1.3-2诱导公式1.3.4-9
- 格式:doc
- 大小:127.00 KB
- 文档页数:1
1.3 三角函数的诱导公式1.诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(课堂训练 一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是 ( )(A)-53 (B)53 (C)±53 (D)54 2.若cos100°= k ,则tan ( -80°)的值为 ( )(A)(D)3.在△ABC,则△ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形 (D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( ) (A)-45(B)-35(C)±35(D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( ) (A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π] ⑤sin[(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( ) (A)①② (B)①③④ (C)②③⑤ (D)①③⑤ 二.填空题7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= .8.sin 2(3π-x )+sin 2(6π+x )= .9.= .*10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题:f (2006) =1516-,则f (2007) = . 三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-.12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)的值.*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2π-β), cos (-απ+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.同步提升一、选择题 1.已知sin()4πα+=,则3sin()4πα-值为( ) A.21 B. —21C. 23D. —232.cos (π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-∙-+ππ得( ) A. sin 2cos2+ B. cos2sin 2- C. sin 2cos2- D.±cos2sin 2- 4.已知3tan =α,23παπ<<,那么ααsin cos -的值是( ) A 231+-B 231+-C 231-D 231+ 二、填空题5.如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限6.求值:2sin(-1110º) -sin960º+)210cos()225cos(2︒-+︒-= . 三、解答题7.设()f θ=)cos()7(cos 221)cos(2)(sin cos 2223θθππθπθθ-++++---+-,求()3f π的值.8.已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值。