2013-2014学年上学期期末考试考试卷九年级数学试题
- 格式:doc
- 大小:217.50 KB
- 文档页数:5
九年级(上)数学期末测试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2.一元二次方程x(x -2)=o根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )4.菱形具有而矩形不一定具有的性质是(。
)A.对角线互相垂直… B: 对角线相等C.对角线互相平分 D。
对角互补5.从1,2,-3三个数中,随机抽敢两个数相乘,积是正数的概率是A.o B1/3 C2/3 D.1j j6.如图所示河堤横断面迎水坡AB韵坡比是1:√3(根号3),堤高BC=5m,~烈藏面AB的长度是A: lOm B. lO√3(根号3) C. 15m D. 5√3(根号3)mA.<2,一3) B.(一2,3) C.(2,3) D.(一2,一3)8:如图,AB是00的直径,点C在圆O上,若∠C =160,∠BOC的度数是( ) :A.其图象的开口向下 B.其图象的对称轴为直线x=一3C.其最小值为1 D.当x<3时,y随x的增大而增大A. -2B.2C.5D.611.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率则黄球的个A.2B.4C.12D.1614.如图,’边长为4的等边△4戤中‘,A酽为中位线,则四边形BCED的面积为( ) .A.2√3 B.3√3 c.4√3 D.6√315.如图,直径为10的OA经过点C(O,5)和点O(O,0),B是J,轴右侧OA优弧上一点,则么OBC的余弦值为( )二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的。
线上.)18.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____19.如图所示,若OO的半径为13cm,点P是弦AB上的一个动点,且到圆心的最短距离为5 cm,则弦AB的长为____ cm.20.抛物线y=ax2+ bx+c上部分点的横坐标x,纵坐标y的对应对应值如下表从上表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,O);②函数向最大值为6;③抛物线的对称轴是④在对称轴左侧,y随x增大而增大21.如图,直线与x轴、j,分别相交与4、B两点,圆心尸的坐标为(1,O),圆尸与y轴相切与点D.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点Ps 个数是个.三、解答题(本大题共7小题,满分57分,解答应写出文字说明、证明过程或演算步骤.)(2)如图,已知点E在ABC的边AB上,以AE为直径的圆O与BC相切于点D,且AD平分∠BAC求证:AC BC.24.(本小题满分8分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;的图象上的概率.25.(本小题满分8分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?26.(本小题满分9分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自么处测得建筑物顶部的仰角是300,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是450.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取√3(根号3)=1.732,结果精确到1m)27.(本小题满分9分)已知:如图,在△ABC中,BC=AC,以BC为直径的圆O与边AB相交于点D,DEIAC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与圆O的位置关系,并证明你的结论;(3)若OO的直径为18,求DE的长.28.(本小题满分9分)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=900,AC=BC,OA=1,00=4,抛物线J,=X2+ bx+c经过A,B两点,抛物线的顶点为D.(1)求B标点坐标及抛物线的解析式;(2)点E是Rt△ABC斜边AB上一动点(A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件EF长度最大时,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,直接写出所有点P的坐标;若不存在,说明理由.答案:一、D A C A B A D C C B B D D B C 二、16、217、3± 18、 28 19、24 20、①③④ 21、3 22.(1)120,1x x == -------------(4分) (2)12-------------(3分) 23. (1)证明:有尺规作图的图示可以看出 在△OCM 与△OCN 中, OM=ON ,CM=CN ,OC=OC ······················································································ (1分) ∴△OCM ≌△OCN ····································································································· (2分) ∴∠AOC=∠BOC ············································································································ (3分) (2)证明:连接OD∵OA = OD ,∴∠1 =∠3;∵AD 平分∠BAC ,∴∠1 =∠2; ∴∠2 =∠3; ∴OD ∥AC , ······························· (2分) ∵BC 是⊙O 的切线 ∴OD ⊥BC ······························· (3分) ∴AC ⊥BC ··························· (4分)24. 解:(1)································· 4分 (2)可能出现的结果共有16个,它们出现的可能性相等.满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ··························· 7分 25. 解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-10x)=1500 ------------(2分) 解得:x1=10 x2=5 因为顾客要得到实惠,5<10 所以 x=5答:每千克应涨价5元. -------------(4分) (2)设商场每天获得的利润为y 元,则根据题意,得y=( x +5)(200-10x)= -102x +150x -500 -------------(6分)当x=5.7)10(21502=-⨯-=-a b 时,y 有最大值.因此,这种水果每千克涨价7.5元时,能使商场获利最多 -------------(8分) 26. 解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .-------------(2分) 在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x ∴33100=+x x ,3x =3(x +100) - ------------(5分) 解得x =50+503=136.6 -------------(8分) ∴CD =CE +ED =(136.6+1.5)=138.1≈138(m)答:该建筑物的高度约为138m . -------------(9分)27. 解:(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.------------(3分)(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;------------(6分)(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2, 在AED Rt ∆中,DE =2422=-AE AD .------------(9分) 28. 解:(1)由已知得:A (-1,0) B (4,5)------------(1分)∵二次函数2y x bx c =++的图像经过点A (-1,0)B(4,5)∴101645b c b c -+=⎧⎨++=⎩ ------------(2分)解得:b=-2 c=-3∴二次函数223y x x =-- ------------(3分) (2)∵直线AB 经过点A (-1,0) B(4,5)∴直线AB 的解析式为:y=x+1∵二次函数223y x x =--∴设点E(t , t+1),则F (t ,223t t --) ------------(4分) ∴EF= 2(1)(23)t t t +--- ------------(5分) =2325()24t --+∴当32t =时,EF 的最大值=254∴点E 的坐标为(32,52) ------------------------(6分)(3)所有点P 的坐标:15)2p ,25)2p 3P (11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.---------------------------------(9分)。
2013-2014学年度第一学期九年级期末质量检查考试数学试卷考试时间:120分钟;命题人:游宝发学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列式子中,属于最简二次根式的是(A )(B (C ) (D 2.下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个 3.已知一元二次方程2x x 1 0+-=,下列判断正确的是( ) A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程无实数根D.方程根的情况不确定4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是A .0.5B .1C .2D .45.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙1O 的半径为4cm ,则⊙O 2的半径为( ) A .5cm B .13cm C .9 cm 或13cm D .5cm 或13cm 6.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15π B .24π C .30π D .39π 7.下列事件是随机事件的为A 、度量三角形的内角和,结果是180︒B 、经过城市中有交通信号灯的路口,遇到红灯C 、爸爸的年龄比爷爷大D 、通常加热到100℃时,水沸腾 8.如果将抛物线2y x =向左平移2个单位,那么所得抛物线的表达式为A.22y x =+B.22y x =-C.2(2)y x =+D.2(2)y x =-9.如图,在平面直角坐标系中,抛物线2y 1x 2=经过平移得到抛物线21x 2y 2x =-,其对称轴与两段抛物线所围成的阴影部分的面积为A .2B .4C .8D .1610.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为A.3B.34-C.4D.326- 二、填空题11x 的取值范围是____________. 12.如果关于x 的方程220xx m -+=(m 为常数)有两个相等实数根,那么m =______.13.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图,∠A =30°,AC =10,则此时两直角顶点C 、C ′间的距离是_______. 14.如图,AB 为⊙O 的直径,点P 为其半圆上任意一点(不含A 、B ),点Q 为另一半圆上一定点,若∠POA 为x°,∠PQB 为y°,则y 与x 的函数关系是 . 15.如图,一条抛物线m x y +=241(m<0)与x 轴相交于A 、B 两点(点A 在点B 的左侧).若点M 、N 的坐标分别为(0,—2)、(4,0),抛物线与直线MN 始终有交点,线段AB 的长度的最小值为 .三、解答题16.计算:(1))323(235a bb a ab b ÷-⋅(2) 17.解方程:0822=--x x18.如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)平移△ABC,使点A 移动到点A 2(0,2),画出平移后的△A 2B 2C 2并写出点B 2、C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2成中心对称,写出其对称中心的坐标. 19.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形ABCD.点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,则中间的阴影部分组成正方形...EFGH.已知烧制该种地砖平均每块需加.工费..0.35元,要使BE 长尽可能小,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则CE 长应为多少米?解:设 CE =x ,则S △CFE = ,S △ABE = S 四边形AEFD = (用含x 的代数式表示,不需要化简)。
2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。
芜湖市2013~2014学年度第一学期九年级期末测评·数学试卷·班级____________姓名____________编号____________得分____________一、单项选择题:(本题共12小题,每小题3分,满分36分)1.下列图形中,是轴对称图形但不是中心对称图形的是【】2.若x+y−1+(y+3)2=0,则x-y的值为【】A.1B.-1C.7D.-73.一元二次方程x(x-4)=4-x的根是【】A.-1B.4C.1和4D.-1和44.若两圆的半径分别是1㎝和5㎝,圆心距为8㎝,则这两个圆的位置关系是【】A.内切B.外切C.相交D.外离5.将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为【】A.y=2(x-3)2+4B.y=2(x+4)2+3C. y=2(x-4) 2+3D.y=2(x-4) 2-36.某厂一月份生产产品l50台,计划二、三月份共生产该产品450台,设二、三月平均每月增长率为x,根据题意列出方程是【】A.150(1+x)2=45OB.150(1+x)+150(1+x)2=450C.150(1+2x)=450 D.150(1+x)2 =6007.如图所示,在平面直角坐标系中,过格点A、B、C作一圆弧,点B与下列各点的连线中,能够与该圆弧相切的是【】A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)8.为丰富社区活动,某街道办事处打算组织一次篮球友谊赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队9.如图所示,在△ABC中,∠A=70°,⊙0截△AB的三条边所得的弦长相等,则∠B0C的度数为【】A.125°B.130°C.135°D.160°10.已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于【】A.-5B.5C.-9D.911.现有A,B两枚均匀的小立方体,立方体的每个面上分别标有数字1,2,3,4,5,6,用小丁掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在抛物线y= -x 2+4x上的概率为【】A.118B.112C.19D.1612.如图,直线y=k x+c与抛物线y=a x2+b x+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且第1题图第7题图第9题图OA=OD。
2013---2014学年上学期初三数学期末考试试题一、选择1.如图,已知P 是射线OB 上的任意上点,P M ⊥OA 于M ,且 OM :OP=4:5,则cos ∠a 的值等于( ) A.43 B.34 C. 54D.532.已知⊙O 的半径为5,A 为线段OP 的中点,若OP=10,A. ⊙O 内B. ⊙O 上C. ⊙O 外D.不确定.3.若两圆的半径分别是1厘米和5厘米,圆心距为6置关系是( )A.内切B.相交C.外切D.外离. 4.如图:A 、B 、C 是⊙O 上的点,若∠AOB=70°,则∠ACBA .70° B.50° C.40° D.35°5.若一个正多边形的一个内角是144A.12 B.11 C.10 D.96.如图:在△OAB 中,CD ∥AB ,若OC :OA=1:2,则下列结论(OA (2)AB=2CD (3)S △OAB=2S △COD.其中正确的结论是(A .(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(37.在平面直角坐标系中,以点(2,3)为圆心,2A.与X 轴相离、与Y 轴相切.B.与X 轴、Y 轴都相离.C.与X 与Y 轴相离.D. 与X 轴、Y 轴都相切.8.如图:直径为10的⊙A 经过点C (0,5),与X 交于点D ,B 是Y 轴右侧圆弧上一点,则cos ∠OBC 的值为(A.21 B.23 C.53 D.549.如图:等边△ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC上一点.若∠APD=60°,则CD 的长为( )A.23B.32C.21D.4310.如图:⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于A ,AB=OA.动点P 从点A 出发,以∏厘米/秒 的速度在⊙O 上按逆时针方向运动一周回到点A 立即 停止.当点P 运动的时间为( )秒,BP 与⊙O 相切. A.1 B.5 C.0.5或5.5 D.1或5 一、 填空11.计算:tan45°+2cos45°=A BO12.如图:⊙O 的弦AB=8,OD ⊥AB 于点D ,OD=3,则⊙O 的半径等于13.如图:是二次函数y=ax 2+bx+c 的部分图象, 由图象可知方程ax 2+bx+c=0的解是14.如图:在⊙O 中,半径OA ⊥BC ,∠AOB=50°, 则∠ADC 的度数15.纸板制作一个底面半径为9厘米,母线长为30形生日礼帽,则这个圆锥形礼帽的侧面积为 16.n 个圆中,m=三、做一做17.如图:在△ABD若∠DAC=∠B ,∠AEC=求证:AE :BD=AC :18.如图:在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A+∠B=90°. (1)求证:BC 是⊙O 的切线. (2)若OA=6,BC=8,求BD 的长.19.在平面直角坐标系xoy 中,二次函数y=m x 2+nx-2的图象过A (-1,-2),B (1,0)两点, (1)求此二次函数解析式(2)点P (t,0)是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N ,当点M 位于点N 的上方时,直接写出t 取范围.2A20.如图:是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是tan ∠a=43,在与滑沙坡底C 距离200米D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)四、解答题21.AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:黄皓:(1)作OD 的垂直平分线,交⊙O 于B、C 两点.(2)连结AB 、AC ,△AB 即为所求的三角形.李明:(1)以D 为圆心,OD 长为半径作圆弧,交⊙O 于B 、C 两点. (2)连结AB ,BC ,CA ,△AB 即为所求的三角形. 已知两位同学的作法均正确,请你选择其中一种作法补全图形,并证明△AB 是等边三角形.22.已知:如图,在四边形ABCD 中,BC ﹤DC ,∠BCD=60°,∠ADC=45°,CA 平分∠BCD ,AB=AD=22,求四边形ABCD 的面积.23.将抛物丝c1:y=-3x 2+3x 沿x 轴翻折,得到抛物线c2,如图所示:(1)请直接写出抛物线c2的解析式(2)现将抛物线c1向左平移m 个单位长度,平移 后的新抛物线的顶点为M ,与x 轴的交点从左到右 依次为A 、B ;将抛物线c2向右也平移m 个单位长 度,平移后得到的新抛物线的顶点为N ,与x 轴的 交点从左到右依次为D 、E.1)用含m 的代数式表示点A 和E 的坐标.2)在平移的过程中,是否存在以点A 、M 、E 为顶点的三角形是直角三角形的情形?若存在,请求也此时m 的值:若不存在说明理由.24.在平面直角坐标系xoy 中,点B (0,3),点C 是x 轴正半轴上一点,连结BC ,过点C 作直线CP ∥y 轴.(1)若含有45°角的直角三角形,如图所示放置.其中一个顶点与O 重合,直角顶点D 在线段BC 上,另一个顶点E 在CP 上,求点C 的坐标.(2)若含30°角的直角三角形一个顶点与O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.。
鄂州市2013—2014学年度上学期期末考试九年级数学试卷(时间:120分钟 卷面:120分)一、选择题(每小题3分,共30分) 1.下列式子是最简二次根式的是( ) A .21B .313C .51D .82.在平面直角坐标系中,点A (1,3)关于原点O对称的点A′的坐标为( ) A .(-1,3) B .(1,-3)C .(3,1)D .(-1,-3)3. 下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖 B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 5.若式子12x -x 有意义,则x 的取值范围是( ) A .x ≥-2B .x >-2且x ≠1C .x≤-2D .x ≥-2且x ≠16.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB ′C ′,若AC =1,则图中阴影部分面积为( ) A .33B .63C .3D .337.如图,直线AB 、AD 分别与⊙O 相切于点B 、D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( ) A .70°B .105°C .100°D .110°’第6题图8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为 A .3 B .5 C .7 D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a -b +c <0;则正确的结论是( ) A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 . 13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 .15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 . 16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .A D C ·OB 第7题图第16题图第15题图三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222b ab -a b+,其中a =1-2,b =1+2.18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. ⑴求k 的取值范围;(4分)⑵若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DF A 重叠.⑴△BEA 绕_______点________时针方向旋转_______度能与△DF A 重合;(4分)⑵若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?21.(9分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;(4分)⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.(5分)如果人数不超过25人,人均活动费用为100元。
芜湖市滨河学校2013-2014学年第一学期九年级数学期末模拟试题姓名得分一、选择题(40分)1.下列二次根式中,最简二次根式()2.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,3.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.下列事件中是必然事件的是()A.一个直角三角形的两个锐角分别是40°和60°B.抛掷一枚硬币,落地后正面朝上C.当x是实数时,20x≥D.长为5cm、5cm、11cm的三条线段能围成一个三角形5.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,7.如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()第7题图A .60°B .45°C .30°D .20° 8.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )A.1k >-B.1k <且0k ≠C. 1k ≥-且0k ≠D. 1k >-且0k ≠9.将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A. 23(2)3y x =++B.23(2)3y x =-+C.23(2)3y x =+-D.23(2)3y x =-- 10.在同一坐标系中,一次函数y =a x +1与二次函数y =x 2+a 的图象可能是( )二、填空题(20分)11.方程x 2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 12.如图,如果从半径为5cm 的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 cm .第13题图第12题图13.如图,Rt△ABC 中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为 . 14.对于实数a ,b ,定义运算“﹡”:a ﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2= 三、解答题(90分)15.(8分)计算:18)21(|322|2+----16.(10分)当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.18.(12分)某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?19.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20,(10分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率.21.(14分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4), C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋 转后对应的△11B A C ;平移△ABC ,若A 的对应点2A 的坐标为(0,4),画出平移后对应的△222C B A ; (2)若将△11B A C 绕某一点旋转可以得到△222C B A , 请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小, 请直接写出点P 的坐标.22.(14分)如图,一次函数122y x =-+分别交y 轴、x 轴于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。
2013-2014学年上学期期末考试初三数学试卷(答题时间:120分钟 总分:120分)一:填空题(每题3分,共30分):1. 在一个袋子中装有除颜色外其它均相同的3个红球和1个白球,从中任意摸出一个球,则摸到红球的概率是_________.2、二次函数y=x 2-2x+1的对称轴是x=_____________3.在比例尺为1﹕10 000 0的地图上,量得甲、乙两地的距离是30 cm ,两地的实际距离是__________.4、将抛物线22x y =先向左平移2个单位,再向下平移1个单位得到的抛物线的解析式为_________________;5、如图,AB ∥EF ∥CD ,图中共有 对相似三角形。
6、已知相似的两个矩形中,一个矩形的长和面积分别是4和12,另一个矩形的长为6,这两个矩形的面积比______7、计算:=-+-000060tan 30cos 230sin 45tan 3______8.掷一枚正方体的骰子,六面分别标有1,2,3,4,5,6,掷一次骰子点数小于5朝上的槪率是____________.9、在RtΔABC 中,∠C=900,,3,4==b a ,则cosA 的值为______10.如果某物体的三视图如图所示,那么该物体的形状是______.二:选择题(每题3分,共30分):11. 书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书的概率是( )A .110B .35C . 310D .1512.二次函数y =-2(x -3)2-2,则其顶点为( )A.(0,0)B.(-2,-2)C.(-3,-2)D.( 3,-2)13、在RtΔABC 中,∠C=900,则ba 是∠A 的( ) A 、 正弦 B 、余弦 C 、正切 D 、以上都不对14.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.15.两个相似三角形的面积比为4:9,那么它们的对应高的比为( )A .3:2 B. 2:3 C. 4:9 D. 9:416、澜沧江防洪大坝的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为5m ,路基高为3m ,则路基的下底宽应为( )A .16mB .15mC .14.5mD .14m17、用一个平面去截圆锥,截面图形不可能是 ( )18.二次函数y=x 2﹣6x+4,则此抛物线的对称轴是( ) A .x =4 B.x=3 C. x =﹣5 D. x=﹣119、已知α为锐角,且21)20sin(=︒+α,则α等于( ) A.︒50 B.︒40 C.︒30 D.10°20.下列事件你认为是必然事件的是( )A .从一副扑克牌中任取一张牌,花色是红桃;B .明天本市一定会下雨;C .打开电视机,正在播广告;D .月亮绕着地球转三:解答题:(21、22、24每题10分,23、25每题9分,26题12分,共60分)21. 张红和王伟一起玩扑克牌游戏,在两个不透明的口袋中,分别装有形状、大小、质地等完全相同的三张卡片,甲口袋的卡片标号分别为1,2,3;乙口袋的卡片标号分别为4,5,6;分别从每个口袋中随机抽出一张卡片。
2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。
2013-2014学年上学期期末考试九年级数学试题卷一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是 ( )A 、0432=-+y x B 、ax 2+bx+c=0 C 、0212=-+xx D 、02=x2.一元二次方程x x =23的解是 ( )A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3.在Rt △ABC 中,∠C=90°,a = 4,b = 3,则sinA 的值是 ( ) A .54 B .35C .43 D .454.下列性质中正方形具有而矩形没有的是 ( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角 5.一个家庭有两个不同年龄的孩子,两个都是女孩的概率是 ( ) A .21B .31 C .41 D . 无法确定。
6. 将二次函数2y x =的图象向下平移2个单位,再向右平移1个单位,那么得到的图象对应的函数表达式为 ( ) A .2(1)2y x =-+B. 2(1)2y x =-- C. 2(1)2y x =++ D .2(1)2y x =+-7.直线 y=-2x+6与坐标轴围成的三角形面积是 ( )A. 9B. 6C. 3D. 128.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是 ( )A 、580(1+x )2=1185B 、1185(1-x )2=580C 、580(1-x )2=1185D 、1185(1+x )2=5809.在△ABC 中,,,,则最大边上的中线长为 ( ) AB :C :2D :以上都不对10=二. 填空(每小题3分,共30分)11.把方程2(x -2)2=x(x -1)化为一元二次方程的一般形式为 . 12.顺次连接等腰梯形四边中点所得的四边形是___________13.二次函数3412+--=x x y 的图象的顶点坐标是______________。
2013-2014学年上学期期末考试考试卷
数 学
考生须知:
1.全卷满分为150分,考试时间120分钟.试卷共4页,有三大题,24小题. 2.本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.答卷Ⅰ共1页、答卷Ⅱ共4页.
3.请用钢笔将姓名、准考证号分别填写在答题卷Ⅰ、Ⅱ的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2
+bx +c 的顶点坐标是)44,2(2
a
b a
c a b --. 试 卷 Ⅰ
请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选
项,不选、多选、错选,均不给分)
1、某物体的三视图是如图1所示的三个图形,那么该物体形状是 A 、长方体 B 、圆锥体 C 、立方体 D 、圆柱体
2、下列事件中,是必然事件的是 A 、在地球上,上抛出去的篮球会下落 B 、打开电视机,任选一个频道,正在播新闻 C 、购买一张彩票中奖一百万
D 、掷两枚质地均匀的正方形骰子,点数之和一定大于6
3、随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为
A 、7×10-
6 B 、 0.7×10-
6 C 、7×10-
7 D 、70×10
-8
4、下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是
5、如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=1
2
OD′,则A′B′:AB 为
A 、2:3
B 、3:2
C 、1:2
D 、2:1
A ′ ′ E ′
正视图左视图俯视图图1
(4)
(3)
沿虚线剪开
对角顶点重合折叠
(2)
6、在数轴上表示不等式组
10
240
x
x
+>
⎧
⎨
-
⎩≤
的解集,正确的是
AB
CD
7、估算3
24+的值
A、在5和6之间
B、在6和7之间
C、在7和8之间
D、在8和9之间
8、如图,抛物线)0
(
2>
+
+
=a
c
bx
ax
y的对称轴是直线1
=
x,且经过点P(3,0),则c
b
a+
-的值为
A、0
B、-1
C、1
D、2
9、如图,小明拿一张矩形纸图(1),沿虚线对折一次得图(2),再将对角两顶点重合折
叠得图(3)。
按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分
别是
A、都是等腰梯形
B、两个直角三角形,一个等腰三角形
C、都是等边三角形
D、两个直角三角形,一个等腰梯形
10、如图,已知正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的点,且AE
=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()
试卷Ⅱ
E
请将本卷的答案或解答过程用钢笔或圆珠笔写在答卷Ⅱ上. 二、填空题(本题有6小题,每小题5分,共30分) 11、
x 的取值范围是 .
12、直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为_ _____.
13、有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是 .
14、在梯形ABCD 中,AD ∥BC ,∠ABC=∠BDC=90°,AB=3,CD=2,则四边形ABCD 的面积为 .
15、在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数k
y x
=
的图象的一个交点为(2)A a ,,则k 的值等于 . 16、如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是 .
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17、(1
)计算:2
01
()
2sin 302
--+︒;(2)解方程:
22122=--+-x
x
x x . 18、如图,方格纸中△ABC 的三个顶点均在格点上,将△ABC 向右平移5格到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转180°,得到△A 1B 2C 2.
(1)在方格纸中画出△A 1B 1C 1和△A 1B 2C 2;
(2)设B 点坐标为(-3,-2),B 2点坐标为(4,2).△ABC 与△A 1B 2C 2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.
19、先化简,再求值:222
1
121
x x x x x x --⋅+-+,其中x 满
足B
C
(第16题)
2320x x -+=.
20、如图,在海岸边有一港口O .已知小岛A 在港口O 北偏东30
的方向,小岛B 在小岛A 正南方向,60OA =
海里,OB = (1)小岛B 在港口O 的什么方向?(2)求两小岛A B ,的距离.
21、今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动。
九年级一班小明同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图。
请根据小明同学所作的两个图形,解答: (1)九年级一班有多少名学生? (2)补全直方图的空缺部分。
(3)若九年级有800名学生,估计该年级去敬老院的人数.
22、某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
(1定哪种函数能表示其变化规律,说明确定是这种函数的理由,并求出它的解析式; (2)按照这种变化规律,若2009年已投入技改资金5万元. ①预计生产成本每件比2008年降低多少万元?
②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)?
23、如图23-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成
11AC
D ∆和22BC D ∆两个三角形(如图23-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点
E ,1AC 与222C D BC 、分别交于点
F 、P .
(1)当11AC D ∆平移到如图23-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;
(2)设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;
(3)在(2)的情况下,求重叠面积的最大值.
24、如图,已知抛物线2y ax bx c =++的顶点C 在以D (―2,―2)为圆心,4为半径的圆上,且经过⊙D 与x 轴的两个交点A 、B ,连结AC 、BC 、OC . (1)求点C 的坐标; (2)求图中阴影部分的面积;
(3)在x 轴上方是否存在点P 、点Q ,使以点A ,O ,P ,Q 为顶点的平行四边形的面积是三角形ACO 面积的2倍,且点P 在抛物线上?若存在,求出点P 、点Q 的坐标;若不存在,请说明理由.
C
B D A 23-1图
C 2
D 2
C 1B
D 1A
23-2图。