人教版高中数学《圆的标准方程》教学设计
- 格式:doc
- 大小:310.50 KB
- 文档页数:9
教学设计和反思圆的方程教学知识点1. 圆的标准方程2. 圆的一般方程3. 圆的参数方程能力训练要求1. 掌握圆的标准方程2. 能根据圆心坐标、半径熟练地写出圆的标准方程3. 从圆的标准方程熟练地求出圆心和半径。
4. 掌握圆的一般方程及一般方程的特点;5. 能将圆的一般方程化为圆的标准方程,进而求出圆心和半径6. 能用待定系数法由已知条件导出圆的方程7. 理解圆的参数方程8. 熟练求出圆心在原点、半径为r 的圆的参数方程9. 理解参数θ 的意义10. 理解圆心不在原点的圆的参数方程11. 能根据圆心坐标和半径熟练地求出圆的参数方程12. 可将圆的参数方程化为圆的普通方程教学重点1.已知圆心为(a,b ),半径为r ,则圆的标准方程是(x-a)2+(y-b)2=r2特别地,a=b=0时,它表示圆心在原点,半径为r 的圆:x 2+y 2=r2 2.圆的一般方程x 2+y 2+Dx+Ey+F=0,方程形式特征:(1)x 2和y 2的系数相同,不等于0(2)没有xy 这样的二次项圆心坐标(-D/2,-E/2),半径R 为F E D 422-+/24. 圆心在原点,半径为r 的圆的参数方程为{x=rcos θ,y=rsin θ,(θ为参数)5. 圆心在(a,b ),半径为r 的圆的参数方程为{x=a+rcos θ,y=b+ rsin θ,(θ为参数) 教学难点1. 根据条件,利用待定系数法确定圆的三个参数a 、b 、r ,从而求出圆的标准方程。
2. 方程x 2+y 2+Dx+Ey+F=0(1) 当D 2+E 2-4F=0时,方程表示一个点(-D/2,-E/2);(2) 当D 2+E 2-4F<0时,方程不表示任何图形(3) 当D 2+E 2-4F>0时,方程表示一个圆。
3. 参数方程的概念教学课程见课件(略)教学反思华罗庚说过,宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。
4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。
人教版高中必修2圆的标准方程教学设计《人教版高中必修2圆的标准方程教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标知识和能力1.学会圆的标准方程的推导方法。
2.掌握圆的标准方程并掌握其求法。
3.掌握点与圆的位置关系的判定方法。
过程和方法1.通过五个问题,引导学生理解归纳本节的主要内容,培养学生归纳整理知识的能力。
2.通过电脑演示,引导学生探究、分析图形的几何特征,再用代数的语言描述几何要素及其关系,进而将几何的问题转化为代数问题,体现数形结合的数学思想。
3.通过具体情景,使学生逐步形成在坐标系下用坐标法解几何问题的能力,掌握自主学习的方法和形成合作学习的习惯。
情感态度和价值观1.通过教学,使学生学习运用观察、类比、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力。
2.培养学生勇于探索、坚韧不拔的意志品质。
二、教学重点难点重点:圆的标准方程的推导。
难点:圆的标准方程的求法。
三、教学对象分析圆是学生比较熟悉的曲线。
在初中几何课中已经学习过圆的性质,这里只是用解析法研究它的方程与其它图形的位置关系及一些应用。
对此,教师可在课堂上通过各种教学方法,帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
四、教学内容分析本节内容首先研究圆的标准方程的特点,和怎样根据不同条件建立圆的标准方程。
由于圆的标准方程(x-a)2+(y-b)2=r2含有三个参数,因此必须具备三个独立条件才能确定一个圆,确定a、b、r,可以根据条件利用待定系数法解决。
还可通过分析图形的几何特征寻找圆心和半径,从而获得圆的标准方程。
点与圆的位置关系可通过点与圆心的距离判定。
以上的方法应尽可能在老师的启发引导下,由学生自己比较、归纳得到。
高二数学圆的标准方程教案 人教版教学目的:1.使学生掌握圆的标准方程的特点,能根据圆心、半径准确地写出圆的标准方程, 能运用圆的标准方程正确地求出其圆心和半径2.能根据不同的条件,利用待定系数法求圆的标准方程3.能运用圆的标准方程解决一些简单的实际问题教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程 教学难点:运用圆的标准方程解决一些简单的实际问题 教学方法:启发式 教 具:幻灯 教学过程:一、复习引入:1.圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆2.求曲线方程的一般步骤为:(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M 的坐标; (2)写出适合条件P 的点M 的集合;(可以省略,直接列出曲线方程) (3)用坐标表示条件P (M ),列出方程0),(=y x f ;(4)化方程0),(=y x f 为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点 (可以省略不写,如有特殊情况,可以适当予以说明) 二、讲授新课:1、建立圆的标准方程的步骤:建系设点;写点集;列方程;化简方程2、圆的标准方程:问题1.已知圆心为),(b a C ,半径为r , 如何求的圆的方程?运用上节课求曲线方程的方法,从圆的定义出发,正确地推导出: 222)()(r b y a x =-+- 这个方程叫做圆的标准方程若圆心在坐标原点上,这时0==b a ,则圆的方程就是222r y x =+3、圆的标准方程的两个基本要素:圆心坐标和半径 圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要r b a ,,三个量确定了且r >0,圆的方程就给定了。
这就是说要确定圆的方程,必须具备三个独立的条件,确定r b a ,,,可以根据条件,利用待定系数法来解决. 三、例题精讲:例1.求以C(2,4)为圆心,以5 为半径的圆的标准方程. 申1:求以C(2,4)为圆心,过点(5,8)的圆的标准方程.答案:22(2)(4)25x y -+-=申2:求以C(2,4)为圆心,且过两直线370x y ++=与3x-2y-12=0交点的圆的标准方程. 分析:交点为(2,3)-从而可得圆的方程:22(2)(4)49x y -+-=申3:求过点(5,2),(3,2)A B 且圆心在直线230x y --=是的圆的标准方程.分析:求圆心及半径,圆心为l 与AB 的中垂线的交点先求AB 的中垂线为4x =故圆心C(4,-5)从而求出半径可得圆的方程:22(4)(5)10x y -+-=申4:求以C(1,3)为圆心且和直线0743=--y x 相切的圆的标准方程 解:已知圆心坐标C(1,3),故只要求出圆的半径,就能写出圆的标准方程。
人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会利用圆的标准方程解决实际问题。
3. 掌握圆的标准方程的推导和应用方法。
教学内容:1. 圆的标准方程的定义和意义。
2. 圆的标准方程的推导过程。
3. 圆的标准方程的应用实例。
教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。
1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。
1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。
第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。
2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。
2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。
第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。
3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。
3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。
教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。
2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。
3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。
教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。
2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。
3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。
教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。
4.1.1圆的标准方程教学设计1.内容和内容解析:内容:圆的标准方程。
内容解析:解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现数形结合的重要思想方法。
其中圆的标准方程的教学目标主要是:一是经历通过平面直角坐标系建立圆的代数方程的过程,在这个过程中进一步体会坐标法研究几何问题的思想和步骤;二是用两种方法求解圆的方程。
圆是解析几何中一类重要的曲线,在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,处于直线与方程和点,直线与圆的关系的结合点和交汇点上。
学好圆的方程可以为圆锥曲线的学习奠定基础,有利于学生进一步体会数形结合的思想,形成用代数法解决几何问题的能力。
也是培养学生运用能力和运算能力的重要素材。
从知识的结构和内容上都起到相当重要的作用。
2.教学目标:知识与技能(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)能根据圆心坐标、半径及其特殊情况熟练地写出圆的标准方程;(3)会根据条件选择并求出圆的方程;过程与方法(1)通过平面直角坐标系建立圆的代数方程的过程,让学生进一步体会坐标法在研究几何问题的思想和步骤;(2)通过类比直线方程的学习,发现并理解圆的方程与直线方程学习中相同的知识结构,进一步体会类比的思想;(3)通过求解圆标准的方程,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想;情感态度与价值观通过与直线方程的对比,体会类比思想的应用,让学生学会用联系的观点分析问题,认识事物之间的相互联系与转化;3.教学重难点:重点:(1)类比直线方程的学习,掌握圆的标准方程;难点:(1)圆的代数方程的建立过程;(2)圆的标准方程的灵活应用;落实的途径:(1)通过表格,建立直线与方程,圆与方程的结构图,在复习旧知的同时帮助学生经历坐标法建立圆的代数方程的如下过程:首先将几何问题代数化,用代数语言描述几何要素及其关系,进而将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题。
课题:“圆的标准方程”教材:高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“圆的方程”的第一课时一、教材分析在学习了“曲线与方程“之后,作为一般曲线典型的例子,安排了本节的“圆的方程”圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,圆与其他图形的位置关系及其应用同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用同时,由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程和一般方程的要求层次是“掌握”。
遵循从特殊到一般的原则,只有把圆的标准方程学透了,再过渡到学圆的一般方程也就不难了,它们可以通过形式上的互相转化而解决。
可见圆的标准方程在“圆的方程”一节中非常重要。
依照大纲,本节分为三个课时进行教学第一课时讲解圆的标准方程结合本节的内容的特点,和对学生的初步了解,我准备将这个课时分解为两个课时来完成。
第一课时主要是以轨迹思想探讨圆的标准方程,再以待定系数法求解圆方程为核心,让学生从中去体会数与形之间的关系,强化数形结合思想的运用。
二、学情分析此前,学生已经学习了“曲线的方程”和“方程的曲线”、直线方程等内容,对运用代数的方法来解决几何的问题(即解析法)有了一定的了解。
现在要运用解析法来研究另一种(学生熟悉的)几何图形——圆,自然是水到渠成,对学生而言难度不会太大。
因此老师在教学中可以大胆的引导学生独立自主的去探索、发现所要学习的知识。
学生对待定系数法的运用会感到困难,因为圆的标准方程中的三个参数a,b,r (尤其是r)的给出形式变化很多,再加上学生对圆的许多几何性质可能都忘记了,不能灵活运用几何性质优化运算,所以通过对“待定系数法”的讲解,一方面可以复习圆的一些主要性质;另一方面还可以对代数法与几何法进行比较,使学生从中数与形的和谐美。
三、教学目标根据以上分析,制定以下教学目标:知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程;2.会由圆的方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程.能力目标:1.通过圆的标准方程的探究过程使学生对用代数方法解决几何问题的一般思维过程与模式加深认识;2.通过例题分析和练习巩固对用待定系数法求解曲线方程的基本步骤与思维过程的理解和运用。
3.通过运用多种方法对例题进行分析使学生掌握几何性质(切线性质)对优化计算的作用,加深对数形结合思想和待定系数法的理解;情感目标:1、通过对圆的标准方程的学习,让学生感受数学的美(形态美、和谐美);2、通过运用圆的知识解决实际问题的学习,让学生体会理论来源于实践。
四、教学重点.难点教学重点:圆的标准方程模型的探索、标准方程的求解及其应用.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程五、教法分析为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计 所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。
教师的每项教学措施,都是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题 其基本教学模式是:本节课的难点是运用待定系数法求圆的标准方程,对学生而言最难的地方就在于方法的选择。
所以我准备在例题的讲解让学生对几种方法进行对比,然后让他们通过自己的亲身感受来体会各中的优劣,他们根据自己的实际情况来选择适合自己的方法。
六、学法分析基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,各学科课程通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从复习引入→情景创设→深入研究→获得新知→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。
七、教学活动设计(一)动画引入,创设情境【设计意图】由我国古老而神秘的太极图引入课题让学生感受圆优美的几何属性和我国博大精深的古代文化,激发学生的学习热情。
师:太极八卦图是中国古老的文化科学遗产,是中国古代劳动人民智慧文明的结晶。
它不但在古代为人民建树了不可磨灭的功勋,就是在现代也做出极重大的贡献。
1930年一月美国天文学家汤保发现了太阳系的第九颗行星冥王星。
旋即有人提出,太阳系有没有第十颗行星呢?由于冥王星发现不久,观测数据还不精确,预测第十颗行星的努力接连遭到了失败。
当时在法国勤工俭学的只有二十七岁的中国人刘子华,他发现太阳系的各星体与八卦的卦位,存在着对应关系。
他依据这个关系,利用天文参数进行计算,算出了第十颗行星的平均轨道运行速度为每秒二公里,离太阳的平均距离为74亿公里,按照希腊神话命名原则,在冥王星后面的叫做“木王星”。
刘子华把自己的预测,写成了题为“八卦宇宙论与现代天文”的论文,交给了法国巴黎大学,作为考取博士学位的论文。
论文获得了一致的赞赏,1938年正式授予刘子华法国国家博士学位。
这是中国科学家在现代运用太极八卦图,做出的震动世界的伟大贡献。
师:今天老师就将和同学一起用代数的方法来研究圆这种优美的曲线。
【给出标题】圆的标准方程(二)提出问题,尝试探究师:清同学们利用所学方法解决问题一。
【学生活动】探求圆的方程【教师预设】方案一:学生处理得很好,让学生来讲。
方案二:学生不能处理,则将题目变一下,再让学生处理【设计意图】充分调动学生的积极性和主动性,从这里也可以进一步了解学生的实际情况,对后续内容的处理会更贴切。
师:同学们是用什么方法求出圆的方程的呢?生:用的是解析法师:这个方法的一般步骤是:建系、设点、列式、化简四步曲。
【设计意图】回顾复习用轨迹思想求曲线方程的一般步骤。
师:若半径发生变化,如半径为6,圆心在原点则圆的方程又是怎样的?生:x2+y2=36师:一般的,半径为r,圆心在原点的圆的方程形式是怎样的?生:x2+y2=r2.师:x2+y2=r2表示是特殊位置的圆,称为原点圆,那么一般地,圆心在任意一点C(a,b)点,半径为r圆的方程又是怎样的?【设计意图】遵循循序渐进的原则,从特殊到一般,逐步将问题深入。
(三)特殊到一般,建立方程模型【学生活动】 探究圆的方程。
【教师预设】解:设M (x ,y )是圆上任意一点,根据定义点M 到圆心C 的距离等于r ,所以圆C 就是集合P={M||MC|=r }由两点间的距离公式,点M 适合的条件可表示为r b y a x =-+-22)()( ① 把①式两边平方,得(x ―a )2+(y ―b )2=r 2【设计说明】 再次熟练解析法,得出一般的圆的标准方程师:方程(x-a )2+(y-b)2= r 2 叫做圆的标准方程。
特别地,当圆心在原点,半径为r时,圆的标准方程为:x 2+y 2=r 2。
从这种形式中可直接得到圆心和半径的信息,反之知道圆心和半径也就可以直接写出圆的标准方程,所以我们在求圆的标准方程时,可先设出圆的标准方程,再想办法求出未知系数,这种方法就是待定系数法。
(四)应用举例例1、根据圆的方程写出圆心和半径(1)5)3()2(22=-+-y x ; (2)222)2()2(-=++y x .例2、写出下列各圆的方程(1)圆心在原点,半径为3;(2)圆心在)4,3(C,半径为5;(3)经过点)1,5(P ,圆心在点)3,8(-C .【练习】已知点A(-4,-5),B(6,-1),求以AB 为直径的圆的方程【设计意图】基础练习,巩固、加深对圆的标准方程的理解。
【学生活动】探求圆的方程【教师预设】方法一:设所求圆的方程为(x -1)2+(y -3)2=r 2因为圆C 和直线0743=--y x 相切,所以半径r 就等于圆心C 到这条直线的距离根据点到直线的距离公式,得516)4(3|73413|22=-+-⨯-⨯=r 因此,所求的圆的方程是25256)3()1(22=-+-y x方法二:设所求圆的方程为(x -1)2+(y -3)2=r 2由直线3x -4y -7=0与圆相切,所以联列方程组有且只有一组解即联列方程组消去y 得:25x 2-146x +377-16r 2=0由△=1462-4×25×(377-16r 2)=0,解得:r =165因此,所求的圆的方程是25256)3()1(22=-+-y x 【学生可能出现问题】确定半径有困难,注意引导学生观察图象,【设计意图】熟悉待定系数法,初步体会运用圆的几何性质(切线性质)对优化计算的作用,借此强化数形结合思想。
师:你打算怎样求过M 的切线方程?生:要求经过一点的直线方程,可利用直线的点斜式来求。
师:这仍然是待定系数法的思想,关键是斜率怎样求?【学生活动】探求切线方程【教师预设】方法一:设所求直线的方程为y -4=k (x -3)即kx -y -3k +4=0由题知:圆心到切线的距离等于半径,即5=,解得:34k =-∴过点M 的切线方程为:34(3)4y x -=--,即3425x y +=方法二:∵点M (3,4)在圆x 2+y 2=25上,∴半径OM 与切线l 垂直,即1OM l k k ⋅=- ∵43OM k = ∴34l k =-∴过点M 的切线方程为:34(3)4y x -=--,即3425x y += 【设计意图】运用圆的标准方程解决切线问题,进一步的运用圆的性质和待定系数法。
【备用】 圆的方程是x 2+y 2=13,求过此圆上一点(2,3)的切线方程。
答案:2x+3y=13 即:2x+3y -13=0师:注意观察,在切点坐标与切线方程之间存在密切的关系,你发现了吗? (学生纷纷举手回答)生:分别用切点的横坐标和纵坐标代替圆方程中的一个x 和一个y ,便得到了切线方程。
师:若将已知条件中圆半径改为r ,点改为圆上任一点(x o ,y o ),则结论将会发生怎样的变化?大胆地猜一猜!生:x o x+y o y=r 2.师:这个猜想太迷人了,那么可否给出证明?生:。
【思考】师:这个问题作为思考题留给同学们下课后独立思考解决好吗?生:好【设计意图】让学生从特例中观测、总结出一般化的结论,培养学生观察概括的能力,让学生体验发现规律的成功感觉,有利于激发学习热情。
【根据实际情况选用】例题5:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB =20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到0.01m ).【设计说明】引导学生分析,共同完成解答。