凝汽器抽真空系统存在问题的分析与解决
- 格式:pdf
- 大小:308.56 KB
- 文档页数:4
影响凝汽器真空的原因和解决方法摘要:凝汽器主要作用是将汽轮机排汽凝结成水,去除非凝结气体,并在汽轮机排汽口建立与维持一定的真空度,使得低压缸排汽参数尽可能低以提高汽水循环的效率。
所以保持凝汽器真空对整个机组的经济性和安全性很关键,在最近468MW机组的启动过程中,出现了真空达不到要求的情况,遂逐一排查,最终找到影响真空的漏点,经过处理后凝汽器压力恢复正常。
关键词:凝汽器;真空;真空泵;凝泵上海闵行燃气发电有限公司是上海电力控股投资的示范性工程项目,本工程建设1套468MW(F级)和一套745MW(H级)燃气-蒸汽联合循环发电机组。
本次启动试验是F级工业重型燃气轮机,后文统称为2号机。
2号机抽真空系统的主要设备包括:2台100%容量的真空泵,1台凝汽器,及其连接管道、截止阀、隔绝阀、控制阀等。
凝汽器型式为单背压、单壳体、双流程、轴向排汽。
两台真空泵为双级水环式真空泵,相比传统的单级泵,其抽气性能曲线下降平缓,可获得的空度更高,能耗更低,抗汽蚀能力也更好。
在常规运行中,在单台真空泵投入下,凝汽器背压达到5-9kpa的运行标注,满足燃气轮机的启动条件。
但在某次机组启动过程中,开启单台真空泵后,凝汽器背压始终维持在55kpa无法下降,真空无法完全建立,使机组启动陷入停滞。
一、真空无法下降的主要原因大气中的空气进入凝汽器负压系统是引起凝汽器真空下降的主要原因,在道尔顿的分压定理里在温度与体积一定时,混合气体中各组分气体的分压之和等于混合气体的总压。
其数学表达式为(1):P = P1+P2 +……+Pi(1)对于机组来说P就是凝汽器中所有混合气体的总压,当P1是蒸汽压力时,其余的分压均为漏入凝汽器中的不凝结气体。
通过公式可知,当大气中不可凝结的气体,泄露进凝汽器真空系统,不凝结气体的比例上升,则除P1外分压力就会上升从而导致凝汽器的总压力变大,即真空度下降。
所以真空系统中有大量的空气进入,是对机组真空系统造成影响的最主要因素。
凝汽器真空低原因分析及处理凝汽器真空低的原因【摘要】机组运行中,凝汽器真空降低将直接引起汽轮机汽耗增加和机组出力不足,保持凝汽器在合理的真空下运行,是提高汽机运行的热经济性、降低发电成本的主要措施之一。
本文主要针对湛江生物质电厂#1机组凝汽器真空偏低问题提出原因分析及检查处理。
【关键词】真空;凝汽器;轴封压力;循环水量1、前言湛江生物质电厂#1机组为50MW高温、高压、单轴、单缸、冲动、单排汽凝汽式汽轮机。
该机组于2022年8月份投产,是目前亚洲单机容量最大的生物质发电机组,#1机组投产后多次出现真空低的情况,严重影响机组带负荷。
为解决#1机凝汽器真空低问题,湛江生物质电厂的技术人员对凝汽器真空低问题进行细致分析,针对各种可能性进行检查,通过努力,最终解决#1机凝汽器真空偏低问题,有效提高了机组的经济性及安全性。
2、#1机组凝汽器真空低原因分析 2.1轴封蒸汽压力机组运行中,当轴封压力低于正常值时,汽轮机低压缸的轴封会因压力不足而导致轴封处空气漏入排汽缸内,低压轴封处有明显尖叫声,凝汽器真空下降。
轴封汽源正常运行时由除氧器供,除氧器运行的工况也会影响轴封压力的稳定。
而造成轴封压力低的原因可能是除氧器水位过高造成轴封蒸汽带水、除氧器压力波动、轴封压力调节阀故障、轴封供汽系统漏汽,轴封供汽系统上的阀门未开或开度不足等。
2.2轴加满水或无水位运行机组启动过程中,由于调整不当或是轴封系统本身的原因使轴封加热器无水,轴封汽体混有部分空气进入轴封加热器由轴封加热器漏入凝汽器导致凝汽器真空下降,造成轴封加热器无水的原因可能是轴封加热器至凝汽器直疏门或轴加多级水封门开度过大,或是疏水门故障。
通过对轴加疏水系统进行改造,安装自动疏水器,使轴加一直维持正常稳定的水位,避免了轴加水位异常影响机组真空。
2.3循环水量及水温凝汽器真空是利用循环水冷却排汽形成的,循环水量及温度对凝汽器真空的影响较大。
在相同负荷下,循环水量大,或循环水温度低,通过凝汽器铜管换热加强,冷却排汽的效果越好。
#4机凝汽器真空低原因分析和处理刘海洋1概述大唐耒阳发电厂#4机组为300MW汽轮发电机组,采用我国东方汽轮机厂制造300MW亚临界、中间再热、高中压合缸、双缸、双排汽、单轴、凝汽式汽轮机。
2014年对机组进行通流部分改造,改造后型号为N310-16.67/537/537。
凝汽器为N-17000-1型铜管单壳体、双流程、表面式凝汽器。
机组设计真空值为94.6KPa,报警值85.3 KPa,停机值80.3 KPa。
机组配置2台真空泵,正常时1台运行,1台备用。
并且在2012年对凝汽器胶球清洗装置进行改造。
2机组真空异常现象#4机组2014年通流部分改造后,夏季存在机组高负荷(250MW 以上)真空偏低,而且随机组负荷的增加,机组真空下降、凝汽器端差增大的异常现象。
图一:#4机组负荷真空变化(三台循环水泵运行)序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃2015年7月底 #4机数据(#5循环水泵扩容后)1 151 93.8 38.3 29.5 34.2 36.2 4.1 2.12 180 93.5 38.8 28.5 34.2 36.15 4.6 2.653 212 93.2 40.4 28.8 35.38 37.18 5.02 3.224 258 91.9 43.2 29.35 37.26 39.02 5.94 4.185 280 91.52 43.88 29.16 37.56 39.30 6.32 4.586 300 91.33 44.98 28.77 37.92 39.48 7.06 5.57 320 90.18 46.74 29.22 39.12 40.81 7.62 5.93 2015年7月底 #3机数据(#5循环水泵扩容后)1 150 94.10 39.13 28.4 36.73 35.93 2.4 3.22 180 93.62 40.8 28.5 37.96 37.42 2.84 3.383 208 93.15 41.77 28.4 38.3 37.95 3.47 3.824 245 93.5 41.2 29.2 36.93 35.83 4.27 5.375 281 92.2 43.7 30 38.8 37.8 4.9 5.96 300 92.42 43.51 29 38.46 37.30 5.05 6.217 320 91.55 45.06 29.76 39.48 38.39 5.58 6.67 2013年7月中旬 #4机组数据(机组改造前)1 150 94.27 37.66 28.2 34.64 34.64 3.02 3.022 171 94.01 39.07 28.26 35.4 35.69 3.67 3.383 223 93.31 40.89 27.77 36.62 36.85 4.27 4.044 303 92.01 44.38 28.61 38.21 38.39 6.17 5.99图二: #4机组真空变化(二台循环水泵运行)7.18日序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃1 153 94.15 34.42 25.81 31.95 34 2.47 0.422 172 93.67 35.68 25.89 32.96 34.86 2.72 0.823 220 92.79 38.56 25.99 34.80 36.71 3.76 1.85在汽轮机组运行中,凝汽器工作状况恶化将直接导致汽轮机汽耗增加和机组出力下降。
凝汽式汽轮机机组真空恶化原因分析及维护方法摘要:凝汽式汽轮机真空度对机组实际生产过程中安全平稳运行起到了至关重要的作用。
因此,必须重视对其进行全面有效地控制与管理。
但由于多方面因素的限制,导致部分凝汽式汽轮机存在一定程度上的真空下降现象。
对此,需要采取针对性的控制措施。
从凝汽器系统,轴封系统和循环水系统3个角度分析了导致凝汽式汽轮机真空度下降的主要因素,从解决存在问题和加强检查维护等多个方面论述了解决凝汽式汽轮机真空下降的具体对策,以供参考。
关键词:凝汽式;汽轮机机组;真空恶化1热电企业凝汽式汽轮机运行过程中常会碰到真空逐步降低的情况,特别是在夏季凝汽器真空对于汽轮机运行经济性有很大影响,如果其他工况不发生变化,真空度每次改变1%,汽轮机汽耗率就会平均改变1%-2%。
由于真空降低,致使抽气量减小、排气温度增高和抽气量增加。
同时也导致凝结水含氧量增大、水质恶化等一系列不利现象发生。
因此,必须采取各种措施提高凝汽器真空。
不但使得机组能耗增加,影响机组的经济性,甚至会对机组的安全构成威胁,严重的还会减少发电负荷。
因此通常规定:当排汽压力上升至0.015Mpa时应减少负荷,当排汽压力增加至0.03Mpa附近时应完全卸除负荷,直到在规定工况下执行故障停机为止,这直接关系到企业经济效益。
而如果泄漏到空气中,不仅会使凝结水过冷,降低凝汽器除氧效果,使凝结水中溶入部分气体,导致凝结水系统设备和管道氧腐蚀而影响机组安全运行。
1凝汽器真空建立的原理凝汽器真空在机组启动阶段和正常运行时建立的机制不同。
机组启动后,凝汽器内真空的确立取决于真空泵对凝汽器内空气的抽离,这时真空确立的速度取决于真空泵容量和真空系统严密程度。
机组冲转时,有排汽流入凝汽器,排汽在冷却介质作用下冷凝为水。
水从排出口流出之后,温度升高;当水温达到一定程度,便开始凝结成水蒸气并释放出大量热能,从而使汽轮机转速提高。
乏汽冷凝成水后体积大为减小,原被蒸汽填充的容器空间内形成高度真空。
600MW超临界机组凝汽器真空度低的原因分析及治理摘要:汽轮机真空系统是重要辅助系统,其严密性直接决定着机组的经济性和安全性。
针对某新投产660MW超临界汽轮机组真空系统存在的问题,根据汽轮机组的运行方式,从设备检修和运行的角度分析真空度低的原因,从真空泵、小机轴封供汽、凝汽器运行等角度提出了治理措施。
利用检修机会对真空系统进行调整与治理,有效提高了机组运行的经济性。
关键词:汽轮机;凝汽器;真空度;严密性0引言机组真空度是电厂经济运行的主要指标,是运行中监测的重要参数,实践证明,机组真空度每降1kPa,机组发电煤耗增加0.13%左右[1-2]。
目前,国内对水冷机组真空严密性的研究已十分成熟,但实际运行中,只有极少数火电厂真空严密性试验结果能达到优秀值。
本文主要论述干热气候条件下某新投产机组真空系统的相关缺陷及排查过程,希望可为相似问题的处理提供借鉴。
本文探讨该新建机组投产以来真空系统采取的一系列检查、治理、防范措施,并对660MW汽轮机组真空系统泄漏存在的共性问题进行分析。
1设备概况该电厂汽轮机抽汽系统共有8级抽汽,分别给3台高压加热器、1台除氧器、4台低压加热器和2台给水泵汽轮机提供用汽。
锅炉出口的主蒸汽及再热蒸汽进入汽轮机做功后除部分抽汽外,汽轮机乏汽全部进入凝汽器内凝结成水。
凝结水经热水井收集后,由2台100%容量的凝结水泵升压,再依次经过轴封加热器、疏水冷却器、低压加热器进入除氧器加热并除氧,再由给水泵组进行升压,逐级通过高压加热器,然后进入蒸汽冷却器后送至锅炉。
该厂凝汽器循环水系统采用冷却塔二次循环方式,用水取自运河,地下水源作为补充和备用,每台机组配置2台循环水泵。
凝汽器真空系统配置3台真空泵,互相串、并联布置,运行方式为扩大单元制。
其中2台真空泵各对应1台凝汽器,另一台真空泵公共备用。
机组启动时,3台真空泵可同时运行。
机组正常运行时,2台运行,1台备用。
2凝汽器真空度低的原因排查及治理措施2.1管路泄漏启机过程中,凝汽器抽真空时,启动A真空泵,凝汽器真空度为-14.0kPa。
汽轮机凝汽器真空低故障的分析与排除发表时间:2017-06-13T11:43:15.930Z 来源:《电力设备》2017年第6期作者:金富强[导读] 凝汽器真空对汽轮机运行经济性影响较大,如其它条件不变,真空度每变化1%,汽轮机的汽耗率平均要变化1~2%。
(杭州中能汽轮动力有限公司浙江杭州 310018)摘要:凝汽器是凝汽式汽轮机的重要组成部分。
凝汽器与冷却水系统、抽气器、凝结水泵等组成凝汽设备,用以在汽轮机排汽口建立并维持要求的真空;将排汽凝结成水,供往锅炉给水系统。
从而提高了整个装置的热效率及水的重复利用。
而汽轮机凝汽器运行中的主要监视项目是冷凝器真空度。
凝汽器真空对汽轮机运行经济性影响较大,如其它条件不变,真空度每变化1%,汽轮机的汽耗率平均要变化1~2%。
为此,正常运行中应尽可能地使凝汽器在经济真空下工作,真空过高将导致排汽缸温度过低,过冷度增加对汽轮机也是不利的,真空过低除影响机组经济性外,还会威胁机组的安全。
关键词:凝汽器;真空一、凝汽器应安装有准确的检测仪表以便判断问题为了能及时而准确地判断凝汽系统存在的问题,对凝汽系统监视仪表的装置应给予足够重视。
凝汽器应装有真空表,测点应接近自动排汽阀的地方,并应注意校正其零点。
凝汽器喉部、热井、冷却水进/出口处应装设温度计。
热井应装设液位指示器,根据需要还可以装设凝结水高、低液位报警器或(和)液位自动调节器。
抽气器应装设压力表、温度计。
二、凝汽器真空低故障原因分析及解决方法2.1. 冷却水中断冷却水中断引起真空急剧下降的主要特征是:真空表指示快速回零;冷却水泵出水口侧压力急剧降落;冷却塔喷水池无水喷出。
冷却水中断时,应迅速解除汽轮机负荷,以备用水源向冷凝器供水。
并注意当真空降低到允许低限值时进行故障停机。
由于冷却水中断使凝汽器超过正常温度时,应当停机并关闭冷却水入口门,一般应等到凝汽器冷却到50℃左右时,再往凝汽器送冷却水,否则将急剧冷却凝汽器,造成冷凝管胀口松漏。
汽轮机凝汽器真空降低的原因及措施分析摘要:汽轮机凝汽器真空度与装置的安全稳定运行密切相关,在实际运行中,有多种原因会导致汽轮机凝汽器真空下降。
需要相关人员熟悉设备和系统的特性,加强监视及管理,及时发现问题,并进行全面分析,查找原因并处理,使凝汽器在最佳真空状态,保证真空系统的稳定运行。
关键词:凝汽器;真空下降原因;对策1、汽轮机凝汽器真空形成原理在恒压下,汽轮机排汽通过换热冷凝成水,蒸汽经过凝结,体积变小,进而在凝汽器中形成真空。
其危害主要体现在以下几点:一是机组效率降低,供电气耗增加,凝汽器端差变大;二是真空泵出力增加,使其能耗增加;三是凝结水中的含氧量不断增加,这就有可能造成系统产生管束腐蚀。
产生真空度低的原因主要有凝汽器换热效果差(换热管结垢、端差大);真空泵出力不足或故障;真空严密性差(泄漏点多);凝汽器水位不正常或热负荷过高。
2、汽轮机凝汽器真空急剧下降的原因及处理2.1循环水中断循环水是汽轮机低压缸排汽的冷却介质,循环水的流量、温度影响低压缸排汽温度以及凝汽器真空。
风力越小、环境温度越高,冷水塔淋水盘下落时,循环水换热效果越差,被风带走的热量越少,循环水温降越小,循环水温度越高。
相同的凝汽器冷却效果下,增加循环水出水温度,也会增加对应的低压缸排汽温度,导致凝汽器真空下降。
冷水塔的配水方式影响循环水温度。
为维持凝汽器较高的真空,通常在全塔配水的方式下运行。
如果循环水泵跳闸,循环水通过直接回到凉水塔,凝汽器失去冷却水,凝汽器真空下降。
必须开启备用循环水泵,降低机组负荷。
循环水泵电机跳闸、用电中断等,都会出现循环水中断,导致凝汽器真空迅速下降。
如果运行泵发生故障,就需要确保可以随时启动备用泵,进而防止断水事故。
2.2抽气器工作失灵抽气器效率降低或者工作不正常,与凝汽器端差增大有关,可以检查射水池水温是否过高,射水泵出口压力是否正常,电流是否正常,抽气器真空系统的严密性是否正常,有条件的可以对抽气器的工作能力进行试验。
凝汽器真空严密性不良的原因与对策分析摘要:随着我国经济的飞速发展,我国电厂的建设规模也是日益增大,由于各大电厂在发展的过程中面临日益激烈的竞争,因此,为了在市场中占据一席之地,电厂就要积极进行技术改革与创新,减少对能源造成的消耗,凝汽器是火力发电厂最重要的组成部分之一。
凝汽器的作用是在汽轮机的排汽口形成低背压,蒸汽在汽轮机中最大能力做功,最终被冷却成为凝结水,并在热井内回收。
为实现该功能需要抽真空系统和循环冷却水系统共同作用。
不凝结气体被抽真空系统抽出;蒸汽凝结热被循环水系统带走,确保蒸汽连续凝结,达到了回收工质的目的,又维持了凝汽器的真空。
电厂超临界汽轮机疏水扩容器设置在凝汽器两侧,汽轮机部分疏水在此收集,小汽轮机排汽接口与低压旁路排汽口设置在凝汽器颈部,同时设置有真空破坏阀,出现影响安全运行的情况时,能紧急破坏真空。
凝汽器抽真空系统配备有水环式真空泵与真空维持泵。
机组启动阶段,启动真空泵,快速进行抽真空。
凝汽器并列横向布置,为单流程、双壳体、双背压式凝汽器。
汽轮机排汽、本体疏水、小汽轮机排汽、低压旁路排汽、加热器事故疏水等全部进入凝汽器。
关键词:凝汽器;真空严密性;不良原因;对策引言当前,如何在确保发出高品质电能的同时又能保证低成本运作,是各发电企业积极努力的方向。
尤其是高参数大容量机组正逐渐成为各新建电厂的主力机组,如何节能降耗,降低发电成本,事关发电企业的经济效益。
通过优化机组运行方式、设备技术改造等手段,降低发电成本,提高机组经济性已成为各发电企业的当务之急。
直接空冷机组在我国水资源相对匮乏的地区应用较为广泛,其冷端系统以环境空气冷却汽轮机排出的乏汽,并通过改变风机的运行转速实现不同的冷却效果。
与常规湿冷机组一样,凝汽器压力也是最能体现空冷机组冷端系统运行安全性和经济性的综合性能指标。
因此,预测出全工况下机组的凝汽器压力,是实现空冷岛变工况优化运行的关键。
一方面,环境风速、风向、温度等参数都会直接影响空冷风机的风量输出;另一方面,机组开始更多地承担调峰任务,使其常处于大范围变工况运行模式,导致汽轮机排汽流量变化也较大,这些都使得空冷凝汽器压力的准确计算面临更大挑战。
核电站凝汽器真空异常下降的原因及处理分析发布时间:2022-12-14T03:39:15.295Z 来源:《中国科技信息》2022年第16期作者:郝元[导读] 伴随着社会经济水平的提升,各项领域运行进程逐渐加快,其对于电力能源方面提出了十分严格的要求郝元福建福清核电有限公司福建福清 350300摘要:伴随着社会经济水平的提升,各项领域运行进程逐渐加快,其对于电力能源方面提出了十分严格的要求,电力行业呈现出了严峻的竞争形势,电力企业尽可能减少成本输出,提升经济效益。
而凝气设备是汽轮机主不可缺少的一方面,与机组稳定性有着密切的联系性,真空度属于凝汽器工作中十分重要的一项性能指标,有效的控制真空度有利于减少机组的消耗,但是从凝气机具体使用现状来看,还有着诸多的问题存在,真空度得不到提升,加剧了电厂发电成本输出。
所以,现阶段中强化电厂凝气器探究力度有着极高的作用,在动态性分析和判断凝气器生真空度下降原因的基础上制定完善的对策,将电厂经济效益发挥到最大化。
关键词:核电站凝汽器;真空异常下降原因;处理策略在汽轮机运行过程中,凝气器真空度是十分重要的一项指标,同时也能将凝气器整性能体现出来,确保凝气器处于良好运行的状态,这是每个发电厂节能的基本内容。
通过分析来看,设计、安装、制造、运行、管理等多方面是影响凝汽器真空的基本因素,这就需要定期检查凝气器真空系统故障的形成原因,了解到存在的问题,落实完善措施,从而达到基础安全经济运行的目的。
1、对于核电站凝汽器具体概念的论述汽轮机凝气循环水泵、抽汽器、凝结水泵相互组合形成了汽轮机凝气设备,凝气器的基本构成表现为外壳、水室端盖板、冷却水管、热井管、抽气管口等多方面。
真空的形成是汽轮机排气逐渐进入到凝气器汽侧,循环水泵不间断把冷却水送入到凝气器水测铜管中,通过钢管的形式带走排气的热量,排气凝结成冰,比如持续性下降。
基于此,蒸汽本身占据的空间演变为了真空形式,建立了真空以后,主要是依靠主抽气器加以维持,应用专用的射水泵,具备相应压力的工作水通过水室进入喷嘴,喷嘴是把压力能转变为了速度能,水流以高速的状态在喷嘴内射出,从混合室内形成了高度真空,抽出凝气器内的混合物共同进入扩散管速度下降,压力持续性上涨,比大气压力要高一些,最后排放出扩散管。
第七章真空系统常见故障、原因分析及处理措施凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组安全性、可靠性、稳定性和经济性,因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能。
一、常见故障及现象1、真空表指示降低。
2、排汽温度升高。
3、凝结水过冷度(注①)增加。
4、凝汽器传热端差(注②)增大。
5、机组出现振动大。
6、在汽轮机高调门开度不变的情况下,负荷降低。
注①:过冷度是指在一定压力下冷凝器水的温度低于相应压力下饱和温度的差值。
注②:传热端差是指凝汽器排汽温度与冷却水出口温度之差,一般在3~10℃。
二、原因分析运行中,按真空降落速度的不同,可分为真空急剧下降和真空缓慢下降两种情况:1、真空急剧下降的原因(1)循环水中断;(2)轴封供汽不足或中断;(3)抽气器或真空泵故障;(4)凝汽器真空系统不严密严重,汽侧泄漏导致空气涌入;(5)凝汽器满水(或水位升高);(6)虹吸破坏。
2、真空缓慢下降的原因(1)循环水量不足;(2)循环水温升高;(3)工作水温升高;(4)凝汽器冷却面结垢或腐蚀,传热恶化;(5)凝汽器水侧泄漏。
三、处理措施1、真空急剧下降的处理措施(1)循环水中断循环水泵因故跳停或者阀门关闭,都会导致循环水中断。
当循环水中断后,机组排汽温度降到规定值后,方可恢复循环水,如果循环水中断后,排汽温度高,此时大量通冷却水,易造成凝汽器管板急冷,造成变形、爆管等问题。
(2)轴封供汽不足或中断运行当中,因主蒸汽压力及流量的变化,操作人员未及时调整轴封供汽,导致轴封汽量分配不均引起轴封漏空气时,应调节轴封汽分门,重新分配各轴封汽量。
(3)抽气器或真空泵故障需加强对真空泵或射水泵及抽气器的维护工作,确保正常运行。
对于泵存在故障,应迅速进行处理,启动备用真空泵,及时排除水泵故障。
(4)凝汽器真空系统不严密,汽侧泄漏导致空气涌入真空系统严密程度与泄漏程度可以通过定期真空系统严密性试验进行检验。
关于凝汽式汽轮机组真空严密性差的原因探讨及措施摘要凝汽式汽轮机组真空严密性是衡量机组经济性的重要指标,也是保证机组长期安全、稳定、经济运行的重要因素,由于汽轮机真空变化和机组运行参数、运行人员是否正确操作以及凝汽器、抽气器的正常工作与否都有直接的关系,所以对真空下降的原因分析也是非常复杂。
文中提到的分析步骤和查找方法能够切实解决这一问题。
关键字真空凝汽器抽气器循环水端差负荷调整前言凝汽式汽轮机在机组运行中真空降低,不仅会影响汽轮机的出力和降低热经济性,而且真空降低过多还会因排汽温度过高和轴向推力增加影响汽轮机的安全运行。
其主要的象征表现为:排汽温度升高、真空指示下降和凝汽器端差明显增大、对应的额定蒸汽流量机组出力下降等等。
所以维持汽轮机在额定真空下运行有着极其重要的意义。
由于真空下降涉及的因素较多,要对其原因进行全方位的分析,通过做各项试验,以确定真正下降的原因并设法消除,一般应先按运行中的现象通过以下几个步骤先排除一下:一、凝汽器及抽气器因为在运行中凝汽器是要保证在真空中运行的,凝汽器和抽气器是建立和维持汽轮机排汽口高度真空的设备,所以首先检查凝汽器的运行是否正常,而凝汽器的运行状况主要从以下几个方面分析:1、循环水量不足:该现象表现在同一负荷下,凝汽器循环水进出口温度差增大。
首先要检查循环水进出口温度和压力,检查循环水出口管热不热,看看循环水量是否不够,循环水出口压力是否正常;其次可根据凝汽器循环水出口负压判断凝汽器是否落水及入口二次网是否堵塞;可根据循环水量及凝汽器出口虹吸调整凝汽器循环水出口门开度或启动备用循环水泵;必要时可降低负荷(一般为额定负荷的60-70%),停止半侧凝汽器,对凝汽器二次网进行清扫,保证循环水量充足,从而减小凝汽器循环水出口温度差。
2、凝汽器水位升高:凝汽器的水位过高会淹没部分铜管,造成凝汽器换热面积减少,严重的会淹没抽气孔,使真空下降速度增快。
运行人员可检查凝结水泵的工作是否正常,热水井水位是否正常;也可通过对照除氧器水位及凝结水泵的电流,判断凝结水系统工作是否正常,是否存在短路循环的问题;通过监测凝结水硬度也能判断出凝汽器铜管是否有漏泄存在;若确定为凝汽器铜管漏泄,可在运行中通过停止半侧凝汽器的方法进行查找,堵住漏泄点消除缺陷保证凝汽器在正常水位,维持凝汽器真空运行。
影响凝汽器真空的原因分析及改善方法文中介绍了凝汽器在汽轮机组中的作用及其真空形成原理,重点对影响凝汽器真空的主要原因进行了分析,并提出了改善方法。
标签:汽轮机;凝汽器;真空真空度是确保汽轮机组凝汽器高效率、安全稳定工作的关键指标,一直是使用单位设备管理人员及设备设计人员的重点关注参数。
凝汽器在使用过程中,若真空度过低会增加机组的蒸汽消耗,使得汽轮机工作效率大幅下降,造成整体机组的工作效率明显降低,能耗增加,同时,由于汽温度过高,还会引发汽轮机轴承因温度过高而发生轴心位移,从而造成汽轮机组振动过大,影响机组运行的稳定性和安全性。
并且,由于真空降低,真空检测反馈值降低,机组为确保恒定出力,会自动调节蒸汽流量,蒸汽流量变大后,推力轴承受到的轴向力随之增大,长时间过载运行极易引发设备事故,造成停机。
可见,找出影响凝汽器真空的原因并给予改善对于确保汽轮机组稳定、安全运行和提高其经济性均具有重要意义。
1 凝汽器的工作原理及内压力计算凝汽器在汽轮机组中的作用是将机组排放的蒸汽快速凝结,在汽轮机组出口侧形成真空,以提高机组两侧压差,从而提高机组出力。
凝汽器包括循环冷却水系统、真空抽气系统两部分。
其中,真空抽气系统则负责将混入的空气及未凝结的蒸汽抽走,从而防止气体累积,确保凝汽器内始终保持真空;循环冷却水系统负责将排汽侧蒸汽快速冷却凝结成水,气体体积缩小,从而形成低压真空。
理想状态时,若凝汽器传热端差为零,对蒸汽具有瞬间的冷却能力,机组系统内无不凝结气体进入,则此时凝汽器蒸汽凝结温度与冷却循环水温度相同,凝汽器内压力即等于该温度下的饱和蒸汽压力。
而凝汽器内同时存在由蒸汽凝结而成的水,所以,实际情况下,凝汽器内压力为实际温度下的汽液共存时的饱和压力,而实际饱和蒸汽温度要比冷却水温度要高。
饱和温度可由下式表示:则凝汽器压力Pk:式中:ts—饱和蒸汽温度;tw1—冷却循环水的进水温度;Δt—冷却循环水进出口温差;δt—凝汽器传热端差;Pk—凝汽器压力;由上述公式可以看出,凝汽器压力与饱和蒸汽温度有关,因此只要降低ts,便可降低凝汽器壓力Pk。
凝汽器真空低的原因及处理一、凝汽器真空下降的主要特征和危害:(1)排汽温度升高;(2)凝结水过冷度增加;(3)真空表指示降低;(4)凝汽器端差增大;(5)机组出现振动;(6)在调节汽门开度不变的情况下,汽轮机的负荷降低。
二、凝汽器真空下降的原因分析:引起汽轮机凝汽器真空下降的原因大致可以分为外因和内因两种:外因主要有循环水量中断或不足、循环水温升高、轴封供汽中断等;内因主要有凝汽器满水(或水位升高)、凝汽器结垢或腐蚀、凝汽器水侧泄漏、凝汽器真空系统不严密等。
1、循环水量中断或不足循环水中断循环水中断引起凝汽器真空急剧下降的主要特征是:真空表指示回零、凝汽器前循环水压力急剧下降。
循环水中断的原因可能是:循环水泵或其驱动电机故障,造成循环水泵跳闸,备用泵未联动;循环水泵出口蝶阀自关;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内;凝汽器循环水进口或出口电动门误关等。
循环水量不足循环水量不足的主要特征是:真空逐步下降、循环水出口和人口温差增大。
(1)若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,可断定是凝汽器内管板堵塞。
(2)若此时凝汽器中流体阻力减小,表现为循环水进出口压差减小,循环水泵出口和凝汽器出口的循环水压均增高,可断定是凝汽器循环水出水管部分堵塞。
(3)循环水泵供水量减少,一般可从泵入口的吸入高度增大、真空表指针摆动、泵内有噪音和冲击声、出口压力不稳等现象进行判断。
2、循环水温升高我厂的循环水为开式水,受季节影响大,特别是夏季,循环水温升高,影响了凝汽器的换热效果。
当循环水进口温度升高时,其吸收热量就减少,蒸汽冷凝温度就越高,冷凝温度的升高可使排汽压力相应升高,降低蒸汽在汽轮机内部的焓降,使得凝汽器内真空下降。
循环水温越高,循环水从凝汽器中带走的热量越少,据测算,循环水温升高5℃,可使凝汽器真空降低1%左右。
汽轮机凝汽器真空保护问题分析及优化发表时间:2018-09-28T16:44:56.063Z 来源:《防护工程》2018年第10期作者:潘帅[导读] 将参与保护的取样管与性能试验测试用的取样管混用,导致在一次性能试验中误拧松试验用真空压力变送器接头,导致取样管漏入空气,真空保护误动作引起机组跳闸的过程,并对该厂凝汽器真空引压管重新合理布置,消除隐患,杜绝类似问题再次发生。
潘帅茂名臻能热电有限公司广东茂名 525000摘要:本文主要分析某厂600MW机组凝汽器真空引压管布置不合理,将参与保护的取样管与性能试验测试用的取样管混用,导致在一次性能试验中误拧松试验用真空压力变送器接头,导致取样管漏入空气,真空保护误动作引起机组跳闸的过程,并对该厂凝汽器真空引压管重新合理布置,消除隐患,杜绝类似问题再次发生。
关键词:凝汽器真空;取样管;保护一、前言及机组概况某厂汽轮机为超临界压力、一次中间再热、冲动式、单三缸四排汽、抽汽凝汽式汽轮机,型号为:CC600/523-24.2/4.2/1.0/566/566,凝汽器型式为双背压、双壳体、单流程。
当汽轮机排气进入凝汽器凝结为水时,比容骤减,体积大大缩小,所以在被蒸汽充满的凝汽器封闭空间内形成高度真空,使蒸汽在汽轮机中膨胀做功到最低压力,增大蒸汽焓降,提高循环热效率。
为了稳定真空,由真空泵抽出空气和少量未凝结的蒸汽混合物。
真空越高,排气温度越低,汽轮机热效率越高,当然真空也不是越高越好,真空过高,排气温度降低导致湿气增大,末级叶片水蚀加剧,低压缸中心产生偏移,机组振动大,一般控制在-95KPa。
真空过低,会使机组超负荷运行,汽轮机效率降低,推力轴承乌金磨损,机组正常中心被破坏,产生较大的振动,叶片断裂,危及汽轮机运行安全,所以要设置凝汽器真空LL保护。
二、保护设计600MW机组汽轮机真空保护包括高背压凝汽器真空LL保护和低背压凝汽器真空LL保护两路信号,两路信号任何一路触发,则AST电磁阀失电动作停机,发“凝汽器真空LL保护动作”信号。