抽象代数-西南财经大学教师教学发展中心
- 格式:ppt
- 大小:8.23 MB
- 文档页数:112
抽象代数基础一、课程说明课程编号:130215Z10课程名称:抽象代数基础/Fundamental of Abstract Algebra课程类别:专业教育课程学时/学分:48/3先修课程:高等代数适用专业:信息与计算科学、数学与应用数学、统计学教材、教学参考书:1. 张禾瑞编,《近世代数基础》,高等教育出版社, 2010年;2. 丘维声编,《抽象代数基础》,高等教育出版社,2003年;3. 聂灵沼,丁石孙编,《代数学引论》,高等教育出版社,2000年。
二、课程设置的目的意义《抽象代数》是数学专业的专业选修课之一,它为现代数学、现代物理学、计算机科学、现代通信以及密码学等提供了语言、重要结论和研究方法。
该课程主要讲授群、环、域的基本理论和初步知识,培养学生的抽象思维和逻辑推理的能力、为后继课程学习奠定基础。
该课程的目的在于使学生初步掌握基本的抽象代数知识和抽象、严格的代数方法,培养学生的抽象思维和逻辑推理的能力;进一步理解具体与抽象、特殊与一般等辨证关系。
锻炼学生认识问题和研究问题的能力,提高学生的数学素质。
三、课程的基本要求知识:掌握群的定义,群的同态,变换群,置换群,循环群,子群,子群的陪集,不变子群、商群等; 掌握环的定义, 整环, 子环, 环同态, 剩余类环, 理想, 唯一分解整环, 主理想环, 欧式环,多项式环与因子分解等; 掌握域的定义, 域扩张, 分裂域、有限域的结构等。
进一步融合高等代数和抽象代数课程的内容,使之成为一个有机整体。
能力:通过对抽象代数基础知识的学习和基本技巧的训练,培养学生的理解能力和抽象思维能力;重视理论和具体实例之间的相互联系,培养运用抽象代数的方法分析问题和解决问题的能力。
素质:使学生初步掌握抽象代数基础理论知识,提高数学素养,为进一步学习现代数学与计算机科学等奠定基础素质;同时启发学生的科学思维方式,培养从事代数学、密码与编码等相关方向研究的科研素质。
四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定教学过程中采取课前导学、讲授、分析、随堂提问的方式进行,注重过程考核,考核方式包括:笔试、作业、随堂小测、课程考勤等。
抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。
要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。
对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。
⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。
1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。
1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。
光华园/光华园学习网/study09/经济管理类线性代数教学大纲一、课程基本情况课程名称经济管理类线性代数学分4授课对象普通经济管理类各专业讲课学时60学时教材杜之韩,刘丽,吴曦,《线性代数》(第三版),西南财经大学出版社。
教学参考书[1] 同济大学数学系,《线性代数》,高等教育出版社。
[2] 赵树塬:《线性代数》,中国人民大学出版社。
[3] 陈殿友,术洪亮,《线性代数》,清华大学出版社[4] 陆全,徐仲,《线性代数导教、导学、导考》,西北工业大学出版社。
二、课程性质、教学目的及任务经济管理类线性代数是普通经济管理类专业本科生的最主要的专业基础课程。
随着现代科学技术,尤其是计算机科学的发展,经济管理类线性代数这门课程的作用与地位显得格外重要。
通过教学,使学生掌握线性代数的基本理论与方法,培养学生正确运用代数知识来解决经济管理中的一些实际问题的能力,并为进一步学习后续课程及相关课程打好基础。
三、课程基本要求掌握经济管理类线性代数的基础理论与基本方法,包括行列式、矩阵的运算与初等变换、矩阵的秩、向量空间、向量组的极大线性无关组与向量组的秩、线性方程组、线性空间、矩阵的特征值与特征向量、矩阵的相似对角化、二次型。
了解代数知识在经济管理中的应用:投入产出数学模型、线性规划数学模型、商品空间、有限维未定权益空间、完全市场与不完全市场、层次分析与综合评判数学模型等。
四、课程教学主要内容第一章行列式【内容提要】§1.1 行列式定义排列, n级排列,逆序与逆序数,奇、偶排列,对换的定义与对换的性质,行列式定义。
§1.2 行列式的性质§1.3 行列式按行(列)展开定理元素的余子式与代数余子式,行列式按一行(列)展开定理。
行列式的K阶子式及其余子式、代数余子式,拉普拉斯(Laplace)展开定理。
§1.4 克莱姆法则【要求与说明】1.了解排列、对换等概念2.掌握n阶行列式的定义、性质与行列式按一行(列)展开定理。
《抽象代数》教学大纲一、课程基本信息课程编码:061112B中文名称:抽象代数英文名称:AbstractA1gebra课程类别:专业基础课程总学时:48(理论40,实践8)总学分:3适用专业:数学与应用数学先修课程:高等代数二、课程的性质、目标和任务抽象代数(或近世代数)是数学与应用数学专业学生的一门专业课,是高等代数的继续和提高,本课程主要研究各种代数系统一-群、环、域等的结构。
通过本课程的学习,使学生获得一定的抽象代数基础知识,受到代数方法的初步训练,提高辩证思维和逻辑推理能力,并为进一步学习专业知识打下基础。
三、课程教学基本要求1、授课:以课堂讲授为主,采取板书配以多媒体的方式。
2、习题课:进行典型问题分析,方法总结,难题讲解,与学生黑板演题相结合,训练学生的逻辑思维能力,解题能力和思维严密性。
3、作业:每次课后配以一定量的书面作业,按学院统一要求每周批改一次。
4、辅导:每周进行答疑辅导。
四、课程教学内容及要求第一章基本概念(6学时)【教学目标与要求】1、理解代数运算,同态与同构等概念。
2、掌握等价关系,集合的分类等概念。
【教学重点与难点】1、教学重点:代数运算、同态与同构。
2、教学难点:等价关系与集合分类的内在联系。
【教学内容】1.1集合1.2映射与变换1.3代数运算14运算律1.5同态与同构1.6等价关系与集合的分类第二章群(16学时)【教学目标与要求】1、掌握群和半群的定义,熟知群和半群的一些典型实例;理解元素阶的定义和性质。
2、理解并掌握循环群的概念和表示。
3、了解变换群,理解置换群。
4、理解陪集、指数的概念和Iagrange定理。
【教学重点与难点】1、教学重点:群的概念,子群、循环群、置换群、陪集的概念和基本性质。
2、教学难点:变换群。
【教学内容】2.1群的定义和初步性质2.2群中元素的阶2.3子群2.4循环群2.5变换群2.6置换群3.7陪集、指数和1agrange定理第三章正规子群和群的同态与同构(14学时)【教学目标与要求】1、掌握正规子群和商群的定义和性质。
《抽象代数》课程思政教学大纲一、课程信息课程名称:抽象代数Abstract Algebra课程代码:06S1114B课程类别:专业核心课程/必修课适用专业:数学与应用数学课程学时:64学时课程学分:4学分修读学期:第5学期先修课程:高等代数1、高等代数2二、课程目标抽象代数以群、环、域等代数系统为其基本内容。
它对高等代数中出现的数域、多项式、矩阵、线性空间等概念进一步概括,具有抽象的特点,适宜于培养学生抽象思维和逻辑推理的能力。
它不仅是将来学习代数的一个入门,而且与其它学科,如几何、拓扑、泛函和有限数学等有密切联系。
抽象代数主要讲授群、环、域的基本概念、基本理论、基本性质等。
群方面介绍变换群、置换群、循环群、正规子群、商群、群同态、n元交错群等;环方面介绍模n剩余类环、多项式环、理想、商环、同态及同构等。
域方面介绍域的基本定理、基本性质。
先修课程为高等代数等课程。
(一)具体目标通过本课程的学习,使学生达到以下目标:1.深刻理解群(半群、子群)、环(子环、理想)、域等基本概念;熟练掌握一些群(循环群、置换群、变换群、一般线性群等),环(整环、除环、模n剩余类环、多项式环等),域(有理分式域等)的概念以及相关概念(运算与运算律、等价关系与集合的分类、群的同态与同构、环的同态与同构、正规子群与商群、理想与商环、环的特征、单位群等)。
【支撑毕业要求指标点3.1、3.2、3.3】2.准确计算群、环、域中零元及单位元、元素的逆、元素的阶,环中的可逆元和零因子;正确写出子群的陪集,商群、商环中的元素表达式;精确确定循环群的生成元及子群、模n剩余类环的子环和理想、代数元的极小多项式等。
【支撑毕业要求指标点3.1、3.3、7.1】3.熟练应用群的同构对阶数较小的群进行同构分类;熟练应用群(环、域)的有关结果(凯莱定理、同态基本定理、同构定理等)证明群(环、域)中的有关结论。
【支撑毕业要求指标点3.1、3.3、7.1】4.了解抽象代数发展的历史脉络以及它与一些著名的初等代数、古典数论等问题之间的联系,熟练掌握抽象代数独特的处理问题的思想方法,能够把这种思想方法运用到中学数学教学之中;具备团队合作精神和一定的创新能力。