数学人教版八年级下册菱形的性质
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
人教版数学八年级下册18.2.2《菱形的性质》(第1课时)教学设计一. 教材分析《菱形的性质》是人教版数学八年级下册第18.2.2节的内容,本节主要让学生掌握菱形的性质,包括四条边相等,对角线互相垂直平分,以及由此产生的其他性质。
本节内容是学生学习几何图形的重要部分,也是后续学习其他复杂图形的基础。
二. 学情分析学生在学习本节内容前,已经掌握了矩形、平行四边形的性质,对几何图形的认识有一定的基础。
但是,对于菱形的性质,学生可能较为陌生,需要通过实例和操作来理解和掌握。
三. 教学目标1.了解菱形的性质,能够运用菱形的性质解决一些几何问题。
2.培养学生的观察能力、操作能力和推理能力。
3.提高学生对几何图形的兴趣,培养学生的几何思维。
四. 教学重难点1.重难点:菱形的性质的推导和运用。
2.难点:对于菱形性质的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生发现和探究菱形的性质。
2.采用实例分析法,通过具体的图形和实例,让学生理解和掌握菱形的性质。
3.采用合作学习法,让学生通过小组讨论和合作,共同探究菱形的性质。
六. 教学准备1.准备一些菱形的图形,用于展示和操作。
2.准备一些与菱形相关的实例,用于分析和讨论。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过展示一些菱形的图形,让学生观察和描述,引出本节课的主题——菱形的性质。
2.呈现(10分钟)展示一些与菱形相关的实例,让学生分析和讨论,引导学生发现菱形的性质。
3.操练(10分钟)让学生通过小组合作,共同探究菱形的性质,可以通过操作图形、填写表格等方式进行。
4.巩固(10分钟)通过一些练习题,让学生运用菱形的性质解决问题,巩固所学知识。
5.拓展(10分钟)引导学生思考菱形的性质在其他几何图形中的应用,拓展学生的几何思维。
6.小结(5分钟)对本节课的内容进行小结,让学生总结菱形的性质,并强调其在几何学中的重要性。
7.家庭作业(5分钟)布置一些与菱形相关的作业,让学生课后巩固所学知识。
菱形的性质和判定【知识梳理】一、菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.二、菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.【诊断自测】1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.42.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角a的度数应为.3.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .4.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.【考点突破】类型一:菱形的性质例1、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为.例2、如图所示,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于.例3、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,求菱形ABCD的面积.例4、如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.类型二: 菱形的判定例5、如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC例6、如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)例7、已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.例8、如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.例9、如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.类型三:菱形的性质及判定例10、如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BFCE是平行四边形;(2)当边AB、AC满足什么条件时,四边形BECF是菱形?并说明理由.例11、如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.例12、如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【易错精选】1.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.2.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.3.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.4.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1 B.C.2D.2﹣2【本节训练】训练【1】如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°训练【2】如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13训练【3】如图,已知四边形ABCD的四边相等,等边△AMN的顶点M、N分别在BC、CD上,且AM=AB,则∠C为.训练【4】如图,在▱ABCD中,AC平分∠DAB,AB=7,则▱ABCD的周长为.基础巩固一、选择题1.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC=CE;②BD,AC互相平分;③四边形ACED是菱形;④四边形ABED的面积为AB2.其中正确的个数是()A.4个B.3个C.2个D.1个2.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm3.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°4.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1 B.2C.2D.45.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD 面积的最大值是()A.15 B.16 C.19 D.20二、填空题1.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).2.如图,在△ABC中,∠ABC=90°,BD为AC边的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AB=12,BC=5,则四边形BDFG的周长为.3.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则长方形纸条的宽度是cm.4.如图.两条等宽的长方形纸条倾斜的重叠着,已知长方形纸条宽为3cm,∠ABC= 60°,则四边形ABCD的面积为cm2.5.如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=度.三、简答题1.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.2.已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.3.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.4.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接BD、AF,当BE平分∠ABD时,求证:四边形ABDF是菱形.巅峰突破1.如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为.2.如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是.(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.3.如图,在△ABC中,AD平分∠BAC,过点D分别作DE∥AC、DF∥AB,分别交AB、AC于点E、F.求证:四边形AEDF是菱形.4.如图,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.(1)求证:四边形ABCD是菱形;(2)过点A作AH⊥BC于点H,求AH的长.5.如图,在△ABC中,AB=AC,点D在边AC上,AD=BD=DE,联结BE,∠ABC=∠DBE=72°;(1)联结CE,求证:CE=BE;(2)分别延长CE、AB交于点F,求证:四边形DBFE是菱形.参考答案【诊断自测】1、A解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.2、30°或60°.解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAC=60°,∴∠BAD=180°﹣∠ABC=180°﹣60°=120°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故答案为30°或60°.3、.解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.4、105°或45°.解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD右侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【易错精选】1、解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG===2x,所以,==.故答案为:.2、解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.3、解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.4、解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′=BA•AB′=2,S△ABE=1,∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故选C.【本节训练】1、解:∵将△ABC沿BC方向平移得到△DCE,∴AC ED,∴四边形ACDE为平行四边形,当AC=BC时,则DE=EC,∴平行四边形ACED是菱形.故选:B.2、解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.3、解:∵四边形ABCD的四边都相等,∴四边形ABCD是菱形,∴∠B=∠D,∠DAB=∠C,AD∥BC,∴∠DAB+∠B=180°,∵△AMN是等边三角形,AM=AB,∴∠AMN=∠ANM=60°,AM=AD,∴∠B=∠AMB,∠D=∠AND,由三角形的内角和定理得:∠BAM=∠NAD,设∠BAM=∠NAD=x,则∠D=∠AND=180°﹣60°﹣2x,∵∠NAD+∠D+∠AND=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠C=∠BAD=2×20°+60°=100°.故答案为:100°.4、解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵四边形ABCD为平行四边形,∴∠B=∠D,在△ADC和△ABC中,,∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=7,▱ABCD的周长为:7×4=28,故答案为:28.基础巩固一、选择题1、解:∵△DCE是由△ABC平移得到,∴AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴AD=BC=CE,BD与AC互相平分,故①②正确,∵AD∥CE,AD=CE,∴四边形ACED是平行四边形,∵AC=CE,∴四边形ACED是菱形,故③正确,∵四边形ABED的面积=3•S△ABC=3×(AB)2=(AB)2,故④正确,∴①②③④正确,故选A.2、解:如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形ABCD=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得AB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.3、解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选D.4、解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.故选:C.5、解:如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE•BC=AF•CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9﹣x,∵BC2=BE2+CE2,∴x2=(9﹣x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选:A.二、填空题1、解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.2、解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,∴BG=GF=DF=BD,∵在△ABC中,∠ABC=90°,AB=12,BC=5,由勾股定理得:AC=13,∵BD为△ACB的中线,∴BD=AC=,∴BG=GF=DF=BD=,故四边形BDFG的周长=4GF=26.故答案为:26.3、解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,分别作CD,BC边上的高为AE,AF,如图所示:∵两纸条相同,∴纸条宽度AE=AF.∴CD=BC.∴平行四边形ABCD为菱形,∴AB=AD=4cm,∵∠ABC=30°,∴AE=AB=2cm;故答案为:2.4、解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,作AE⊥BC于E,AF⊥CD于F,∵∠ABC=60°,∴∠ADF=60°,∵纸条等宽,∴AE=AF,在△ABE和△ADF中,∴△ABE≌△ADF,∴AB=AD,∵AD=BC∴AB=BC,∴该四边形是菱形,∵AE=3cm,∴BE=,∴BC=2BE=2,故答案为:6.5、证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.三、简答题1、解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.2、解:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC.∴EF=BC.又EF∥BC,∴四边形BCFE是平行四边形.又EF=BE,∴四边形BCFE是菱形.3、证明:在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.4、(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∵点F在CD的延长线上,∴FD∥AB.∴∠ABE=∠DFE.∵E是AD中点,∴AE=DE.在△ABE和△DFE中,,∴△ABE≌△DFE(AAS);(2)证明:∵△ABE≌△DFE,∴AB=DF.∵AB∥DF,AB=DF,∴四边形ABDF是平行四边形.∵BF平分∠ABD,∴∠ABF=∠DBF.∵AB∥DF,∴∠ABF=∠DFB,∴∠DBF=∠DFB.∴DB=DF.∴四边形ABDF是菱形.巅峰突破1、解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,即GF=5.故答案是:5.2.解:∵图中有三个菱形,如菱形ABCD、菱形HOFD、菱形BEPG,∴①正确;∵四边形ABCD是菱形,∴AB∥DC,AD∥BC,∠ABD=∠CBD,∵EF∥BC,GH∥AB,∴四边形BEPG是平行四边形,∴PE=BG,PG=BE,在△BEP和△PGB中,∴△BEP≌△PGB(SSS),∴②正确;∵只有当H为AD中点,E为AB中点时,四边形AEPH的面积等于△ABD的面积的一半,∴③错误;∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EF∥BC,GH∥AB,∴AD∥EF∥BC,AB∥GH∥CD,∴四边形AEPH、四边形HPFD、四边形BEPG、四边形PFCG是平行四边形,∴AH=BG=PE,AE=HP=DF,BE=PG=CF,DH=PF=VG,∵四边形ABCD是菱形,∴∠EBP=∠GBP,∵PE∥BG,∴∠EPB=∠GBP,∴∠EBP=∠EPB,∴BE=PE,∴AH=PE=BG=BE=CF=PG,同理AE=HP=DF=PF=CG,∴四边形AEPH的周长=四边形GPFC的周长,∴④正确;故答案为:①②④.3.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD,∴∠EDA=∠BAD,∴AE=DE,∴四边形AEDF是菱形.4.(1)证明:∵在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,∴AO=AC=3,BO=BD=4,∵AB=5,且32+42=52,∴AO2+BO2=AB2,∴△AOB是直角三角形,且∠AOB=90°,∴AC⊥BD,∴四边形ABCD是菱形;(2)解:如图所示:∵四边形ABCD是菱形,∴BC=AB=5,∵S△ABC=AC•BO=BC•AH,∴×6×4=×5×AH,解得:AH=.5.证明:(1)∵AB=AC,∴∠ACB=∠ABC=72°,∴∠A=180°﹣72°﹣72°=36°,∵AD=BD,∴∠1=∠A=36°,∴∠2=36°,∵∠DBE=72°,∴∠3=36°,∵BD=DE,∴∠DEB=∠DBE=72°,∴∠BOE=180°﹣∠3﹣∠DEB=72°,∴∠4=∠BOE﹣∠2=36°,∴∠2=∠4,∴DO=BO,∵∠2=36°,∠ACB=72°,∴∠BDC=180°﹣∠2﹣∠DCB=72°,∴BC=BD,∵BD=DE,∴BC=DE,∴DE﹣DO=BC﹣BO,∴CO=EO,∵∠7=∠8,∴∠5=∠==∠4=36°,∴∠5=∠3=36°,∴CE=BE;(2)∵∠4=∠1=36°,∴DE∥BF,∵∠2=∠5=36°,∴EF∥DB,∴四边形DEFB是平行四边形,∵DE=DB,∴四边形DBFE是菱形.。
八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
第11讲 菱形、正方形 第一部分 知识梳理知识点一:菱形的概念和性质1、定义:有一组邻边相等的平行四边形叫做菱形。
2、基本性质:(1)边:菱形的四条边都相等;(2)角:菱形的对角相等,邻角互补;(3)对角线:菱形的对角线互相垂直平分,且每一条对角线平分一组对角: (4)对称性:菱形是轴对称图形,中心对称图形,对称轴有两条;(5)面积:S=21ab(其中a 、b 分别是菱形的两条对角线的长). 或 S=底×高。
知识点二:菱形的判定方法(1)有一组邻边相等的平行四边形是菱形;(2)四边都相等的四边形是菱形;(3)对角线互相垂直平分的四边形是菱形;(4)对角线互相垂直的平行四边形是菱形.知识点三:正方形的基本概念1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、基本性质:(1)边:正方形四条边都相等;(2)角:正方形的四个角都相等;(3)对角线:对角线相等且互相垂直平分,并且每条对角线平分一组对角; (4)对称性:是中心对称图形,又是轴对称图形,对称轴有四条;知识点四:正方形判定(1)有一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)对角线相等的菱形是正方形。
第二部分 考点精讲精练考点1、菱形的性质例1、菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是________ 例2、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是________.例3、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为_______cm 。
例4、如图,菱形ABCD ,E ,F 分别是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°,求∠CEF 的度数。
人教版八年级数学下册《菱形的性质》教案授课人:一、教学目标:知识与技能1、知道菱形的定义和菱形的两个性质,知道用对角线来计算菱形的面积公式;2、会用菱形的定义和性质来实行相关的论证和计算,会用菱形的对角线长来计算菱形的面积;经历探索菱形的特征的过程,在操作活动和观察、分析过程中发展合理的推理水平。
学生的主动探究习惯和初步审美意识,进一步了解和体会说理的基本方法。
情感态度价值观进一步渗透类比与转化数学思想。
二、教学重点:探索菱形的性质及其性质的简单应用。
三、教学难点:1、菱形与平行四边形之间的内在联系与区别。
2、应用菱形的定义或性质,实行合理的论证或计算。
四、教学方法:观察分析讨论相结合的方法。
五、教学准备:课件、纸片、剪刀。
六、课时安排:1课时七、教学过程:(一)、新课引入:1、内容结构展示:①回顾旧知,②概念引入,③菱形性质,④菱形面积公式,⑤例题展示,⑥课堂练习,⑦课堂小结。
2、回顾旧知:活动一,①平行四边形性质,②矩形性质。
3、创设情境:①,由特殊四边形研究思路引出菱形概念。
我们已经知道平行四边形是特殊的四边形,所以平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,我们已经研究了一种特殊的平行四边形——矩形 ;这堂课还要研究另一种特殊的平行四边形——菱形②活动二,改变平行四边形边的长度引出菱形概念; 二、新课讲解: 1、菱形的概念:有一组邻边相等的平行四边形叫做菱形。
2、菱形的特征:① 活动三:观察图片,感受生活。
两组对边 分别平行 平行 四边形 矩形菱形四边形 邻边 相等 平行四边形 菱形② 动四:剪纸。
观察剪出的纸片并实行对折,讨论:从边、角、对角线、对称性等四个方面实行讨论) 菱形是平行四边形,它具有平行四边形的一切性质;菱形又是特殊的平行四边形,它还具有哪些特殊性质?对比纸片和课件上的图形回答问题:菱形ABCD 的对角线相交于点O. ⑴图中的哪些线段相等?哪些角相等?⑵菱形的两条对角线有什么特殊位置关系?你能说明理由吗?3、菱形的性质及证明:(1)菱形具有平行四边形的一切性质;(2)菱形的四条边相等。
人教版数学八年级下册18.2.2第1课时《菱形的性质》教案一. 教材分析《菱形的性质》是人教版数学八年级下册18.2.2第1课时的重要内容。
本节课的主要任务是让学生掌握菱形的性质,并能够运用这些性质解决相关问题。
教材通过引入菱形的定义和性质,引导学生运用观察、归纳、推理等数学方法,深入探究菱形的特征,从而提高学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质和判定方法,对于图形的性质和判定有一定的了解。
然而,对于菱形这一特殊四边形的性质,学生可能较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导和启发,帮助学生建立菱形的性质,并能够灵活运用。
三. 教学目标1.了解菱形的定义,掌握菱形的性质。
2.能够运用菱形的性质解决相关问题。
3.培养学生的观察、归纳、推理等数学思维能力。
四. 教学重难点1.菱形的性质的推导和理解。
2.能够运用菱形的性质解决实际问题。
五. 教学方法1.引导法:通过提问、引导,激发学生的思考,帮助学生建立菱形的性质。
2.归纳法:通过具体的例子,引导学生观察、归纳菱形的性质。
3.实践法:通过解决实际问题,让学生运用菱形的性质,巩固所学知识。
六. 教学准备1.准备相关的教学材料,如PPT、板书等。
2.准备一些实际的数学问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平行四边形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)介绍菱形的定义,引导学生观察和分析菱形的特征,归纳出菱形的性质。
3.操练(15分钟)通过具体的例子,让学生运用菱形的性质解决问题,巩固所学知识。
4.巩固(5分钟)学生自主完成一些相关的练习题,加深对菱形性质的理解。
5.拓展(5分钟)引导学生思考:如何判断一个四边形是菱形?并给出解答。
6.小结(3分钟)对本节课的内容进行简要回顾,强调菱形的性质及其应用。
7.家庭作业(2分钟)布置一些相关的作业,让学生巩固所学知识。
八年级数学《菱形的性质和判定方法》重点知识总结及经典例题【基础知识精讲】定义:有一组邻边相等的平行四边形是菱形.定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.【重点难点解析】1.菱形的性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形.2.菱形的面积=底×高=对角线乘积的一半.A.重点、难点提示1.理解并掌握菱形的概念,性质和判别方法;(这是重点,也是难点,要掌握好)2.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法;3.了解菱形的现实应用和常用的判别条件;4.体会特殊与一般的关系.B.考点指要菱形是特殊的平行四边形,其性质和判别方法是中考的重要内容之一.一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形,具有平行四边形的一切性质.除具有平行四边形的一切性质外,菱形还具有以下性质:①菱形的四条边都相等;②两条对角线互相垂直平分;(出现了垂直,常与勾股定理联系在一起)③每一条对角线都平分一组内角.(出现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴.(不是对角线,而是其所在直线,因为对称轴是直线,而对角线是线段)菱形的判别方法:(学会利用轴对称的方法研究菱形)①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.【难题巧解点拨】例1:如图4-24,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG 是平行四边形,再证一组邻边相等.证明:∵∠BAC=90°,EF⊥BC,CE平分∠ACB,∴AE=EF,∠CEA=∠CEF.(这是略证,并不是完整的证明过程)∵AD⊥BC,EF⊥BC,∴EF∥AD,(垂直于同一条直线的两条直线互相平行)∴∠CEF=∠AGE,(两直线平行,内错角相等)∴∠CEA=∠AGE,∴AE=AG,∴EF∥AG,且EF=AG,∴四边形AEFG是平行四边形.(一组对边平行且相等的四边形是平行四边形)又∵AE=EF,∴平行四边形AEFG是菱形.例2:已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.已知:菱形ABCD中,AB+BC+CD+DA=20cm,对角线AC=5cm.求∠ADC、∠ABC、∠BCD、∠DAB的度数.思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25.解:在菱形ABCD中,∵AB=BC=CD=DA,又AB+BC+CD+DA=20cm,∴AB=BC=CD=DA=5cm,又∵AC=5cm,∴AB=BC=AC,CD=DA=AC,∴△ABC和△DAC都是等边三角形,(本题将边之间的长度关系转化为角的关系)∴∠ADC=∠ABC=60°,∠BCD=∠DAB=120°.例3:如图4-26,在平行四边形ABCD中,∠BAE=∠FAE,∠FBA=∠FBE.求证:四边形ABEF是菱形.证法一:∵AF∥BE,∴∠FAE=∠AEB (两直线平行,内错角相等)又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.(等角对等边)同理,AB=AF,BE=EF,∴AB=BE=EF=AF,∴四边形ABEF是菱形.(四条边都相等的四边形是菱形)证法二:∵AF∥BE,∴∠FAE=∠AEB,又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.又∵∠FBA=∠FBE,∴AO=OE,AE⊥FB,(等腰三角形三线合一)同理,BO=OF,∴四边形ABEF是菱形.(对角线互相垂直平分的四边形是菱形)(你还有其他的证明方法吗?不妨试一下)例4:菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.思路分析本题主要考查菱形的性质和面积公式的应用:解法一:如图4-27,∠B:∠A=1:2,∵四边形ABCD是菱形,∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°,过A 作AE ⊥BC 于E , ∴∠BAE=30°,1AB 21BE ==∴,(直角三角形中,30°角所对的直角边等于斜边的一半) 312B E AB AE 2222=-=-=∴,(勾股定理) 32AE BC S ABCD =⋅=∴菱形.(平行四边形的面积计算方法是:底乘以高) 解法二:如图4-28,∠B ∶∠A=1∶2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°, 连结AC 、BD 交于点O ,︒=∠=∠∴30B 21ABD ,AC ⊥BD . (菱形的性质:对角线平分一组对角,对角线互相垂直) 在Rt △ABO 中,1AB 21AO ==, 312AO AB B O 2222=-=-=∴,∴AC=2,32BD =,3232221BD AC 21S ABCD =⨯⨯=⋅=∴菱形. 答:菱形的面积为32.【典型热点考题】例1 如图4-13,已知菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠B=∠EAF=60°,∠BAE=18°,求∠CEF 的度数.点悟:由∠B=60°知,连接AC得等边△ABC与△ACD,从而△ABE≌△ADF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF.解:连接AC.∵四边形ABCD为菱形,∴∠B=∠D= 60°,AB=BC=CD=DA,∴△ABC与△CDA为等边三角形.∴ AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF.∴ AE=AF.又∵∠EAF=60°,∴△EAF为等边三角形.∴∠AEF=60°,∵∠AEC=∠B+∠BAE=∠AEF+∠CEF,∴ 60°+18°=60°+∠CEF,∴∠CEF=18°.例2已知如图4-14,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F,求证:四边形AEFG为菱形.点悟:可先证四边形AEFG为平行四边形,再证邻边相等(或对角线垂直).证明:∵∠BAC=90°,EF⊥BC,CE平分∠BCA,∴ AE=FE,∠AEC=∠FEC.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠FEC=∠AGE,∴∠AEC=∠AGE∴ AE=AG,∴∴四边形AEFG为平行四边形.又∵ AE=AG.∴四边形AEFG为菱形.点拨:此题还可以用判定菱形的另两种方法来证.例3 已知如图4-15,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE.求证:EB=OA证明:∵四边形ABCD为菱形,∴∠ABC=2∠ABD, AD∥BC,∴∠DAE=∠AEB,∵ AB=AE,∴∠ABC=∠AEB.∴∠DAE=2∠ABD.∵∠DAE=2∠BAE,∴∠ABD=∠BAE,∴ OA=OB.∵∠BOE=∠ABD+∠BAE,∴∠BOE=2∠BAE.∴∠BEA=∠BOE,∴ OB=BE,∴ AO=BE.说明:利用菱形性质证题时,要灵活选用,选不同性质,就会有不同思路.例4已知菱形的一边与两条对角线构成的两角之比为5:4,求菱形的各内角的度数.点悟:先作出菱形ABCD和对角线AC、BD(如图4-16).解:∵四边形ABCD是菱形,∴ AC⊥BD,∴∠1+∠2=90°,又∵∠1:∠2=4:5,∴∠1=40°,∠2=50°,∴∠DCB=∠DAB=2∠2=100°,故∠CBA=∠CDA=2∠1=80°.。
《菱形的性质》教学设计一、教材分析本节选自《义务教育课程标准实验教科书》人教版八年级下册第55页18.2.2《菱形》的第一课时.《菱形的性质》继《矩形》一节之后,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上,进一步丰富对图形的认识和感受。
这一节课既是前面所学知识的延续,又是后面学习正方形等知识的基础,起着承前启后的作用,同时学生通过证明,体会证明的必要性,理解并掌握证明的基本过程。
二、学情分析学生在相交线、平行线、三角形、轴对称图形以及平行四边形等知识的基础上,对图形有了较为丰富的体验和感受,也具备了一定的观察、操作、推理、想象等探索能力。
我班学生中中等生较多,学困生较少,易于交流与合作,因此本节要充分体现师生互动,生生互动,主动地获取知识。
三、教学目标(一)知识与技能(1)知道菱形在现实生活中有广泛的应用。
(2)熟记菱形的有关性质和识别条件,并能灵活运用。
(二)过程与方法经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
(三)情感态度价值观体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
四、教学重点和难点重点:菱形性质的探求.难点:菱形性质的探求和应用.五、教具学具准备教具准备:长方形纸片、剪刀、三角板学具准备:长方形纸片、剪刀六、教学过程活动1:课题引入1.用图片展示图形复习平行四边形的定义及性质AD CB 2.用图片展示图形复习矩形的定义【学情预设】回答问题1时可能会较乱,教师应当启发学生从“边、角、对角线”三个方面进行归纳和总结,提高学生的归纳能力.【设计意图】用图片引入课题可以很快吸引学生的注意力,同时学生对平行四边形性质的再认识可以加深对知识的理解也是探求菱形性质的基础.从矩形是特殊的平行四边形为得出另一类特殊的平行四边形菱形作好过渡。
八年级数学18.22菱形的性质教案
(罗定市连州中学-兰晨)
一、教学内容:
本节课主要通过现实生活中的窗花、中过结、挂衣架、图片、具体模型为素材,学习菱形有关的概念和性质。
二、教学目标:
1.理解菱形的概念,掌握菱形的性质。
2.经历探索菱形的概念和性质的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法。
3.培养学生主动探究的习惯,和严密的思维意识、审美观、价值观。
三、重、难点与关键:
1.理解并掌握菱形的性质。
2.形成合情推理能力。
3.把握平行四边形的概念,引申到菱形的定义、而后再研究菱形的性质。
四、教学准备:
1.教师准备:三角板、圆规、一边可以活动的平行四边形,矩形纸片,收集生活中有关菱形的图片,制作课件。
2.学生准备:复习平行四边形内容,预习菱形内容。
五、教学过程:
(一)创设情境,激发兴趣:
引导学生朗诵诗句:“人的一生只有三天:昨天、今天、明天;昨天,我们可以鄙视;今天,我们可忽视;明天,我们必须重视。
因为,我们反思昨天,把握今天,描绘明天;因为,我们自信、我们努力。
”
(二)问题牵引,导入新知:
活动一:温故知新
平行四边形的性质:
1.平行四边形的对边平行且相等。
2.平行四边形的对角相等,邻角互补。
3.平行四边形的对角线互相平分。
活动二:想一想
利用教具,演示一边可以活动的平行四边形,启发学生思考整个过程中有没有某种特殊情况?(课件演示)
归纳定义:一组邻边相等的平行四边形是菱形。
活动三:欣赏图片
利用课件,播放生活中菱形的图片,让学生感受菱形在生活中的应用。
活动四:动手操作,探究新知
利用矩形纸片对折后再对折,剪下一个直角三角形,然后展开,即可得到一个菱形。
学生活动,利用剪下来的菱形,探究菱形的性质。
(由学生自由探究,观察,概括图形的特点,总结归纳菱形的性质)
活动五:尺规作图画菱形
教师动手操作,教会学生尺规作图画一个菱形。
让学生用数学语言表示菱形的性质。
(三)练习巩固,加深理解 抢答题: 已知四边形ABCD 是菱形,
∠ABC=60度,AB=20cm ,则 (1)BC= ,理由( ) (2)CD= ,理由( )
(3)AC= ,理由( ) (4)∠3=( ),∠4=( ),∠1=( ),∠2=( )
∠BCD=( ),∠ADC=( ),∠AOB=( ) (5)AO=( ),BO=( ),BD=( ) (6)周长= ,面积= 。
通过抢答,激发学生的学习兴趣,提高学生的注意力,活跃课堂气氛。
(四)归纳总结: 菱形的性质:
(1) 边:对边平行,四条边都相等。
(2) 角:对角相等,邻角互补。
(3) 对角线:对角线互相垂直平分,且每一条对角线平分一组对角。
(4) 面积:菱形面积=底×高=对角线乘积的一半。
(五)学以致用: 1.已知菱形的周长是12cm ,那么它的边长是______
2.菱形ABCD 中∠BAD =120度,
则∠BAC =____ 。
∠ABC =_______。
3.菱形ABCD 中,O 是两条对角线的交点,
已知AB =5cm ,AO=4cm ,求两对角线AC 、BD 的长。
(六)课堂小结:
1.菱形的定义是什么?
2.菱形的性质有哪些? (七)作业布置: 1.习题19.2,第5题; 2.练习册对应的练习。
(八)教学过程流程图
B
D。