2.5 全等三角形的判定方法:AAS
- 格式:ppt
- 大小:1.92 MB
- 文档页数:15
(一)、自学导读:1、判定两个三角形全等我们学过了什么方法?它有几个条件,它们之间有什么限制。
2、如下图,试填空:3、前面我们学习了两个判定定理来判定三角形全等,我们是否还有其他方法呢? 判断下列推理是否正确:(二)、阅读教材P78页4、角角边定理的内容 。
类比边角边定理 。
类比角边角定理 。
得出角角边定理: 。
(1)、在△ABC 与△DEF 中: ∵ = ∠D =∠A =∴△ABC ≌△DEF (SAS ) (2)、在△ABC 与△DEF 中 ∵∠ACB =∠DFE= ∠ABC =∠DEF∴△ABC ≌△DEF (ASA )(2)、在△ABC 与△DEF 中,若已知,∠BAC =∠EDF ,∠ABC =∠DEF , CB =FE ,则△ABC ≌△DEF 证明∵∠BAC =∠EDF ,∠ABC =∠DEF ,∠ACB =1800- ∠BAC - ∠ABC ∠DFE =1800- ∠DEF - ∠EDF ∴∠ACB =∠DFE (等式的性质)CB =FE ∠ABC =∠DEF ∴△ABC ≌△DEF (ASA )BCEFADB C E FA D定理的理解:如下图定理有三个条件,其中有 组边的关系,有 组角关系,边一定是一组相等角的对边。
加深对AAS 的理解。
记住边的相等关系一定要是对应角(相等的角)的对边。
(三)定理的运用:5、如下图,已知BE ∥DF ,∠B =∠D ,AE =CF ,(1)试证明:△ADF ≌△CBE ;(1)、在△ABC 与△DEF 中: ∵∠A =∠D ∠C =∠FAB =( )∴△ABC ≌△DEF (AAS ) (2)、在△ABC 与△DEF 中 ∵∠B =∠E( )=( ) AB =DE∴△ABC ≌△DEF (ASA )下列证明过程对吗?如果不对,请予以改正 (1)、在△ABC 与△DEF 中: ∵∠A =∠D ∠C =∠F AB =EF∴△ABC ≌△DEF (AAS ) (2)、在△ABC 与△DEF 中∵∠B =∠E ∠C =∠FAC =DF∴△ABC ≌△DEF (ASA )分析:(1)已知有一组角相等,并有线段相等,我们观察能否得到边相等,(三种方法都必需有边的相等关系) 给出了平行,我们能联想到角的关系。
全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。
在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。
下面我们将介绍五种判定方法,并给出它们的证明。
一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。
设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。
我们要证明三角形ABC全等于三角形DEF。
【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。
所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。
由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。
我们介绍了五种全等三角形的判定方法以及它们的证明。
这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。
如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。
通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。
【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。
在几何学中,全等三角形之间具有一些特殊的性质和关系。
正确判断两个三角形是否全等是解决几何问题的关键。
全等三角形判定条件ASA ,AAS姓名:【自主学习,探究新知】思考: 边边角(SSA )能否判定两个三角形全等呢?全等三角形判定 AS A文字语言表述为:两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”)用数学语言表述为: 作图作法: 在△ABC 和'''A B C ∆中, ∵'B B BC C ∠=∠⎧⎪=⎨⎪∠=⎩∴△ABC ≌全等三角形判定 A AS 文字语言表述为:两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”)用数学语言表述为: 作图作法: 在△ABC 和'''A B C ∆中,∵'A A B BC ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABC ≌【例题讲析】 1、例1、如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .2.已知:点D 在AB 上,点E 在AC 上, BE ⊥AC, CD ⊥AB,AB=AC ,求证:BD=CE【巩固训练】1、满足下列哪种条件时,就能判定△ABC ≌△DEF ( )A. AB=DE,BC=EF, ∠A =∠E;B. AB=DE,BC=EF, ∠C =∠FC. ∠A =∠E,AB=EF, ∠B =∠D;D. ∠A =∠D,AB=DE, ∠B =∠E2、如图, 在△ABC 和△DEF 中,AF=DC, ∠A =∠D,当_____________时,可根据“ASA ”证明△ABC ≌△DEF.当_____________时,可根据“AAS”证明△ABC ≌△DEF.【拓展能力】 C 'B 'A 'C B A C 'B 'A 'C B ADE CB AD C A BE AF C D 1 2 E B1、已知:A B//D F,A C//EF,B D=C E,求证:A B C D EFE。
定义能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边一定是对应边。
(4)有公共角的,角一定是对应角。
(5)有对顶角的,对顶角一定是对应角。
全等三角形的变幻规律编辑本段判定定理1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写(angle),S是英文边的缩写(side)。
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
6.三条中线(或高、角平分线)分别对应相等的两个三角形全等。
编辑本段性质三角形全等的性质:1.全等三角形的对应角相等。
2.全等三角形的对应边相等3.全等三角形的对应顶点位置相等。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积相等。
8.全等三角形周长相等。
9.全等三角形可以完全重合。
编辑本段推论要验证全等三角形,不需验证所有边及所有角也对应地相同。
引言概述:三角形是几何学中最基本的形状之一。
在三角形中,全等三角形是指具有相等的三个角度和相等的三条边的三角形。
全等三角形的判定是几何学中的重要内容之一,它具有广泛的应用。
本文将介绍全等三角形的五大判定方法——边边边(SSS)、角边角(ASA)、边角边(SAS)、角角边(AAS)和直角边(HL)。
正文内容:一、边边边(SSS)判定方法:1.说明边边边(SSS)判定方法是三边相等的三角形判定方法。
2.介绍边边边(SSS)判定方法的步骤和要点。
3.详细解释如何利用边边边(SSS)判定方法来判断两个三角形是否全等。
4.举例说明边边边(SSS)判定方法的应用场景。
5.总结边边边(SSS)判定方法的特点和注意事项。
二、角边角(ASA)判定方法:1.介绍角边角(ASA)判定方法是角度和边相等的三角形判定方法。
2.说明角边角(ASA)判定方法的步骤和要点。
3.详细解释如何利用角边角(ASA)判定方法来判断两个三角形是否全等。
4.举例说明角边角(ASA)判定方法的实际应用。
5.总结角边角(ASA)判定方法的特点和适用条件。
三、边角边(SAS)判定方法:1.说明边角边(SAS)判定方法是一边、一角和另一边相等的三角形判定方法。
2.介绍边角边(SAS)判定方法的具体步骤和要点。
3.详细解释如何利用边角边(SAS)判定方法来判断两个三角形是否全等。
4.引用实际问题,说明边角边(SAS)判定方法的应用场景。
5.总结边角边(SAS)判定方法的特点和限制条件。
四、角角边(AAS)判定方法:1.介绍角角边(AAS)判定方法是两个角和一边相等的三角形判定方法。
2.说明角角边(AAS)判定方法的步骤和要点。
3.详细解释如何利用角角边(AAS)判定方法来判断两个三角形是否全等。
4.举例说明角角边(AAS)判定方法在实际问题中的应用。
5.总结角角边(AAS)判定方法的特点和使用条件。
五、直角边(HL)判定方法:1.介绍直角边(HL)判定方法是直角边和斜边相等的三角形判定方法。
全等三角形判定一(SAS,ASA ,AAS )(基础)撰稿:常春芳【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中90AB BCABE CBDBE BD=⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC⊥AC,PB⊥AB,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中A CAD CBD B∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中BED CFDBDE CDFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中A C(AOB COD∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等)AB=CD∴△ABO≌△CDO(AAS)∴AO=CO ,BO=DO在△AEO和△CFO中A C(AOE COF∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等)∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB,点C是碉堡的底部,点D是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD=∠BAC,∠ABD=∠ABC=90°.在△ABD和△ABC中,ABD ABCAB ABBAD BAC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△ABC(ASA)∴BD=BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。
三角形全等的判定定理aas全文共四篇示例,供读者参考第一篇示例:三角形是几何学中的基本概念,它由三条边和三个夹角构成。
在三角形的研究中,全等三角形是一个非常重要的概念。
全等三角形是指具有相同形状和大小的三角形,它们的边长和夹角都完全相同。
在证明两个三角形全等时,我们可以利用多种方法,其中之一就是AAS定理。
AAS定理是指如果两个三角形的两组对应边和一个对应角相等,则这两个三角形是全等的。
在AAS定理中,A代表Angle(角度),A代表Angle(角度),S代表Side(边)。
换句话说,如果两个三角形的一个角和两边在另一个角处分别相等,则这两个三角形是全等的。
现在让我们来详细探讨一下AAS定理的证明过程。
假设有两个三角形ABC和DEF,它们有相等的角A和D,相等的边AB和DE,以及相等的边AC和DF。
我们要证明三角形ABC和DEF是全等的。
根据AAS定理,我们知道角A和角D相等。
根据给定的信息,我们知道边AB和DE相等,以及边AC和DF相等。
然后,我们可以利用边对应的性质来得出边BC和EF也相等。
因为两个三角形的三对边都相等,我们可以得出这两个三角形是全等的。
通过AAS定理,我们可以简单且明确地证明两个三角形是全等的。
AAS定理的证明过程不仅简单,而且逻辑严密,使我们能够准确地判断两个三角形是否全等。
除了AAS定理,我们还可以利用其他方法来判定三角形的全等性,比如SSS定理、SAS定理等。
每种方法都有其独特的特点和适用范围,我们可以根据具体的情况选择合适的方法来证明三角形的全等性。
AAS定理是三角形全等的一个重要判定定理,它在几何学中有着广泛的应用。
通过AAS定理,我们可以简单地证明两个三角形是全等的,从而推广到更复杂的几何问题中。
希望通过本文对AAS定理的介绍,读者能够更深入地理解全等三角形的相关概念,并在几何学的学习和研究中有所帮助。
第二篇示例:三角形全等的判定定理aas,即根据三角形的两个角和两个对应边的长度相等来判断是否两个三角形全等。