使用了π这个符号来表示圆周率。
在欧洲,圆周率是由斯堪的纳维亚人提出的,但在中国和印度,早在公元前二千多年的时候,人们就已经开始研究π的数值了。
在古代,人们通过测量圆的周长和直径来计算π的值。
但是在当时的条件下,这个过程非常繁琐,直到17世纪,莱布尼茨和牛顿发明了微积分学,才能更加方便地计算π的值。
今天,π已成为现代数学的基础之一,它在科学、工程和技术领域中发挥着重要作用。
- 1 -。
很多同学都会选择写手抄报方便自己记忆知识,小编整理了一些圆周率的知识,大家一起来看看哪些能够写到自己的手抄报上吧。
圆周率简介
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。
在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
圆周率的计算
圆周率是一个圆的周长与直径的比值,我们平时可用圆的周长除以直径计算圆周率。
圆周率的精确值对于人们的研究计算很重要,人们对圆周率的研究历史非常久远,我国魏晋时期的数学家就已经计算出圆周率后五位数。
在古代,缺少数学技巧的情况下,圆周率的计算是相当困难的,我们国家伟大的数学家,天文学家祖冲之(429-500,字文远),利用复杂的割圆术,将圆周率的计算精确到小数点第七位,这是已经是相当了不起的成就了,直到1000年后才被阿拉伯数学家阿尔·卡西才打破纪录。
以上就是一些圆周率的相关信息,希望对大家有所帮助。
地平线上的不同高度和不同角度观察宇宙射线的强度巧妙地推断出平均寿命的,后来F.拉赛蒂直接测出了平均寿命。
但是进行宇宙射线实验的人员在开始观察时,并不知道汤川的工作。
战争使这项实验工作延缓了,并且使日本和西方隔绝开来。
日本物理学家对存在着质量和汤川假定的粒子的质量相近的粒子根感兴趣,然而他们也注意到,要把μ介子和汤川粒子等同起来仍然有些困难:首先μ介子的平均寿命太长了;其次,μ介子在物质中受阻止时,它们与阻止物质的原子核发生相互作用显得很平常,虽然并不总是这样,三个年轻的意大利物理学家:M.康弗西(M.Conversi),E.潘锰尼(E.Pancini)和O.皮西奥尼克(O.Piccionic),通过研究这个现象,有了一个重要的实验发现。
这三个年轻人那时正在躲避德国人,因为德国人要把他们流放到德国去进行强制劳动。
他们三个人躲在罗马的一个地下室中秘密地工作,他们发现,正μ介子和负μ介子在物质中受阻止时的行为不一样。
正μ介子的衰变或多或少象在真空中一样,而负μ介子如果被重核所阻止,则被其俘获并产生蜕变,但当它们被象碳这样的轻核所俘获时,则它们的衰变大部份就象在真空中一样,这不是汤川粒子所应具有的特性,因为一旦介子距离原子核足够近时,特定的核力就应当产生蜕变,所以汤川粒子应当与轻的或重的原子核都发生剧烈的反应。
实验证明情况并非如此,因此μ介子不大会是汤川粒子。
情况确实非常奇怪。
汤川已经预言存在着质量约等于300个电子质量的粒子,有人也已找到了它们,但这种粒子却又不是汤川所预言的那种粒子。
理论物理学家对康弗西、潘锡尼和皮西奥尼克的结果感到迷惑不解,而这些结果从实验观点来看,却又非常可靠。
理论家们决心找出答案。
日本的谷川、坂田和井上及美国的H.A.贝特和R.马沙克(R.Marshak),各自独立地提出了一个可以解决已存在的困难的假设。
他们提出,观察到的μ介子是汤川介子的衰变产物,而尚没有人观察到汤川介子。
作出吸引人的、看起来是合理的假设是一回事,而要确证—个事实又是另一回事了。
圆周率“π”的由来很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了1706年,英国数学麦欣首先发现其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到的过似值.假定在平面上画一组距离为的平行线,向此平面任意投一长度为的针,若投针次数为,针马平行线中任意一条相交的次数为,则有,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取,则该式化简为1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……。
圆周率π的无穷算术探索圆周率π的无穷算术探索圆周率π是数学中一个极其重要和神秘的常数,在数学界被广泛研究和应用。
它是一个无理数,表示圆的周长与直径的比值。
虽然π的小数表示是无限不循环的,但人们一直致力于探索π的数学性质和迷人之处。
首先,我们来谈谈π的近似值。
π的最常见的近似值是3.14,但这只是一个粗略的估计。
随着计算机技术的发展,科学家们通过使用数百万甚至数十亿位数的计算,得到了更精确的π的近似值。
目前,人类已经计算出了π的十几万亿位小数。
然而,π的无穷性质使得它在数学上更加引人入胜。
π可以通过无穷级数的方式来表示。
最著名的无穷级数就是莱布尼茨级数和欧拉级数。
莱布尼茨级数是通过将1减去1/3加上1/5减去1/7依次相加得到。
欧拉级数则是通过将1加上1/4加上1/9依次相加得到。
这些级数收敛于π的平方的不同形式,展示了π的神秘和无穷的一面。
另一个令人着迷的方面是π的分数近似。
人们一直在寻找π的分数近似,即将π表示为两个整数的比值。
例如,最简单的分数近似是22/7,它准确到小数点后两位。
还有更精确的分数近似,例如355/113,它准确到小数点后六位。
这些分数近似使得π的计算和应用更加方便。
此外,π还与几何、三角学、概率等许多数学领域密切相关。
在几何学中,π是圆的重要属性,决定了圆的周长和面积。
在三角学中,π出现在三角函数如正弦和余弦的定义中。
在概率论中,π是圆心落在一个单位正方形内的概率。
最后,要强调的是,π的无限性质使得它成为自然界中一些现象的关键。
例如,螺旋线和波浪形状的生成都与π有关。
π也出现在统计学、物理学和工程学等许多科学领域中的方程和模型中。
综上所述,圆周率π的无穷算术探索揭示了数学的神秘和无限之美。
尽管π的小数表示是无限不循环的,但人们通过无穷级数、分数近似和数学应用等方式不断探索π的奥秘。
π在数学和科学中起到了至关重要的作用,无论是在几何、三角学还是概率与统计等领域。
π的无限性质使得它成为自然界和人类思维的一部分,给世界带来了无尽的惊喜和启示。
圆周率符号“π”的历史与应用
圆周率符号“π”的历史可以追溯到古代数学的发展。
这个符号被广泛使用,代表一个圆的周长与直径的比率,即圆周率。
在古代,人们已经开始使用圆周率来计算圆的面积和周长。
最早的记录可以追溯到古希腊数学家阿基米德。
他使用了一个近似值,即圆周率约为3.14。
这个值被认为是一个合理的近似值,用于解决一些简单的几何问题。
在中国,数学家刘徽在公元263年左右首次计算出了圆周率的近似值,并且将其记录在他的著作《九章算术》中。
他使用了一个名为“徽率”的近似值,即圆周率约为3.14。
这个值被认为是中国古代数学的重要成就之一。
在欧洲,数学家欧拉在18世纪首次使用了圆周率符号“π”。
他发现这个符号可以表示一个圆的周长与直径的比率。
在他的著作中,他使用了这个符号来代表圆周率,并且推广了它的使用。
在现代数学中,圆周率符号“π”已经成为一个重要的数学常数,被广泛应用在各个领域。
它是一个无理数,无法被一个整数或分数表示。
然而,它的值已经被计算到小数点后数百万位,并且被用于各种高精度的计算和科学研究中。
总之,圆周率符号“π”的来历可以追溯到古代数学的发展。
它被广泛应用于各种数学和科学领域,并且已经成为了现代数学中的一个重要符号。
π的历史圆的周长与直径之比是一个常数,人们称之为圆周率。
通常用希腊字母π来表示。
1706年,英国人琼斯首次创用π代表圆周率。
他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。
现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。
到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。
东汉的数学家又将π值改为(约为 3.16)。
真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。
他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。
这是第一次在科学中创用上、下界来确定近似值。
第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。
我国称这种方法为割圆术。
直到1200年后,西方人才找到了类似的方法。
后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。
祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。
终于在1596年,由荷兰数学家卢道夫打破了。
他把π值推到小数点后第15位小数,最后推到第35位。
为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。
之后,西方数学家计算π的工作,有了飞速的进展。
1948年1月,费格森与雷思奇合作,算出808位小数的π值。
电子计算机问世后,π的人工计算宣告结束。
20世纪50年代,人们借助计算机算得了10万位小数的π,70年代又突破这个记录,算到了150万位。
圆周率π的计算及简单应用一、π的来历π即圆周率,定义为:圆的周长与直径之比,是一个常数。
通常用希腊字母π来表示。
英国人琼斯在1706年首次创用π代表圆周率。
但是,他的符号并未立刻被采用,后来,欧拉予以提倡,才渐渐被推广开来。
此后π才成为圆周率的专用符号。
π的历史是饶有趣味的。
对π的研究程度,在一定程度上反映一个地区和时代的数学水平,。
实际上,在古代长期使用π=3这个数值,古巴比伦、古印度、古中国都是如此。
直到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。
后来东汉的数学家又将π值改为约为3.16。
然而直正使圆周率的计算建立在科学的基础上,应归功于阿基米德。
他用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71,为此专门写了一篇论文《圆的度量》,同时这也是第一次在科学中创用上、下界来确定近似值。
但是第一次用正确方法计算π值的,是中国魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法即穷竭法,算得π值约为 3.14。
在我国称这种方法为割圆术。
直到1200年后,西方人才找到了类似的方法。
后人为纪念刘徽的贡献,也将圆周率称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位即3.1415926,这个具有七位小数的圆周率在当时是世界首次。
同时,祖冲之还找到了两个分数,分别是22/7和355/113。
用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
由中国南朝数学家祖冲之计算出的圆周率,保持了一千多年的世界记录。
直到在1596年,才由荷兰数学家卢道夫打破了。
他把π值推到小数点后第15位小数,后来又推到了第35位。
人们在他1610年去世后,为了纪念他的这项成就,为此在他的墓碑上刻上:3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。
之后,随着数学的发展,尤其是微积分的发现,西方数学家计算π的工作,有了飞速的进展。
圆周率的由来圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比。
是精确计算圆周长、圆面积、球体积等几何形状的关键值。
在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。
它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。
而用十位小数3.141592654便足以应付一般计算。
即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
这个符号,亦是希腊语περιφρεια (表示周边,地域,圆周等意思)的首字母。
1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率。
1736年,瑞士大数学家欧拉也开始用表示圆周率。
从此,便成了圆周率的代名词。
要注意不可把和其大写Π混用,后者是指连乘的意思。
公式编辑圆周率()一般定义为一个圆形的周长()与直径()之比:。
由相似图形的性质可知,对于任何圆形,的值都是一样。
这样就定义出常数。
第二个做法是,以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例订为,即圆形之面积与半径平方之比。
定义圆周率不一定要用到几何概念,比如,我们可以定义为满足的最小正实数。
这里的正弦函数定义为幂级数历史发展:实验时期一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率= 25/8 = 3.125。
[4] 同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
[4] 埃及人似乎在更早的时候就知道圆周率了。
英国作家John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
圆周率的历史圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数.它定义为圆形之周长与直径之比.它也等于圆形之面积与半径平方之比。
是精确计算圆周长、圆面积、球体积等几何形状的关键值。
圆周率是一个常数(约等于3.1415926),是代表圆周长和直径的比例.它是一个无理数,即是一个无限不循环小数。
圆周率在生产实践中应用非常广泛,在科学不很发达的古代,计算圆周率是一件相当复杂和困难的工作。
因此,圆周率的理论和计算在一定程度上反映了一个国家的数学水平。
圆周率π圆的周长与直径之比是个与圆的大小无关的一个常数,人们称之为圆周率。
巴比伦人最早发现了圆周率。
1600年,英国威廉奥托兰特首先使用π表示圆周率,因为π是希腊之“圆周"的第一个字母.1706年,英国的琼斯首先使用π。
1737年,欧拉在其著作中使用,后来被数学家广泛接受,一直沿用至今.π是一个非常重要的常数,一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的重要标志,古今中外很多数学家都孜孜不倦地寻求过值的计算方法。
从埃及到巴比伦到中国一直都在对圆周率的精确值做出研究。
早期的测算中人们使用了很粗糙方法.古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。
或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。
在我国东、西汉之交,新朝王莽令刘歆制造量的容器--律嘉量斛.刘歆在制造标准容器的过程中就需要用到圆周率的值。
他得到一些关于圆周率的并不划一的近似值,分别为3.1547,3.1992,3.1498,3。
2031,比径一周三的古率已有所进步。
人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。
转图为汉莽新嘉量铭文公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。
他专门写了一篇论文《圆的度量》用圆外切与内接多边形的周长以大小两个方向上同时逐步逼近圆的周长,巧妙地求得π.这是第一次在科学中创用上下界来确定近似值,公元前150年左右,另一位古希腊数学家托勒密用弦表法(以1的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3。
π的历史(五篇模版)第一篇:π的历史π 的历史圆的周长与直径之比是一个常数,人们称之为圆周率。
通常用希腊字母π 来表示。
1706年,英国人琼斯首次创用π 代表圆周率。
他的符号幵未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。
现在π 已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。
到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。
东汉的数学家又将π值改为(约为3.16)。
直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。
他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71。
这是第一次在科学中创用上、下界来确定近似值。
第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。
我国称这种方法为割圆术。
直到1200年后,西方人才找到了类似的方法。
后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。
祖冲之还找到了两个分数:22/7 和355/113,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记彔。
终于在1596年,由荷兰数学家卢道夫打破了。
他把π 值推到小数点后第15位小数,最后推到第35位。
为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14******7950288这个数,从此也把它称为“卢道夫数”。
3.14************44 ***20899 86280 34825 34211 706798214808651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 3819644288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 4127372458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 9491298336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 0513200056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744 94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702 89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024 74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992 45863 15030 28618 2974555706 74983 85054 94588 58692 69956 90927 21079 75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356 63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 81647 06001 61452 49192 17321 72147 72350 14144 19735 68548 16136 11573 52552 13347 57418 49468 43852 33239 07394 14333 45477 62416 86251 89835 69485 56209 92192 22184 27255 02542 56887 67179 04946 01653 46680 49886 27232 79178 60857 84383 82796 79766 81454 10095 38837 86360 95068 00642 25125 20511 73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 06744 27862 20391 94945 04712 37137 86960 95636 43719 17287 46776 46575 73962 41389 08658 32645 99581 33904 78027 59009 94657 64078 95126 94683 98352 59570 98258 22620 52248 94077 26719 47826 84826 01476 99090 26401 36394 4374553050 68203 49625 24517 49399 65143 14298 09190 65925 09372 21696 46151 57098 58387 41059 78859 59772 97549 89301 61753 92846 81382 68683 86894 27741 55991 85592 52459 53959 43104 99725 24680 84598 72736 44695 84865 38367 36222 62609 91246 08051 24388 43904 51244 13654 97627 80797 71569 14359 97700 12961 60894 41694 86855 58484 06353 42207 22258 28488 64815 84560 28506 01684 27394 52267 46767 88952 52138 52254 99546 66727 82398 64565 96116 35488 62305 77456 49803 55936 34568 17432 41125 15076 06947 94510 96596 09402 52288 79710 89314 56691 36867 22874 89405 60101 50330 86179 28680 92087 47609 17824 93858第二篇:历史中国近代反侵略战争失败的原因及教训摘要:中国是一个有着五千年悠久历史的大国,但是在近代历史中却屡次遭到侵略。
圆周率π的研究与公理化思想
圆周率π是一个神秘而又重要的数字,古希腊人从前就把它视为一个非凡的数字。
圆周率π的概念可追溯到古希腊的哲学家和数学家,他们记录了关于圆周率π的详细记录。
圆周率π的研究和公理化思想在古希腊时期就开始了。
古希腊的哲学家认为,圆的本质是由许多等边三角形构成的,并相信这些三角形之间的公理化思想。
埃及学者梅笛拉在2000年前就把圆周率π近似地定为3.16,而古希腊学者达罗汉则把π近似地定为3.14。
在罗马帝国时期,由于三角函数的研究得出更加精确的π值。
古希腊学者伽玛、普拉特里和歐拉不仅是要求公理化圆周率π的学者,他们也证明了历史上著名的正方形面积加圆周长等于π的定理。
这一定理被称为“毕达哥拉斯定理”,说明圆的周长与半径成正比。
在17世纪,意大利数学家乔治下赫拉尼利开始详细研究圆周率π,他精确地测试出π的值是3.1415926535,这一精确值又叫乔治老师的纪念。
到20世纪时,由于计算机出现,计算圆周率π的精度又提高了一个层次,人们使用大型计算机计算出的圆周率π的数值是非常接近数学本质值的。
此外,有许多著名的数学家也发现了许多圆周率π的数学公式,使之变得更加有趣和完整。
从古希腊到现代,圆周率π的研究及其公理化思想一直在发挥重要作用,它既是数学历史上一个美妙而传奇的课题,也是推进科学发展的重要动力。
圆的周长简介
圆是一种几何形状,是一个平面上所有到一定距离(称为半径)的点的集合。
圆形的定义特点是它始终具有相同的半径,并且半径上的各点到圆心的距离相等。
圆的周长是指沿着圆形边界的一条封闭曲线的长度。
将周长也称为圆的周长。
在数学中,圆的周长可以通过乘以圆周率与直径的积来计算。
圆周率(π)是一个常数,近似值为 3.14159。
直径是从圆的一侧穿过圆心到另一侧的线段的长度。
用符号C 表示圆的周长,d表示圆的直径,r表示圆的半径,则可以使
用以下公式来计算圆的周长:C = πd = 2πr。
圆的周长在几何学和数学中经常用到,可以用于计算圆的大小和与其他几何形状的关系。
它也是解决与圆相关的问题的关键信息。
例如,在建筑和工程中,圆的周长可以用来计算管道的长度或绳子的长度。
在数学中,圆的周长还可以用来计算圆的面积和弧长。
总之,圆的周长是圆形的一个重要属性,可以通过简单的公式来计算。
数学史话让你爱上数学:有关圆周率π,你所不知道的事关于π的起源总所周知,圆周率自诞生伊始,便与人类“纠缠”了近4000年。
而π,在希腊字母中排行第16位,是希腊语περιφρεια(边界、圆周之意)的首字母。
尽管在四大古文明里早就有它的身影,但是,π真正作为一个通用常数被重新定义,也不过是近300年的事情。
据史料记载,1631年,π首次出现在数学家威廉奥特瑞德的著作《数学之钥》中;1706年,英国数学家威廉琼斯在他编写的数学教材《新数学导论》里也提到了π。
不过,此时的π估计还是欠些火候,并没有引起数学界太大的关注,直至遇到欧拉。
1748年,欧拉的代表作《无穷小分析引论》出版,在这本著作里,欧拉建议用符号“π”来表示圆周率,并且直接在里面使用了π。
在欧拉的积极倡导下,π终于成为了圆周率的代名词。
关于π节的来历接着,π以它自身的“才华”,非常机灵地植入到各种公式里,就连最美公式“欧拉恒等式”也看到它的身影。
作为一个常数,也许是由于π的定义极其简单且在数学公式里随处可见,π在流行文化中出现的频率可以说是狂甩其他常数一条街。
自然而然,π节就这样诞生了。
(其他常数只能两眼泪汪汪)超模君了解到,最早的一次以π为主题的大型庆祝活动是美国旧金山科学博物馆的一位物理学家Larry Shaw组织的。
在1988年3月14日那天,Larry Shaw带着博物馆的员工以及其他参与者,一起绕着博物馆的纪念碑转了22/7(π的近似值)圈,还一起吃水果派、分享与π有关的知识。
此后,每一年的3月14日,旧金山科学博物馆都会举办π的庆祝活动。
后来,越来越多热爱数学的人留意到这个特殊的日子,也越来越多的人参与到π节的活动上来。
不过,大家节过多了,肯定也希望能够帮自己过的节拿个名分,麻省理工学院首先发起了将3月14日定为“国际圆周率日”的倡议。
到2009年3月11日,美国众议院终于正式通过一项无约束力决议,将每年的3月14日定为“π day”。
对于π的认识这个假期是我过的最愉快的一次暑假,因为我在妈妈的谆谆教导之下,学到了数学常数π的知识,我对它产生了极大的兴趣。
π是一个在数学及物理学中普遍存在的数学常数,英语名称:Pi,汉语名称:派,是第十六个希腊字母。
在数学中叫做:圆周率,是指平面上圆的周长与直径之比。
用希腊字母π (读“Pài”)表示。
中国古代有圆率、周率、周等名称。
之后,我又通过电脑查询得知了圆周率的历史:古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。
历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。
第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。
他用割圆术一直算到圆内接正192边形。
南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。
其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。
1706年英国数学家梅钦计算π值突破100位小数大关。