图像分割
- 格式:ppt
- 大小:1.71 MB
- 文档页数:28
图像分割方法图像分割是图像处理的基本任务之一,它是用来从图像中将特征区分出来的一种编程技术,以提高图像处理任务的效率。
简单地说,图像分割是把一幅图像划分成若干个小块,每块代表一个特定的物体或物体的一部分。
它允许人们更好地理解图像的全局结构和本质,也有助于改善图像识别、检测、分类、检索等方面的性能。
图像分割的本质是将图像分解成两部分:分割区域和非分割区域。
分割区域是指要分割出的物体,而非分割区域表示背景或其他无关物体。
此外,分割有两个重要的部分:分割质量与分割效率。
常见的图像分割方法有基于边缘的方法、基于区域的方法和基于分段树的方法等。
基于边缘的方法是通过边缘检测技术检测图像中的边缘,然后将边缘分割出来,完成图像的分割。
由于这种方法主要考虑的是边缘信息,它不考虑整体的空间关系,所以当边缘信息不够时,可能会出现分割失败的现象。
因此,基于边缘的方法并不是很常用。
基于区域的方法是在图像中检测物体的区域,并将这些区域进行分割。
这种方法可以考虑整体的空间关系,但是也容易在细节考虑方面出现问题,比如区域界限不清晰,或者两个不同物体太接近,造成分割失败。
基于分段树的方法是利用每个像素的连通性和空间关系来构建连通域,然后分割连通域中的物体。
基于分段树的方法不仅可以考虑整体的空间关系,而且可以考虑细节的关系,由于考虑范围较广,因此在一些图像分割任务上,分段树的方法可以得到较好的效果。
此外,还有一种新兴的图像分割技术深度学习。
它采用了深度神经网络,通过深度学习网络可以实现半自动化的图像分割,它的效率要比传统的图像分割技术更高,具有潜力发展。
总之,图像分割是一种非常重要的图像处理技术,它可以帮助人们更好的理解图像的结构,改善图像识别的性能,并且可以应用在诸如自动驾驶、目标跟踪等领域中。
未来,深度学习在图像分割领域也将发挥很重要的作用,带来更高效率、更精确的分割结果。
图像分割的概念
1、概念:“图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
2、意义︰它是由图像处理到图像分析的关键步骤。
图像分割是图像处理与理解、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中关键步骤。
图像分割应用在许多方面。
3、应用:汽车车型自动识别系统、检查癌细胞、精密零件表面缺陷检测,处理卫星拍摄的地形地
貌照片等。
在所有这些应用领域中,最终结果很大程度上依赖于图像分割的结果。
图像分割方法图像分割是计算机视觉领域中的一个重要问题,它旨在将图像分成具有语义信息的区域。
图像分割在许多应用中都扮演着重要的角色,比如医学图像分析、自动驾驶、图像检索等。
针对不同的应用场景,有多种图像分割方法被提出并应用于实际问题中。
本文将介绍几种常见的图像分割方法,并对它们的原理和特点进行简要的分析。
1. 阈值分割。
阈值分割是一种简单而有效的图像分割方法。
其基本思想是将图像的灰度值按照设定的阈值进行划分,从而将图像分成不同的区域。
对于灰度图像,可以根据像素的灰度值与设定的阈值进行比较,将像素分为目标和背景两类。
阈值分割方法简单易行,但对光照变化和噪声敏感,对于复杂背景和多目标分割效果有限。
2. 边缘检测分割。
边缘检测分割是一种基于图像边缘信息的分割方法。
其基本思想是利用图像中目标与背景之间的边缘信息进行分割。
常用的边缘检测算子有Sobel、Prewitt、Canny等。
通过检测图像中的边缘信息,可以将图像分成具有明显边界的区域。
边缘检测分割方法对光照变化和噪声具有一定的鲁棒性,但在边缘连接处容易出现断裂和断点。
3. 区域生长分割。
区域生长分割是一种基于像素生长的分割方法。
其基本思想是从种子点开始,根据一定的生长准则逐步将与种子点相邻且满足条件的像素加入到同一区域中,直到满足停止准则为止。
区域生长分割方法适用于具有明显区域特征的图像,对于光照变化和噪声具有一定的鲁棒性,但对于种子点的选择和生长准则的确定比较敏感。
4. 基于深度学习的分割方法。
随着深度学习技术的发展,基于深度学习的图像分割方法逐渐成为研究热点。
深度学习模型如FCN、U-Net等在图像分割领域取得了显著的成果。
这些方法利用卷积神经网络对图像进行端到端的学习,能够有效地提取图像的语义信息,对于复杂背景和多目标分割效果较好。
总结。
图像分割是计算机视觉领域中的重要问题,有许多方法可以用来实现图像分割。
不同的方法适用于不同的应用场景,具有各自的特点和局限性。
图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。
2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。
3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。
4. 模型分割:使用先前训练好的模型对图像分类和分割。
例如,利用卷积神经网络(CNN) 对图像进行分类和分割。
5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。
6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。
7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。
图像分割胡辑伟信息工程学院图像分割●概述●间断检测●边缘连接和边界检测●阈值处理●基于区域的分割●分割中运动的应用图像分割●分割的目的:将图像划分为不同区域●三大类方法✓根据区域间灰度不连续搜寻区域之间的边界,在间断检测、边缘连接和边界检测介绍✓以像素性质的分布进行阈值处理,在阈值处理介绍✓直接搜寻区域进行分割,在基于区域的分割中介绍图像分割●概述✓在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景✓为了辨识和分析目标,需要将有关区域分离提取出来,在此基础上对目标进一步利用,如进行特征提取和测量✓图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程图像分割●概述(续)✓特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域✓图像分割算法是基于亮度值的不连续性和相似性不连续性是基于亮度的不连续变化分割图像,如图像的边缘根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合图像分割举例PR=0.718PR=0.781#249061#253036#169012PR=0.800PR=0.607PR=0.758PR=0.759PR=0.933PR=0.897PR=0.763PR=0.933PR=0.897PR=0.953PR=0.951PR=0.670PR=0.865PR=0.710#134052Image MDL MML ERL1ERL2#3096#85048#175043#182053#219090pr=0.521 pr=0.480 pr=0.861pr=0.740pr=0.375pr=0.613pr=0.822 pr=0.565pr=0.401pr=0.858pr=0.820 pr=0.850pr=0.789pr=0.890pr=0.914Row 1: Image Row 2: RPCL Row 3: CAC Row 4: ERL基于边缘生长的图像分割算法结果参考文献:林通,“基于内容的视频索引与检索方法的研究”,北京大学数学科学学院,博士论文,2001。
图像分割总结图像分割就是把图像中有意义的特征部分提取出来,例如,图像中的边缘、区域等,通过特征部分的提取将图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标。
图像分割是由图像处理到图像分析以及其他操作的关键步骤。
现有的图像分割方法主要分以下几类:基于阈值的分割方法(可以分为全局阈值方法和局部阈值方法)、基于区域的分割方法(区域生长算法、分裂合并算法、分水岭算法等)、基于边缘的分割方法(分为串行边缘检测技术和并行边缘检测技术)以及基于统计模式分类的分割方法等。
1、智能剪刀智能剪刀是一个新的,交互式的,用于图像分割和合成的工具。
数字图像分割技术用来从周围的背景中提取图像成分。
但是当时基于计算机的分割工具非常粗糙,并且和手工跟踪相比没有太大的优势。
然而,智能剪刀可以通过鼠标的移动快速和精确地提取图像中的物体。
当鼠标确定的位置接近一个物体的边缘的时候,一个live-wire边界捕捉并且包围了我们感兴趣的物体。
live-wir e是一种交互式分割方法,其基本思想是利用动态规划方法产生图像中给定两点间的最优路径,合理地构造代价函数和选择起始点和目标点,用以提取物体的边缘。
live-wir e边界检测将离散的动态规划问题规划为一个二维图像的搜索问题。
动态规划提供了数学意义上最佳的边界,同时也极大的减少了局部噪声和其他干扰结构的影响。
该算法选择的边界不是邻接边中的最强壮的边,而是与现在正在被跟踪的边的特定类型相符合的边,这一过程我们成为on-the-fly training,增强了算法的可靠性和智能剪刀工具的健壮性。
通过智能剪刀提取出来的物体可以被放大或者缩小,旋转,以及利用live-wire掩模和空间频率等值性组合成新的图像。
空间频率等值是利用巴特沃斯低通滤波器实现的。
智能剪刀提供了一个用于物体提取和图像合成的精确并且高效的交互性工具,它不仅可以用于灰度图像,同时也可适用于任意复杂度的彩色图像,并且基于这个工作还有很多扩展应用。