2019年8月浙江省学考选考高2020届高2017级浙江省Z20联盟开学考数学模拟试题1
- 格式:pdf
- 大小:1.14 MB
- 文档页数:6
浙江省名校新高考研究联盟(Z20)2019届高三第一次联考数学试题一:选择题。
1.已知集合,,则A. B.C. D. 或【答案】C【解析】【分析】利用一元二次不等式的解法化简集合,再由交集的定义求解即可.【详解】集合,,.故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.设复数满足为虚数单位,则A. B. i C. D. 1【答案】B【解析】【分析】把已知等式变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果. 【详解】由,得.故选B.【点睛】本题考查了复数代数形式的乘除运算,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.设函数,则的值为【答案】C【解析】【分析】由分段函数,先求=ln2,然后根据判断范围再由分段函数另一段求出值【详解】,=ln2,ln2,即=【点睛】本题主要考察分段函数求函数值,这类题目,需要判断自变量所在范围,然后带入相应的解析式解答即可4.已知是空间中两条不同的直线,,是两个不同的平面,则下列命题正确的是A. 若,,,,则B. 若,,则C. 若,,则D. 若,,,则【答案】D【解析】【分析】利用与相交或平行判断;根据与相交、平行或判断;根据或判断;由面面垂直的判定定理得.【详解】由,是空间中两条不同的直线,,是两个不同的平面,得:若,,,,则与相交或平行,故错误;若,,则与相交、平行或,故错误;若,,则或,故错误;若,,,则由面面垂直的判定定理得,故正确.故选D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5.已知实数满足约束条件,则的最大值为【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出实数满足约束条件对应的平面区域如图阴影部分由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大由解得.代入目标函数得.即目标函数的最大值为4.故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.已知双曲线:,则“”是“双曲线的焦点在轴上”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据充分条件和必要条件的定义,结合总表示焦点在轴上判断即可.【详解】双曲线的焦点在轴上或,或,或推不出,“”是“双曲线的焦点在轴上”的充分不必要条件.故选A.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7.函数的图象可能是A.B.C.D.【答案】A【解析】【分析】利用排除法,由是奇函数排除;排除;排除;从而可得结果.【详解】因为,可得是奇函数排除;当时,,点在轴的上方,排除;当时,,排除;故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8.已知,是椭圆与的左、右焦点,过左焦点的直线与椭圆交于,两点,且满足,,则该椭圆的离心率是A. B. C. D.【答案】B【解析】【分析】由,,利用椭圆的定义,求得,,,可得,,由二倍角公式列方程可得结果.【详解】由题意可得:,,可得,,,,,,,可得,可得.故选B.【点睛】本题考查椭圆的简单性质的应用以及椭圆的离心,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.9.已知实数,满足,,则的最小值是A. 10B. 9C.D.【答案】B【解析】【分析】利用基本不等式求得,则,展开后再利用基本不等式可求得的最小值.【详解】,,,,当且仅当时,取等号.则,当且仅当时,且,时,的最小值为9,故选B.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).10.已知三棱锥的所有棱长为是底面内部一个动点包括边界,且到三个侧面,,的距离,,成单调递增的等差数列,记与,,所成的角分别为,,,则下列正确的是A. B. C. D.【答案】D【解析】【分析】利用公式将问题转化为:比较与,,夹角的大小,然后判断到,,的距离,在中确定所在区域,利用数形结合可以解决.【详解】依题意知正四面体的顶点在底面的射影是正三角形的中心,则,,其中,表示直线、的夹角,,,其中,表示直线、的夹角,,,其中,表示直线的夹角,由于是公共的,因此题意即比较与,,夹角的大小,设到,,的距离为,,则,其中是正四面体相邻两个面所成角,所以,,成单调递增的等差数列,然后在中解决问题由于,结合角平分线性质可知在如图阴影区域不包括边界从图中可以看出,、所成角小于所成角,所以,故选D.【点睛】本题考查了异面直线及其所成角,以及公式的应用,考查了转化思想与数形结合思想的应用,属于难题.若直线与其在平面内的射影所成的角为,平面内任意直线与、成的角为,则.二:填空题。
2019年8月浙江省学考选考高2020届高2017级浙江省Z20联盟开学考语文模拟试题及参考答案绝密★考试结束前(高三暑假返校联考)浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考语文试题卷命题:绍兴鲁迅中学彭玉华、潘颂一审题:元济高级中学沈丁飞桐乡高级中学廖城平校对:徐晓琦、金小娟一、语言文字运用(共20分)1.下列各句中,没有错别字且加点字的注音全都正确的一项是( )(3分)A.此刻,窗外的雨不再是清冷的秋雨了,在我的眸里是一种柔软,似撒.(sǎ)娇少女的情怀,是怜,是爱,是柔,是润在我心里的一种憧憬.(jǐng)。
B.财政部驻各地财政监察专员办事处要紧密结合工作重点,加强对属.(shǔ)地中央预算单位国库集中支付资金支付行为的监控,督促有关单位堵塞.(sè)漏洞和健全制度C.成功路上无坦途,改革不会一劳永逸,面对新变化新问题,小岗人也曾彳亍,却始终坚守改革初心,奋楫.(jì)争流,不断瞠.(tāng)出一条条发展新路,带来一波波改革红利。
D.虽然礼堂里有冷气,但曹元朗穿了黑呢.(ní)礼服,忙得满头大汗,我看他戴的白硬领圈,给汗浸.(jìn)得又黄又软。
我只怕他整个胖身体全化在汗里,像洋蜡烛化成一滩油。
阅读下面的文字,完成2~3题。
(5分)5月16日,享誉世界的华裔建筑大师贝聿铭去世,享年102岁。
【甲】从法国卢浮官前的玻璃金字塔,大理石砌成的华盛顿国家美术馆,到维多利亚港口边矗立的香港中银大厦,贝聿铭的建筑手笔,将艺术之美凝固于大地,被时间证明永恒。
1983年,贝聿铭捧得建筑学界最高奖项:普利兹克奖。
【乙】评委会认为:“贝聿铭给以..我们本世纪最优美的室内空间和建筑形体,他始终关注他的建筑周边的环境,……对于材料的运用达到了诗一般的境界。
”【丙】贝聿铭被称为“最后的现代主义建筑大师”,他的现代主义有着一种鲜明的个人烙印——干净、内敛、边缘锐利、对几何形状的肆意使用等。
2019年8月浙江省学考选考高2020届高2017级浙江省Z20联盟开学考数学模拟试题及参考答案1
2π
2π-浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考数学试题卷
选择题部分
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合()(){}310A x x x =-+>,{}
11B x x =->,则()R C A B = A.[)(]1,02,3- B.(]2,3 C.()(),02,-∞+∞ D.()()
1,02,3- 2、已知双曲线22
:193
x y C -=,则C 的离心率为
D.23、已知,a b 是不同的直线,αβ,是不同的平面,若,,a b αβαβ⊥⊥∥,则下列命题中正确的是A.b α⊥ B.b α∥ C.αβ⊥ D.αβ∥4、已知实数,x y 满足()3121x x y y x ?≤?+≥??≤-?
,则2x y +的最大值为
A.11
B.10
C.6
D.45、已知圆C 的方程为()2231x y -+=,若y 轴上存在一点A ,使得以A 为圆心,半径为3的圆与圆
C 有公共点,则A 的纵坐标可以是
A.1
B.-3
C.5
D.-7
6、已知函数()221,0log ,0
x x f x x x ?+-≤?=?>??,若()1f a ≤,则实数a 的取值范围是A.(][),42,-∞-+∞ B.[]1,2- C.[)(]4,00,2- D.[]
4,2-7、已知函数()()ln cos f x x x =?,以下哪个是()f x 的图象
A
B
C.D。
浙江省名校新高考研究联盟(Z20联盟)2020届高三数学第一次联考试题(含解析)一、选择题1.已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A. [1,0)(2,3]-B. (2,3]C. (,0)(2,)-∞+∞D. (1,0)(2,3)-【答案】A 【解析】 【分析】解一元二次不等式和绝对值不等式,化简集合A , B 利用集合的交、补运算求得结果.【详解】因为集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖, 所以{|3A x x =>或1}x <-,{|2B x x =>或0}x <, 所以{|13}R C A x x =-≤≤,所以()R C A B ⋂={|23x x <≤或10}x -≤<,故选A.【点睛】本题考查一元二次不等式、绝对值不等式的解法,考查集合的交、补运算.2.已知双曲线22:193x y C -=,则C 的离心率为( )D. 2【答案】C 【解析】 【分析】由双曲线的方程得229,3a b ==,又根据222c a b =+,可得,a c 的值再代入离心率公式.【详解】由双曲线的方程得229,3a b ==,又根据2229312c a b =+=+=,解得:3,23a c ==,所以23c e a ==,故选C. 【点睛】本题考查离心率求法,考查基本运算能力.3.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C.【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明.4.已知实数,x y 满足312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩,则2z x y =+的最大值为( )A. 11B. 10C. 6D. 4【答案】B 【解析】 【分析】画出约束条件所表示的可行域,根据目标函数2z x y =+的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,观察可行域,确定最优解的点坐标,代入目标函数求得最值.【详解】画出约束条件312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩所表示的可行域,如图所示,根据目标函数2z x y =+的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,当直线过点(3,4)A 时,其截距最大,所以max 23410z =⨯+=,故选B. 【点睛】本题考查线性规划,利用目标函数的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,考查数形结合思想的应用.5.已知圆C 的方程为22(3)1x y -+=,若y 轴上存在一点A ,使得以A 为圆心、半径为3的圆与圆C 有公共点,则A 的纵坐标可以是( ) A. 1B. –3C. 5D. -7【答案】A 【解析】 【分析】设0(0,)A y ,以A 为圆心、半径为3的圆与圆C 有公共点,可得圆心距大于半径差的绝对值,同时小于半径之和,从而得到0y <<【详解】设0(0,)A y,两圆的圆心距d =因为以A 为圆心、半径为3的圆与圆C 有公共点,所以313124d -<<+⇒<<,解得0y <<B 、C 、D 不合题意,故选A.【点睛】本题考查两圆相交的位置关系,利用代数法列出两圆相交的不等式,解不等式求得圆心纵坐标的范围,从而得到圆心纵坐标的可能值,考查用代数方法解决几何问题.6.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A. (4][2,)-∞-+∞ B. [1,2]-C. [4,0)(0,2]-D. [4,2]-【答案】D 【解析】 【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩,解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.7.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象( )A. B.C. D.【答案】B 【解析】 【分析】由2x π=时的函数值,排除C,D ;由2x π=的函数值和322x ππ<<函数值的正负可排除A. 【详解】当2x π=时,(2)ln 20f ππ=>排除C,D , 当2x π=时,()02f π=,当322x ππ<<时,ln 0,cos 0x x ><, 所以()0f x <排除A, 故选B.【点睛】本题考查通过研究函数解析式,选择函数对应的解析式,注意利用特殊值进行检验,考查数形结合思想的运用.8.在矩形ABCD 中,4AB =,3AD =,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE ∆',使得点A '在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角A BE C '--的大小为θ,直线A B ','A C 与平面BCDE 所成的角分别为,αβ,则( )A. βαθ<<B. βθα<<C. αθβ<<D. αβθ<<【答案】D 【解析】 【分析】由折叠前后图象的对比得点A '在面BCDE 内的射影'O 在线段OF 上,利用二面角、线面有的定义,求出tan ,tan ,tan αβθ的表达式,再进行大小比较.【详解】如图所示,在矩形ABCD 中,过A 作AF BE ⊥交于点O ,将ABE ∆沿直线BE 折成A BE ∆',则点A '在面BCDE 内的射影'O 在线段OF 上,设A '到平面BCDE 上的距离为h ,则''h AO =,由二面角、线面角的定义得:'tan h O O θ=,'tan h O B α=,'tan hO Cβ=,显然'''',O O O B O O O C <<,所以tan θ最大,所以θ最大, 当'O 与O 重合时,max (tan )h OB α=,min (tan )h OCβ=, 因为h OB <hOC,所以max (tan )α<min (tan )β,则tan tan αβ<,所以αβ<, 所以αβθ<<,故选D.【点睛】本题以折叠问题为背景,考查二面角、线面角大小比较,本质考查角的定义和正切函数的定义,考查空间想象能力和运算求解能力.9.已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的一个( )条件 A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要【答案】A 【解析】 【分析】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,再从函数在[0]2,上的零点个数得出相应条件,从而解出+a b 的范围.【详解】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,函数()f x 至少有一个零点属于区间[0]2,分为两种情况: (1)函数()f x 在区间[0]2,上只有一个零点0,(0)(2)0,f f ∆>⎧⇔⎨⋅≤⎩2222(0)(2)(42)2424f f b a b b ab b b ab a b a ⋅=++=++=+++- 22()40a b b a =++-≤,即22()4a b a b +≤-又因为240a b ->,所以,a b ≤+≤(2)函数()f x 在[0]2,上有2个零点0,(0)0,(2)420,02,2f b f a b a ∆>⎧⎪=≥⎪⎪⇔⎨=++≥⎪⎪<-<⎪⎩解得:20a b -≤+≤; 综上所述“函数()f x 至少有一个零点属于区间[0]2,”⇔20a b -≤+≤或a b ≤+≤所以20a b -≤+≤⇒20a b -≤+≤或a b ≤+≤ 而后面推不出前面(前面是后面的子集),所以“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的充分不必要条件,故选A.【点睛】本题考查二次函数的性质、简易逻辑的判定方法,考查推理能力与计算能力,属于基础题.10.已知数列{}n a 满足:1102a <<,()1ln 2n n n a a a +=+-.则下列说法正确的是( ) A. 2019102a << B. 2019112a <<C. 2019312a <<D. 2019322a <<【答案】B 【解析】 【分析】考察函数()ln(2)(02)f x x x x =+-<<,则'11()1022xf x x x-=-=>--先根据单调性可得1n a <,再利用单调性可得1231012n a a a a <<<<<<<<.【详解】考察函数()ln(2)(02)f x x x x =+-<<,由'11()1022xf x x x-=-=>--可得()f x ()0,1单调递增,由'()0f x <可得()f x 在()1,2单调递减且()()11f x f ≤=,可得1n a <,数列{}n a 为单调递增数列, 如图所示:且1(0)ln 2ln 4ln 2f e ==>=,211()(0)2a f a f =>>,图象可得1231012n a a a a <<<<<<<<,所以2019112a <<,故选B. 【点睛】本题考查数列通项的取值范围,由于数列是离散的函数,所以从函数的角度来研究数列问题,能使解题思路更简洁,更容易看出问题的本质,考查数形结合思想和函数思想.二、填空题11.复数2(1)1i z i-=+(i 为虚数单位),则z 的虚部为_____,||z =__________.【答案】 (1). -1 (2). 2 【解析】 【分析】复数z 进行四则运算化简得1i z =--,利用复数虚部概念及模的定义得虚部为1-,模为2.【详解】因为2(1)2(1)11(1)(1)i i i z i i i i ---===--++-,所以z 的虚部为1-,22||(1)12z =-+=,故填:1-;2.【点睛】本题考查复数的四则运算及虚部、模的概念,考查基本运算能力.12.某几何体的三视图为如图所示的三个正方形(单位:cm ),则该几何体的体积为_____3cm ,表面积为____2cm .【答案】 (1). 233(2). 23 【解析】 【分析】判断几何体的形状,利用三视图的数据求解几何体的体积与表面积. 【详解】由题意可知几何体为正方体去掉一个三棱锥的多面体,如图所示:正方体的棱长为2,去掉的三棱锥的底面是等腰直角三角形,直角边长为1,棱锥的高为2, 所以多面体的体积为:1123222112323⨯⨯-⨯⨯⨯⨯=3cm , 表面积为:2212116222(5)()11212232222⨯⨯+⨯⨯--⨯⨯-⨯⨯⨯=2cm【点睛】本题考查几何体的三视图的应用,几何体的体积与表面积的求法,考查空间想象能力和运算求解能力.13.若7280128(2)(21)x x a a x a x a x +-=++++,则0a =______,2a =_____.【答案】 (1). –2 (2). –154 【解析】 【分析】令0x =得:02a =-,求出两种情况下得到2x 项的系数,再相加得到答案. 【详解】令0x =得:02a =-,展开式中含2x 项为:(1)当(2)x +出x ,7(21)x -出含x 项,即1617(2)(1)T x C x =⋅⋅⋅-; (2)当(2)x +出2,7(21)x -出含2x 项,即225272(2)(1)T C x =⋅⋅⋅-; 所以2a =1277224(1)154C C ⋅+⋅⋅⋅-=-,故填:2-;154-.【点睛】本题考查二项式定理展开式中特定项的系数,考查逻辑推理和运算求解,注意利用二项式定理展开式中,项的生成原理进行求解.14.在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,36AC BC BD ===,60EDC ∠=︒,则BE =________,cos CED ∠=________.【答案】 (1). 326+ (2). 2 【解析】 【分析】在BDE ∆中利用正弦定理直接求出BE ,然后在CEB ∆中用余弦定理求出CE ,再用余弦定理求出cos CEB ∠,进一步得到cos CED ∠的值.【详解】如图ABC ∆中,因为60EDC ∠=︒,所以120EDB ∠=︒, 所以sin sin BE BD EDB BED =∠∠,即2sin120sin15BE =,解得:33326sin152321BE ===+⋅-⋅在CEB ∆中,由余弦定理,可得:2222cos CE BE CB BE CB B =+-⋅2242(422)=-=-,所以422CE =-2221cos 22CE BE CB CEB CE BE +-∠==⋅,CEB 60,︒∠=CED CEB BED 45∠=∠-∠=,所以2cos 2CED ∠=326;22.【点睛】本题考查正弦定理和余弦定理在三角形中的运用,求解过程中注意把相关的量标在同一个三角形中,然后利用正、余弦定理列方程,考查方程思想的应用.15.某高三班级上午安排五节课(语文,数学,英语,物理,体育),要求语文与英语不能相邻、体育不能排在第一节,则不同的排法总数是_______(用数字作答). 【答案】60 【解析】 【分析】先求出体育不能排在第一节的所有情况,从中减去体育不能排在第一节,且语文与英语相邻的情况,即为所求.【详解】体育不能排在第一节,则从其他4门课中选一门排在第一节,其余的课任意排,它的所有可能共有144496A A ⋅=种.其中,体育不能排在第一节,若语文与英语相邻,则把语文与英语当做一节,方法有22A 种,则上午相当于排4节课,它的情况有:13233236A A A ⋅⋅=种.故语文与英语不能相邻,体育不能排在第一节,则所有的方法有963660-=种.【点睛】本题考查用间接法解决分类计数原理问题,以及特殊元素特殊处理,属于中档题.16.已知,A B 是抛物线24y x =上的两点,F 是焦点,直线,AF BF 的倾斜角互补,记,AF AB 的斜率分别为1k ,2k ,则222111k k -=____. 【答案】1 【解析】 分析】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得到关于x 的一元二次方程,利用韦达定理得到12,k k 的关系,从而求得222111k k -的值. 【详解】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得:2222111(24)0k x k x k -++=,所以2112211224,1,k x x k x x ⎧++=⎪⎨⎪=⎩,因为2221122221121121212y y k k k x x k x x x x x x -==⇒==-++++,所以212222211111111k k k k k +-=-=,故填:1. 【点睛】本题考查直线与抛物线的位置关系,会用坐标法思想把所要求解的问题转化成坐标运算,使几何问题代数化求解.17.已知非零平面向量,a b 不共线,且满足24a b a ⋅==,记3144c a b =+,当,b c 的夹角取得最大值时,||a b -的值为______. 【答案】4 【解析】 【分析】先建系,再结合平面向量数量积的坐标及基本不等式的应用求出向量b ,进而通过运算求得||a b -的值.【详解】由非零平面向量,a b 不共线,且满足24a b a ⋅==,建立如图所示的平面直角坐标系:则(2,0),(2,),0A B b b >,则(2,0),(2,)a b b ==,由3144c a b =+,则(2,)4b C , 则直线,OB OC 的斜率分别为,28b b, 由两直线的夹角公式可得:3328tan BOC 841282b b b b b b -∠==≤=+⨯+,当且仅当82bb =,即4b =时取等号,此时(2,4)B ,则(0,4)a b -=-, 所以||4a b -=,故填:4.【点睛】本题考查平面向量数量积的坐标运算及基本不等式求最值的运用,考查转化与化归思想,在使用基本不等式时,注意等号成立的条件.三、解答题18.已知函数2()cos cos f x x x x =+. (1)求3f π⎛⎫⎪⎝⎭的值; (2)若13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,求cos α的值. 【答案】(1)1;(2) 4cos 10α= 【解析】 【分析】(1)利用倍角公式、辅助角公式化简1()sin 226f x x π⎛⎫=++ ⎪⎝⎭,再把3x π=代入求值; (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,利用角的配凑法得:66ππαα=+-,再利用两角差的余弦公式得cos α=. 【详解】解:(1)因为21cos21()cos cos sin 22226x f x x x x x x π+⎛⎫=+=+=++ ⎪⎝⎭,所以121511sin sin 132362622f ππππ⎛⎫⎛⎫=++=+=+=⎪⎪⎝⎭⎝⎭. (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭得43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 334cos cos cos cos sin sin 66666610ππππππαααα+⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】本题考查三角恒等变换中的倍角公式、辅助角公式、两角差的余弦公式等,考查角的配凑法,考查运算求解能力.19.在三棱柱111ABC A B C -中,底面ABC ∆是等腰三角形,且90ABC ∠=︒,侧面11ABB A 是菱形,160BAA ∠=︒,平面11ABB A ⊥平面BAC ,点M 是1AA 的中点.(1)求证:1BB CM ⊥;(2)求直线BM 与平面1CB M 所成角的正弦值.【答案】(1) 证明见解析;10【解析】 【分析】(1)证明直线1BB 垂直CM 所在的平面BCM ,从而证明1BB CM ⊥;(2)以A 为原点,BC 为x 轴正方向,AB 为y 轴正方向,垂直平面ABC 向上为z 轴正方向建立平面直角坐标系,设2AB =,线面角为θ,可得面1B MC 的一个法向量(23,3,5)n =-,330,,22BM ⎛⎫=- ⎪ ⎪⎝⎭,代入公式sin |cos ,|n BM θ=<>进行求值. 【详解】(1)证明:在Rt ABC ∆中,B 是直角,即BC AB ⊥,平面ABC ⊥平面11AA B B , 平面ABC平面11AA B B AB =,BC ⊂平面ABC ,BC ∴⊥平面11AA B B AB =,1BC B B ∴⊥.在菱形11AA B B 中,160A AB ︒∠=,连接BM ,1A B 则1A AB ∆是正三角形,∵点M 是1AA 中点,1AA BM ∴⊥. 又11//AA B B ,1BB BM ∴⊥.又BMBC B =,1BB ∴⊥平面BMC1BB MC ∴⊥.(2)作1BG MB ⊥于G ,连结CG .由(1)知BC ⊥平面11AA B B ,得到1BC MB ⊥, 又1BG MB ⊥,且BCBG B =,所以1MB ⊥平面BCG .又因为1MB ⊂平面1CMB ,所以1CMB ⊥BCG , 又平面1CMB 平面BCG CG =,作BH CG ⊥于点H ,则BH ⊥平面1CMB ,则BMH ∠即为所求线面角. 设 2AB BC ==, 由已知得1221302,3,BB BM BG BH ====sinBHBMHBM∠===,则BM与平面1CB M所成角的正弦值为5.【点睛】本题考查空间中线面垂直判定定理、求线面所成的角,考查空间想象能力和运算求解能力.20.已知数列{}n a为等差数列,n S是数列{}n a的前n项和,且55a=,36S a=,数列{}n b满足1122(22)2n n na b a b a b n b+++=-+.(1)求数列{}n a,{}n b的通项公式;(2)令*,nnnac n Nb=∈,证明:122nc c c++<.【答案】(1) n a n=.2nnb=. (2)证明见解析【解析】【分析】(1)利用55a=,36S a=得到关于1,a d的方程,得到na n=;利用临差法得到12nnbb-=,得到{}n b是等比数列,从而有2nnb=;(2)利用借位相减法得到12111121222222n n nn n-+++++-=-,易证得不等式成立. 【详解】(1)设等差数列{}n a的公差为d,11145335a da d a d+=⎧∴⎨+=+⎩,解得111ad=⎧⎨=⎩,∴数列{}n a的通项公式为n a n=.122(22)2n nb b nb n b∴++=-+,当2n≥时,12112(1)(24)2n nb b n b n b--++-=-+11(24)(2)2nn n n b n b n b b --⇒-=-⇒=, 即{}n b 是等比数列,且12b =,2q =,2n n b ∴=. (2)2n n n n a nc b ==,记121212222n nn S c c c =++=++⋯+, 则1212321222n nS -=++++, 1211112212222222n n n n n S S S -+∴=-=++++-=-<.【点睛】本题考查数列通项公式、前n 项和公式等知识的运用,考查临差法、错位相减法的运用,考查运算求解能力.21.已知抛物线24x y =,F 为其焦点,椭圆22221(0)x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于,P Q 两点,46||3PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于,B C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED ∆,FOD ∆的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.【答案】(1)22143x y+=. (2) ()2,1【解析】【分析】(1)由题设可知26,13P⎛⎫⎪⎝⎭,又12e=,把,a b均用c表示,并把点26,13P⎛⎫⎪⎝⎭代入标圆方程,求得1c=;(2)根据导数的几可意义求得直线BC的方程,根据韦达定理及中点坐标公式求得点E的坐标,求得中垂线方程,即可求得K点坐标,根据三角形面积公式,即可求得点A坐标. 【详解】(1)不妨设P在第一象限,由题可知26,1P⎛⎫⎪⎝⎭,228113a b∴+=,又12e=,22811123c c∴+=,可得1c=,椭圆的方程为22143x y+=.(2)设2,4xA x⎛⎫⎪⎝⎭则切线l的方程为20024x xy x=-代入椭圆方程得:()422300031204xx x x x+-+-=,设()()()112233,,,,,B x yC x y E x y,则()31232223xx xxx+==+,()2200033232443x x xy xx=-=-+,KE 的方程为()()230022000324323x x y x x x x ⎡⎤+=--⎢⎥++⎢⎥⎣⎦, 即()20200243x y x x x =-++, 令0y =得()32083K x x x =+, 在直线l 方程中令0y =得02D x x =, 222004124x x FD +⎛⎫=+=⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,002,2FD BC x k k x =-=, 1FD BC k k ∴⋅=-,FD BC ⊥,DEK FOD ∴∆∆∽,()()22200122220941849163x x S DK S FD x +∴===+. 化简得()()2200177240x x+-=,02x ∴=(02x =-舍去)A ∴的坐标为()2,1.()4223031204x x x x x +-+-=,()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理、中点坐标公式、三角形的面积公式,考查逻辑推理和运算求解能力.22.设a 为实常数,函数2(),(),xf x axg x e x R ==∈.(1)当12a e=时,求()()()h x f x g x =+的单调区间; (2)设m N *∈,不等式(2)()f x g x m +≤的解集为A ,不等式()(2)f x g x m +≤的解集为B ,当(]01a ∈,时,是否存在正整数m ,使得A B ⊆或B A ⊆成立.若存在,试找出所有的m ;若不存在,请说明理由.【答案】(1) ()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)存在,1m =【解析】【分析】(1)当12a e =时得21()2x h x x e e=+,求导后发现()h x '在R 上单调递增,且(1)0h '-=,从而得到原函数的单调区间;(2)令2()(2)()4x F x f x g x ax e =+=+,22()()(2)x G x f x g x ax e =+=+,利用导数和零点存在定理知存在120x x <≤,使得()()12F x F x m ==,再对m 分1m =和1m 两种情况进行讨论.【详解】解:(1)21()2x h x x e e =+,1()x h x x e e'=+, ∵()h x '在R 上单调递增,且(1)0h '-=,∴()h x '在(),1-∞-上负,在()1,-+∞上正, 故()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)设2()(2)()4x F x f x g x ax e =+=+,22()()(2)xG x f x g x ax e =+=+ ()8x F x ax e '=+,()80x F x a e ''=+>,()F x '∴单调递增.又(0)0F '>,0F '⎛ < ⎪ ⎪⎝⎭(也可依据lim ()0x F x '→-∞<), ∴存在00 x <使得()00F x '=,故()F x 在()0,x -∞上单调递减,在()0,x +∞上单调递增.又∵对于任意*m N ∈存在ln x m >使得()F x m >,又lim ()x F x →-∞→+∞,且有()0(0)1F x F m <=≤,由零点存在定理知存在120x x <≤,使得()()12F x F x m ==,故[]34,B x x =.()()222()()4x x F x G x ax e ax e -=---,令2()xH x ax e =-,由0a >知()H x 在(,0)-∞上单调递减,∴当0x <时,()()(2 )()0F x G x H x H x -=->又∵m 1≥,3x 和1x 均在各自极值点左侧,结合()F x 单调性可知()()()133F x m G x F x ==<,310x x ∴<<当1m =时,240x x ==, A B ∴⊆成立,故1m =符合题意.当0x >时,2222()()33x x x x F x G x ax e e x e e -=+-≤+-, 令1()2ln P t t t t =--,则22(1)()0t P t t '-=>, ∴当1t >时,()(1)0P t P >=. 在上式中令2x t e =,可得当0x >时,有22x xe e x -->成立, 322x x x e e xe ∴-> 令()2t Q t e t =-,则()2tQ t e '=-, ()(ln2)22ln20Q t Q ∴≥=->,2x e ∴>恒成立. 故有32223x x x e e xe x ->>成立,知当0x >时,()()0F x G x -<又∵()F x ,()G x 在[)0,+∞上单调递增,∴当1m 时,()()()244F x m G x F x ==>,240x x ∴>>,而31 0x x <<,∴此时A B ⊆和B A ⊆均不成立.综上可得存在1m =符合题意.【点睛】本题考查利用导数研究函数的单调性、零点存在定理,特别要注意使用零点存在定理判断零点的存在性,要注意说明端点值的正负.同时,对本题对构造法的考查比较深入,对逻辑推理、运算求解的能力要求较高,属于难题.。
Z20名校联盟(浙江省名校新高考研究联盟)2024届高三第二次联考数学试题卷(答案在最后)注意事项:1.答卷前,务必将自己的姓名,考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.请保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合{}2,0,2,{2}M N x =-=<,则M N ⋂=()A.{}2,0,2- B.{}2,0- C.{}0,2 D.{}0【答案】C 【解析】【分析】求出对应集合,再利用交集的定义求解即可.2<,解得22x -<≤,则{22}N xx =-<≤∣,故M N ⋂={}0,2,故选:C2.已知12i +是关于x 的实系数一元二次方程220x x m -+=的一个根,则m =()A.2B.3C.4D.5【答案】D 【解析】【分析】利用复数相等可求参数的值.【详解】因为12i +是关于x 的实系数一元二次方程220x x m -+=的一个根,所以()()2012i 12i 2m +-++=,整理得到:50m -=即5m =,故选:D.3.已知向量()()1,1,2,0a b =-= ,向量a 在向量b 上的投影向量c =()A.()2,0- B.()2,0C.()1,0- D.()1,0【答案】C 【解析】【分析】利用平面向量投影向量的定义求解.【详解】解:因为向量()()1,1,2,0a b =-=,所以向量a 在向量b 上的投影向量()21,0a b c b b⋅=⋅=- ,故选:C4.已知直线0x my -=交圆22:((1)4C x y -+-=于,A B 两点,设甲:0m =,乙:60ACB ∠= ,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】A 【解析】【分析】结合直线和圆的位置关系,判断甲:0m =和乙:60ACB ∠= 之间的逻辑推理关系,即可得答案.【详解】圆22:((1)4C x y -+-=的圆心为,半径为2r =,当0m =时,直线0x =,则到直线0x =,此时||2AB ==,而||||2CA CB ==,即ACB △为正三角形,故60ACB ∠= ;当60ACB ∠= 时,ACB △为正三角形,则C 到AB 的距离为sin 60d r == ,即圆心C 到直线0x my -=距离为d ==,解得0m =或m =,即当60ACB ∠= 时,不一定推出0m =,故甲是乙的充分条件但不是必要条件,故选:A5.已知数列{}n a 满足()()()2*1123214832,,1n n n a n a n n n n a ----=-+≥∈=N ,则n a =()A.22n -B.22n n -C.21n -D.2(21)n -【答案】B 【解析】【分析】根据递推关系可证明21n a n ⎧⎫⎨⎬-⎩⎭为等差数列,即可求解.【详解】()()()()212321483=2123n n n a n a n n n n ----=-+--,所以112123n n a a n n --=--,111a =,所以21n a n ⎧⎫⎨⎬-⎩⎭为等差数列,且公差为1,首项为1,故1+121na n n n =-=-,即()2212n a n n n n =-=-,故选:B6.函数()()2ln 21f x x x x =--+的单调递增区间是()A.()0,1 B.1,12⎛⎫⎪⎝⎭C.11,22⎛⎫- ⎪ ⎪⎝⎭D.11,22⎛⎫⎪⎪⎝⎭【答案】D 【解析】【分析】求出函数的定义域与导函数,再令()0f x ¢>,解得即可.【详解】函数()()2ln 21f x x x x =--+的定义域为1,2⎛⎫+∞⎪⎝⎭,且()()()()22121221221212121x x x f x x x x x ⎤⎤-----⎣⎦⎣⎦'=-+==---,令()0f x ¢>,解得11222x <<,所以()f x的单调递增区间为11,22⎛⎫+ ⎪ ⎪⎝⎭.故选:D 7.已知ππ,π,0,22αβ⎛⎫⎛⎫∈∈⎪ ⎪⎝⎭⎝⎭,若()13sin ,cos 33αββ+==,则cos2α=()A.13B.13-C.2327D.2327-【答案】D 【解析】【分析】根据角的范围,利用同角的三角函数关系求得cos(),sin αββ+的值,利用两角差的余弦公式即可求得cos α,继而利用二倍角余弦公式求得答案.【详解】由于ππ,π,0,22αβ⎛⎫⎛⎫∈∈⎪ ⎪⎝⎭⎝⎭,则π3π,22αβ⎛⎫+∈ ⎪⎝⎭,而()1sin 3αβ+=,故π22,π,cos()23αβαβ⎛⎫+∈∴+==- ⎪⎝⎭,由0c ,2s 3π,o ββ⎛⎫∈ ⎪=⎝⎭,可得sin 3β=,则cos cos[()]cos()cos sin()sin ααββαββαββ=+-=+++913333=-+=-⨯⨯,故2223cos22cos 12(1279αα=-=⨯-=-,故选:D8.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,Y bx e E e D e σ=+⎧⎨==⎩.要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,则()A.121ˆniii nii x ybx===∑∑ B.121ˆniii nii x yby===∑∑C.ˆniix yb =∑ D.()()ˆniix x y y b --=∑【答案】A 【解析】【分析】化简为二次函数形式,根据二次函数性质得到最值.【详解】因为()()222211(,)2nnii i i i i i i Q a b ybx y bx y b x ===-=-+∑∑2221112nnnii i i i i i bxb x y y ====-+∑∑∑,上式是关于b 的二次函数,因此要使Q 取得最小值,当且仅当b 的取值为121ˆniii nii x ybx===∑∑.故选:A.【点睛】关键点点睛:本题的关键是化简为二次函数形式,利用其性质得到最值时的b .二、多项选择题:本题共4小题,每小颗5分,共20分.在每小题给出的选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为了了解某公路段汽车通过的时速,随机抽取了200辆汽车通过该公路段的时速数据,进行适当分组后(每组为左闭右开的区间),绘制成频率分布直方图,“根据直方图,以下说法正确的是()A.时速在[)70,80的数据有40个B.可以估计该组数据的第70百分位数是65C.时速在[)50,70的数据的频率是0.07D.可以估计汽车通过该路段的平均时速是62km 【答案】AD 【解析】【分析】对于A ,直接由对应的频率乘以200即可验算;对于B ,由百分位数的定义即可判断;对于C ,由对应的长方形面积之和即可判断;对于D ,由平均数的计算公式即可得解.【详解】对于A ,()2000.02807040⨯⨯-=,即时速在[)70,80的数据有40个,故A 正确;对于B ,1100.040.020.010.03a =÷---=,所以该组数据的第70百分位数位于[)60,70不妨设为x ,则()()0.010.0310600.040.7x +⨯+-⨯=,解得67.5x =,故B 错误;对于C ,时速在[)50,70的数据的频率是()0.030.04100.7+⨯=,故C 错误;对于D ,可以估计汽车通过该路段的平均时速是()0.01450.03550.04650.02751062km ⨯+⨯+⨯+⨯⨯=,故D 正确.故选:AD.10.函数()f x 是定义在R 上的奇函数,满足()()()11,11f x f x f -=+=-,以下结论正确的是()A.()30f = B.()40f =C.20231()0k f k ==∑ D.20231(21)0k f k =-=∑【答案】BC 【解析】【分析】首先由抽象函数的形状判断函数的周期,并求()()()2,3,4f f f 的值,即可求解.【详解】由条件()()11f x f x -=+,可知()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以函数()f x 是周期为4的函数,()()()3111f f f =-=-=,故A 错误;()()400f f ==,故B 正确;由条件()()11f x f x -=+,可知()()200f f ==,所以()()()()12340f f f f +++=()()()()()()()20231()5051234202120222023k f k f f f f f f f =⎡⎤=++++++⎣⎦∑()()()1230f f f =++=,故C 正确;由函数的周期为4,且()11f =-,()31f =,所以()()()()()()20231(21)1357...20212023k f k f f f f f f =-=++++++∑()()0202331f f =+==,故D 错误.故选:BC11.曲线的法线定义:过曲线上的点,且垂直于该点处切线的直线即为该点处的法线.已知点()4,4P 是抛物线2:2C x py =上的点,F 是C 的焦点,点P 处的切线1l 与y 轴交于点T ,点P 处的法线2l 与x 轴交于点A ,与y 轴交于点G ,与C 交于另一点B ,点M 是PG 的中点,则以下结论正确的是()A.点T 的坐标是()0,2-B.2l 的方程是2120x y +-=C.2||TG PA PB=⋅D.过点M 的C 的法线(包括2l )共有两条【答案】BCD 【解析】【分析】利用导数求出切线斜率,进而确定切线方程判断A ,利用法线的定义判断B ,利用两点间距离公式判断C ,分类讨论判断D 即可.【详解】对A ,将点()4,4P 代入22x py =,得2p =,则2,42x x y y '==,当4x =时,2y '=故1l 的方程为()424y x -=-,令0x =,则4,y =-∴点T 的坐标是()0,4-,故A 错误;对B ,122l l l ⊥∴ 的方程为()1442y x -=--,整理得2120x y +-=,故B 正确;对C ,易得2l 与x 轴的交点A 的坐标为()12,0,与y 轴的交点G 的坐标为()0,6,联立221204x y x y +-=⎧⎨=⎩,解得69x y =-⎧⎨=⎩或44x y =⎧⎨=⎩.与C 的另一个交点B 的坐标为()6,9-,则22||100,|||||||||TG PA PB TG PA PB ===∴=⋅,故C 正确;对D ,易得点M 的坐标为()2,5,设点()00,Q x y 为抛物线上一点,当Q 是原点时,Q 处的法线为y 轴,显然不过点M ,当点Q 不是原点时,则Q 处的法线方程为()0002y y x x x -=--,将点()2,5M 代入得,()000252y x x -=--,又2004x y =,则()()23000012160,420x x x x --=∴-+=,故04x =或2,-∴过点M 的C 的法线(包括2l )共有两条,故D 正确.故选:BCD12.已知棱长为1的正方体1111,ABCD A B C D δ-是空间中一个动平面,下列结论正确的是()A.设棱1,,AB AD AA 所在的直线与平面δ所成的角为,,αβγ,则222sin sin sin 1αβγ++=B.设棱1,,AB AD AA 所在的直线与平面δ所成的角为,,αβγ,则222cos cos cos 1αβγ++=C.正方体的12条棱在平面δ上的射影长度的平方和为8D.四面体11A B CD -的6条棱在平面δ上的射影长度的平方和为8【答案】ACD 【解析】【分析】以点A 为坐标原点建立空间直角坐标系,设δ的法向量为(),,n a b c =,利用向量法求线面角和射影问题.【详解】对于A,以点A 为坐标原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,则()()()()()()()1110,0,0,1,0,0,1,1,0,0,1,0,0,0,1,1,0,1,0,1,1A B C D A B D ,得()1,0,0AB = ,()()10,1,0,0,0,1AD AA == ,设δ的法向量为(),,n a b c =,则222222sin AB na abc AB nα⋅==++⋅,同理可得2222222222sin ,sin b c a b c a b cβγ==++++,222sin sin sin 1αβγ∴++=,故A 正确;对于B,则()()()222222cos cos cos 1sin 1sin 1sin 312αβγαβγ++=-+-+-=-=,故B 错误;对于C ,1,,AB AD AA 这3条棱在平面δ上的射影长度的平方和为()()()2221cos cos cos 2AB AD AA αβγ++=,12∴条棱在平面δ上的射影长度的平方和为8,故C 正确;对于D ,()()111,1,0,1,1,0AC D B ==-,设AC 与平面δ所成角为11,D B θ与平面δ所成角为ϕ,则()()22222222222()()sin ,sin 22AC na b a b a b ca b cAC nθϕ⋅+-===++++⋅,2222222sin sin a b a b cθϕ+∴+=++,11,AC D B ∴在平面δ上的射影长度的平方和为()()()()22222211(cos )cos 2cos cos 22sin sin AC D B θϕθϕθϕ+=+=-+ 22222224a b a b c+=-++,则四面体11A B CD -的6条棱在平面δ上的射影长度的平方和为2222222222222222222224441248a b b c c a a b c a b c a b c ⎛⎫⎛⎫⎛⎫+++-+-+-=-= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,故D 正确.故选:ACD 【点睛】方法点睛:建立空间直角坐标系,设δ的法向量为(),,n a b c =,向量法求线面角的正弦值和余弦值,向量法求射影长度,结果用,,a b c 表示,化简即可.第II 卷三、填空题:本题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.422x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数是__________.【答案】8【解析】【分析】写出二项式展开式的通项公式,令x 的指数为1,解出r ,可得结果.【详解】422x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为44314422C C 2rr r r r rr T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,(其中0,1,2,3,4r =),令431r -=,解得1r =,即二项式展开式中x 的系数为14C 28⨯=.故答案为:814.已知正方形ABCD 的四个顶点均在椭圆2222:1x y E a b+=上,E 的两个焦点12,F F 分别是,AB CD 的中点,则E 的离心率是__________.【答案】12【解析】【分析】由题意||2BC a =,将x c =代入椭圆方程22221x y a b+=,得22||b CD a =,结合正方形性质可得||||BC CD =,即可得,a c 齐次式,即可求得答案.【详解】不妨设12,F F 为椭圆2222:1x y E a b+=的左、右焦点,由题意知AB x ⊥轴,CD x ⊥轴,且,AB CD 经过椭圆焦点,12(,0),(,0)F c F c -,则2BC c =,将x c =代入椭圆方程22221x ya b +=,得2||b y a=,故22||2||b CD y a ==,由||||BC CD =,得222b c a=,结合222b a c =-,得220c ac a +-=,即210e e +-=,解得152e -±=(负值舍),故E 512-,故答案为:512-15.设函数()πsin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭,若存在()00,πx ∈使()012f x =成立,则ω的取值范围是__________.【答案】4(,)3+∞【解析】【分析】根据题意确定()0,πx ∈时,πππ(π,)666x ωω-∈-,结合正弦函数的图象和性质找到当π6x <时,离π6最近且使得1sin 2x =的x 值,由此列出不等式,即可求得答案.【详解】由于函数()πsin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭,当()0,πx ∈时,πππ(π,)666x ωω-∈-,根据正弦函数sin y x =的性质可知当π6x <时,离π6最近且使得1sin 2x =的x 值为7π6-,故存在()00,πx ∈,使()012f x =成立,需满足π7π4π<,663ωω--∴>,即ω的取值范围为4(,)3+∞,故答案为:4(,)3+∞16.已知函数()2212ex f x x =+,()2ln g x m x =-,若关于x 的不等式()()f x xg x ≤有解,则m 的最小值是__________.【答案】12##0.5【解析】【分析】参变分离可得()2ln 2e2ln x xm x x --≥---有解,令2ln t x x =--,()e t g t t =-,利用导数求出()min g t ,即可求出参数的取值范围,从而得解.【详解】由()()f x xg x ≤得()22122ln ex x x m x +≤-,显然0x >,所以()2ln 2122ln e 2ln ex xxm x x x x x --≥++=---有解,令2ln t x x =--,则t ∈R ,令()e tg t t =-,则()e 1tg t '=-,所以当0t <时()0g t '<,当0t >时()0g t '>,所以()g t 在(),0∞-上单调递减,在()0,∞+上单调递增,所以()()min 01g t g ==,即()2ln e 2ln 1x xx x -----≥,所以21m ≥,则12m ≥,即m 的最小值是12.故答案为:12【点睛】关键点点睛:本题的关键是参变分离得到()2ln 2e 2ln x xm x x --≥---有解,再构造函数,利用导数求出()2ln mine2ln x xx x --⎡⎤---⎣⎦.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.17.记等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,且()()22111,41,41n n n n a b S a T b ===+=+.(1)求数列{}{},n n a b 的通项公式;(2)求数列{}n n a b ⋅的前n 项和.【答案】17.21n a n =-,1(1)n n b -=-18.()11n n--【解析】【分析】(1)根据()()()22*11444112,N n n n n n a S S a a n n --=-=+-+≥∈得到na和1n a -的关系式,同理得到n b 和1n b -的关系式,根据{}n a 是等比数列和{}n b 是等比数列求出n a 和n b 的通项;(2)令()1(1)21n n n n c a b n -=⋅=--,对n 分偶数和奇数讨论即可.【小问1详解】()()()22*11444112,N n n n n n a S S a a n n --=-=+-+≥∈得:()()1120n n n n a a a a --+--=,10n n a a -∴+=或12n n a a --=,同理:10nn b b -∴+=或12n n b b --=,{}n a 是等差数列,12221n n n a a d a n -∴-=∴=∴=-,{}n b Q 是等比数列1101(1)n nn n bb q b --∴+=∴=-∴=-;【小问2详解】令()1(1)21n n n n c a b n -=⋅=--,其前n 项和为n H ,当n 为偶数时,()()()()1234561n n n H c c c c c c c c -=++++++++ ()()()()()135********n n n ⎡⎤=-+-+-++---=-⋅⎣⎦ 当n 为奇数时,()111(1)21nn n n H H c n n n ++=-=----+=.综上所述,1(1)n n H n -=-.18.如图,已知三棱锥,P ABC PB -⊥平面,,PAC PA PC PA PB PC ⊥==,点O 是点P 在平面ABC 内的射影,点Q 在棱PA 上,且满足3AQ PQ =.(1)求证:BC OQ ⊥;(2)求OQ 与平面BCQ 所成角的正弦值.【答案】(1)证明见解析;(2)33【解析】【分析】(1)根据题意,建立空间直角坐标系P xyz -,先判断ABC 是正三角形,再求点O 的坐标,进而利用向量的垂直关系即可证明BC OQ ⊥;(2)先求平面BCQ 的法向量,再利用向量法即可求解.【小问1详解】连结PO ,PB ⊥ 平面,,PAC PA PC ⊂平面,PAC PB PA PB PC ∴⊥⊥,又PA PC PA PB PC ⊥∴ 、、两两垂直,以P 为原点,PA 为x 轴,PC 为y 轴,PB 为z 轴建立空间直角坐标系P xyz -,如下图所示:不妨设4PA =,可得()()()()()0,0,0,4,0,0,0,4,0,0,0,4,1,0,0P A C B Q ,()()4,0,4,4,4,0AB AC C =-=-.AB BC CA ===ABC 是正三角形,点O 为正三角形ABC 的中心,所以()()2118448,4,4,,323333AO AB AC ⎛⎫=⨯+=-=- ⎪⎝⎭,()8444444,0,0,,,,333333PO PA AO ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以444,,333O ⎛⎫⎪⎝⎭.144,,333QO ⎛⎫∴= ⎪⎝⎭,又()0,4,4BC =-,0QO BC BC OQ ∴⋅=∴⊥.【小问2详解】()()0,4,4,1,4,0BC QC =-=- ,144,,333QO ⎛⎫= ⎪⎝⎭,3QO == ,设平面BCQ 的一个法向量为(),,n x y z =,由0n BC n QC ⎧⋅=⎪⎨⋅=⎪⎩,得:44040y z x y -=⎧⎨-+=⎩,则()1444,1,1,4,1,1,4114333x y z n n n QO ===∴===⋅=⨯+⨯+⨯= ,设OQ 与平面BCQ 所成角为θ,则sin cos ,33QO nQO n QO nθ⋅===⋅.故直线OQ 与平面BCQ 所成角的正弦值为26633.19.在ABC 中,角,,A B C 所对的边分别为,,a b c,cos sin cos20A B a B a +-=.(1)求tan A 的值;(2)若a =,点M 是AB 的中点,且1CM =,求ABC 的面积.【答案】(1;(2)4.【解析】【分析】(1)根据正弦定理和二倍角的余弦公式得tan A =;(2)根据同角三角函数关系求出cos ,sin 44A A ==,再利用余弦定理求出,b c 值,最后利用三角形面积公式即可.【小问1详解】cos sin cos20A B a B a +-=()2cos sin 1cos22sin A B a B a B∴=-=由正弦定理得:22sin 2sin sin A B A B =,()0,πB ∈ ,则sin 0B >,sin A A =,cos A 不等于0,tan A ∴【小问2详解】sin tan cos A A A == ()0,A π∈,所以0,2A π⎛⎫∈ ⎪⎝⎭,联立22sin cos 1A A +=,cos 44A A ∴==,在ABC 中,由余弦定理得:222222cos 22b c a b c A bc bc+-+-==①在AMC 中,由余弦定理得:222212222cos 222c c b b A c bc b ⎛⎫+-+- ⎪⎝⎭==⋅②由①=②式得:22b c =故2223222cos ,12422c b c A c b bc -+-===∴==,1147sin 244ABC S bc A ∴===.20.已知双曲线2222:1x y C a b-=的左右焦点分别为12,F F ,点()1,2P -在C 的渐近线上,且满足12PF PF ⊥.(1)求C 的方程;(2)点Q 为C 的左顶点,过P 的直线l 交C 于,A B 两点,直线AQ 与y 轴交于点M ,直线BQ 与y 轴交于点N ,证明:线段MN 的中点为定点.【答案】(1)2214y x -=;(2)证明见解析.【解析】【分析】(1)根据给定条件,借助向量垂直的坐标表示及双曲线渐近线方程求出,,a b c 即可得解.(2)设出直线l 的方程,与双曲线方程联立,借助韦达定理及向量共线的坐标表示求出MN 的中点纵坐标即可得解.【小问1详解】设()()12,0,,0F c F c -,()()121,2,1,2PF c PF c =-+-=+- ,由12PF PF ⊥,得212140PF PF c ⋅=-+=,解得25c =,即225a b +=,而曲线2222:1x y C a b -=的渐近线方程为22220x y a b-=,由点()1,2P -在C 的渐近线上,得2222(1)20a b --=,即224b a =,因此221,4a b ==,所以C 的方程为2214y x -=.【小问2详解】由(1)知(1,0)Q -,设直线l 为1122342(1),(,,,,)(0,,0)()(,)y k x A x y B x y M y N y -=+,由()222144y k x x y ⎧-=+⎨-=⎩消去y 得:()()2222424480kx kk x k k --+---=,则221212222448,44k k k k x x x x k k +---+==--,113(1,),(1,)QA x y QM y =+=,由,,A Q M 三点共线,得1311y y x =+,同理2421y y x =+,因此12341211y yy y x x +=+++()()12211212121y x y x y y x x x x +++=+++()()()()122112*********kx k x kx k x kx k kx k x x x x +++++++++++=+++()()()12121212222241kx x k x x k x x x x +++++=+++()()()()()()()222222248222424448244k k k k k k k k k k k k k ---+++++-=---+++-1644==--,所以MN 的中点T 为定点()0,2-.21.某商场推出购物抽奖促销活动,活动规则如下:①顾客在商场内消费每满100元,可获得1张抽奖券;②顾客进行一次抽奖需消耗1张抽奖券,抽奖规则为:从放有5个白球,1个红球的盒子中,随机摸取1个球(每个球被摸到的可能性相同),若摸到白球,则没有中奖,若摸到红球,则可获得1份礼品,并得到一次额外抽奖机会(额外抽奖机会不消耗抽奖券,抽奖规则不变);③每位顾客获得的礼品数不超过3份,若获得的礼品数满3份,则不可继续抽奖;(1)顾客甲通过在商场内消费获得了2张抽奖券,求他通过抽奖至少获得1份礼品的概率;(2)顾客乙累计消耗3张抽奖券抽奖后,获得的礼品数满3份,则他在消耗第2张抽奖券抽奖的过程中,获得礼品的概率是多少?(3)设顾客在消耗X 张抽奖券抽奖后,获得的礼品数满3份,要获得X 张抽奖券,至少要在商场中消费满Y 元,求()(),E X D Y 的值.(重复进行某个伯努利试验,且每次试验的成功概率均为p .随机变量ξ表示当恰好出现r 次失败时已经成功的试验次数.则ξ服从参数为r 和p 的负二项分布.记作(),NB r p ξ~.它的均值()1prE pξ=-,方差()2.(1)prD p ξ=-)【答案】(1)1136;(2)12;(3)()16E X =,()900000D Y =.【解析】【分析】(1)确定一次摸奖摸到白球的概率,根据对立事件的概率计算,即可得答案;(2)分别求出顾客乙累计消耗3张抽奖券抽奖后,获得的礼品数满3份,以及顾客乙在消耗第2张抽奖券抽奖的过程中,获得礼品的概率,根据条件概率的计算公式,即可求得答案;(3)由题意确定53,,16r p X ξ===-,结合负二项分布的均值和方差公式,即可求得答案.【小问1详解】由题意可知一次摸奖摸到红球的概率为16,摸到白球的概率为56,故甲至少获得1份礼品的概率551116636P =-⨯=;【小问2详解】设A =“顾客乙累计消耗3张抽奖券抽奖后,获得的礼品数满3份”,B =“顾客乙在消耗第2张抽奖券抽奖的过程中,获得礼品”()2323244515125C 666666P A ⎛⎫⎛⎫⎛⎫⎛⎫=⋅=⋅⋅= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()()232321435515175C C 366666P AB P A P AB ⎛⎫⎛⎫⎛⎫⎛⎫=-=-⋅=⋅⋅= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()4525167526P AB P B A P A ∴===∣;【小问3详解】由题意可知53,,16r p X ξ===-则()()()52111116116prE X E X E pξ=-+=+=+==-,()()()()21001001001000010000900000(1)prD Y D X D D p ξξ==+==⋅=-.22.已知函数()πe sin cos 1,0,2xf x x ax x x ⎡⎤=+--∈⎢⎥⎣⎦,(1)当1a =时,求函数()f x 的值域;(2)若函数()0f x ≥恒成立,求a 的取值范围.【答案】(1)π20,e ⎡⎤⎢⎥⎣⎦(2)2a ≤【解析】【分析】(1)求导()πe cos sin cos e sin 00,2xxf x x x x x x x x ⎛⎫⎡⎤=++-=+>∈ ⎪⎢⎥⎣⎦⎝⎭',易得()f x 在π0,2⎡⎤∈⎢⎣⎦x 上单调递增求解;(2)方法一:()()e sin 1cos xf x ax x a x =+-'+分0a ≤,01a <≤,12a <≤,2a >,由()min 0f x ≥求解;方法二:当0x =时,()00f =成立,当π2x =时,π2πe 02f ⎛⎫=≥ ⎪⎝⎭成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,转化为e sin 1cos x x a x x+-≤恒成立,由()min a g x ≤求解.【小问1详解】因为()e sin cos 1xf x x x x =+--,所以()πe cos sin cos e sin 00,2x xf x x x x x x x x ⎛⎫⎡⎤=++-=+>∈ ⎪⎢⎥⎣⎦⎝⎭',()f x ∴在π0,2⎡⎤∈⎢⎥⎣⎦x 上单调递增又()π2π00,e 2f f ⎛⎫== ⎪⎝⎭,()f x ∴的值域是π20,e ⎡⎤⎢⎥⎣⎦.【小问2详解】方法一:①当0a ≤时,()πe sin cos 1sin cos 00,2x f x x ax x x ax x x ⎡⎤=+--≥-≥∈⎢⎥⎣⎦在上恒成立,②当01a <≤时,()()()πe cos sin cos e sin 1cos 1cos 00,2x x f x x ax x a x ax x a x a x x ⎛⎫⎡⎤=++-=++->->∈ ⎪⎢⎥⎣⎦⎝⎭',()f x ∴在π0,2⎡⎤∈⎢⎥⎣⎦x 上单调递增,()()00f x f ∴≥=成立.③当2a >时,令()()e cos sin cos xg x f x x ax x a x ==++-',则()()()e 1sin sin cos 0xg x a x a x x x =+-++>',所以()g x 在π0,2⎡⎤∈⎢⎥⎣⎦x 上单调递增,即()f x '在π0,2⎡⎤∈⎢⎥⎣⎦x 上单调递增,()π2ππ020,e 022f a f a ⎛⎫=-=+ ⎪⎝''⎭ ,0π0,2x ⎛⎫∴∃∈ ⎪⎝⎭使得当()00,x x ∈时()0f x '<,故()f x 在()00,x x ∈上单调递减,则()()000,f x f <=不成立,④当12a <≤时,令()()e cos sin cos xg x f x x ax x a x ==++-',则()()()e 1sin sin cos 0xg x a x a x x x =+-++>',所以()g x 在π0,2⎡⎤∈⎢⎥⎣⎦x 上单调递增,即()f x '在π0,2⎡⎤⎢⎥⎣⎦上单调递增,()()020f x f a ∴='-'≥≥,即()f x 在π0,2⎡⎤⎢⎥⎣⎦上递增,则()()00f x f ≥=成立.综上所述,若函数()0f x ≥恒成立,则2a ≤.方法二当0x =时,()00f =成立,当π2x =时,π2πe 02f ⎛⎫=≥ ⎪⎝⎭成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,e sin 1cos x x a x x +-≤恒成立,令()e sin 1cos x x g x x x+-=,则min ()a g x ≤,又()e sin 1sin e 1cos cos x xx x x x g x x x x x +-+->∴=> ,令()()()()()221cos cos sin cos sin sin ,cos cos x x x x x x x x x x h x h x x x x x+⋅-+-+==',222sin sin cos cos x x x x x x x+-=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin x x >,()()222222sin 1cos sin sin sin sin cos 0cos cos x x x x x x x x x h x x x x x-++-∴>=>',()h x ∴在π0,2⎛⎫ ⎪⎝⎭上单调递增.00sin 1cos lim lim 2cos cos sin x x x x x x x x x x→→++==-,,故()2h x >,()e sin 12cos x x g x x x +-∴=>,又00e sin 1e cos lim lim 2cos cos sin x x x x x x x xx x x →→+-+==- ,min ()2g x ∴→,故2a ≤.【点睛】方法点睛:对于()0,f x x D ≥∈恒成立问题,法一:由()min 0,f x x D ≥∈求解;法二:转化为()g x a ≥()(),g x a x D ≤∈由()()()min min ,g x a g x a x D ≥≤∈求解.。
浙江省名校新高考研究联盟(Z20)2019届高三第一次联考数学试题一:选择题。
1.已知集合,,则A. B.C. D. 或【答案】C【解析】【分析】利用一元二次不等式的解法化简集合,再由交集的定义求解即可.【详解】集合,,.故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.设复数满足为虚数单位,则A. B. i C. D. 1【答案】B【解析】【分析】把已知等式变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果. 【详解】由,得.故选B.【点睛】本题考查了复数代数形式的乘除运算,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.设函数,则的值为A. B. C. D. 2【答案】C【分析】由分段函数,先求=ln2,然后根据判断范围再由分段函数另一段求出值【详解】,=ln2,ln2,即=【点睛】本题主要考察分段函数求函数值,这类题目,需要判断自变量所在范围,然后带入相应的解析式解答即可4.已知是空间中两条不同的直线,,是两个不同的平面,则下列命题正确的是A. 若,,,,则B. 若,,则C. 若,,则D. 若,,,则【答案】D【解析】【分析】利用与相交或平行判断;根据与相交、平行或判断;根据或判断;由面面垂直的判定定理得.【详解】由,是空间中两条不同的直线,,是两个不同的平面,得:若,,,,则与相交或平行,故错误;若,,则与相交、平行或,故错误;若,,则或,故错误;若,,,则由面面垂直的判定定理得,故正确.故选D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5.已知实数满足约束条件,则的最大值为A. 1B. 4C. 2D.【答案】B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出实数满足约束条件对应的平面区域如图阴影部分由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大由解得.代入目标函数得.即目标函数的最大值为4.故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.已知双曲线:,则“”是“双曲线的焦点在轴上”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据充分条件和必要条件的定义,结合总表示焦点在轴上判断即可.【详解】双曲线的焦点在轴上或,或,或推不出,“”是“双曲线的焦点在轴上”的充分不必要条件.故选A.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7.函数的图象可能是A.B.C.D.【答案】A【解析】【分析】利用排除法,由是奇函数排除;排除;排除;从而可得结果.【详解】因为,可得是奇函数排除;当时,,点在轴的上方,排除;当时,,排除;故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8.已知,是椭圆与的左、右焦点,过左焦点的直线与椭圆交于,两点,且满足,,则该椭圆的离心率是A. B. C. D.【答案】B【解析】【分析】由,,利用椭圆的定义,求得,,,可得,,由二倍角公式列方程可得结果.【详解】由题意可得:,,可得,,,,,,,可得,可得.故选B.【点睛】本题考查椭圆的简单性质的应用以及椭圆的离心,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.9.已知实数,满足,,则的最小值是A. 10B. 9C.D.【答案】B【解析】【分析】利用基本不等式求得,则,展开后再利用基本不等式可求得的最小值.【详解】,,,,当且仅当时,取等号.则,当且仅当时,且,时,的最小值为9,故选B.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).10.已知三棱锥的所有棱长为是底面内部一个动点包括边界,且到三个侧面,,的距离,,成单调递增的等差数列,记与,,所成的角分别为,,,则下列正确的是A. B. C. D.【答案】D【解析】【分析】利用公式将问题转化为:比较与,,夹角的大小,然后判断到,,的距离,在中确定所在区域,利用数形结合可以解决.【详解】依题意知正四面体的顶点在底面的射影是正三角形的中心,则,,其中,表示直线、的夹角,,,其中,表示直线、的夹角,,,其中,表示直线的夹角,由于是公共的,因此题意即比较与,,夹角的大小,设到,,的距离为,,则,其中是正四面体相邻两个面所成角,所以,,成单调递增的等差数列,然后在中解决问题由于,结合角平分线性质可知在如图阴影区域不包括边界从图中可以看出,、所成角小于所成角,所以,故选D.【点睛】本题考查了异面直线及其所成角,以及公式的应用,考查了转化思想与数形结合思想的应用,属于难题.若直线与其在平面内的射影所成的角为,平面内任意直线与、成的角为,则.二:填空题。
2π
2π-浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考
数学试题卷
选择题部分
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合()(){}310A x x x =-+>,{}
11B x x =->,则()R C A B = A.[)(]1,02,3- B.(]2,3 C.()(),02,-∞+∞ D.()()
1,02,3- 2、已知双曲线22
:193
x y C -=,则C 的离心率为
D.23、已知,a b 是不同的直线,αβ,是不同的平面,若,,a b αβαβ⊥⊥∥,则下列命题中正确的是A.b α⊥ B.b α∥ C.αβ⊥ D.αβ
∥4、已知实数,x y 满足()3121x x y y x ⎧≤⎪+≥⎨⎪≤-⎩
,则2x y +的最大值为
A.11
B.10
C.6
D.45、已知圆C 的方程为()2231x y -+=,若y 轴上存在一点A ,使得以A 为圆心,半径为3的圆与圆
C 有公共点,则A 的纵坐标可以是
A.1
B.-3
C.5
D.-7
6、已知函数()221,0log ,0
x x f x x x ⎧+-≤⎪=⎨>⎪⎩,若()1f a ≤,则实数a 的取值范围是A.(][),42,-∞-+∞ B.[]1,2- C.[)(]4,00,2- D.[]
4,2-7、已知函数()()ln cos f x x x =⋅,以下哪个是()f x 的图象
A
B
C.D
8、在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,
1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面
BCDE 上的射影在四边形BCDE 内(不含边界),设二面角
A BE C '--的大小为θ,直线,A
B A
C ''与平面BCDE 所成的角分
别为αβ,,则
A.βαθ
<< B.βθα<<C.αθβ<< D.αβθ
<<9、已知函数()()2,R f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一
个零点属于区间[]0,2”的一个(
)条件A.充分不必要 B.必要不充分 C.充分必要 D.既不充分也不必要
10、已知数列{}n a 满足:1102a <<
,()1ln 2n n n a a a +=+-,则下列说法正确的是A.20191
02a << B.2019112a << C.20193
12a << D.2019322
a <<非选择题部分
一、填空题:本大题共7小题,多空题每题6分,单空题每题4分。
11、复数()211i z i -=
+(i 为虚数单位),则z 的虚部为;
z =.12、某几何体的三视图为如图所示的三个正方形(单位:cm ),则该几何体的体积为
3cm ,表面积为2cm .13、若()()7280128221x x a a x a x a x +-=++++ ,则
0a =;2a =.
14、在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,
36AC BC BD ===,60EDC ∠=︒,则=BE ;cos CED ∠=.
15、某高三班级上午安排五节课(语文,数学,英语,物理,体育),要求语文与英语不能相邻,体育不能排在第一节,则不同的排法总数是.(用数字作答).
16、已知,A B 是抛物线24y x =上的两点,F 是焦点,直线,AF BF 的倾斜角互补,记,AF BF 得斜率
分别为12,k k ,则
2221
11k k -=.17、已知非零平面向量,a b 不共线,且满足24a b a ⋅== ,记3144
c a b =+ ,当,b c 的夹角取得最大值时,a b - 的值为.
三、解答题:本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤。
18、(本小题满分14分)已知函数()2cos 3cos f x x x x =+.(1)求3f π⎛⎫ ⎪⎝⎭
的值;(2)若13210f α⎛⎫= ⎪⎝⎭,0,3πα⎛⎫∈ ⎪⎝⎭
,求cos α的值.19、(本题满分15分)在三棱锥111ABC A B C -中,底面ABC ∆是等腰三角形,
且90ABC ∠=︒,侧面11ABB A 是菱形,160BAA ∠=︒,平面11ABB A ⊥平面
BAC ,点M 是1AA 的中点.
(1)求证:1BB CM ⊥;
(2)求直线BM 与平面1CB M 所成角的正弦值.
20、(本题满分15分)已知数列{}n a 为等差数列,n S 是数列{}n a 的前n 项和,且5365,a S a ==.数
列{}n b 满足()1122222n n n a b a b a b n b +++=-+ .
(1)求数列{}n a ,{}n b 的通项公式;(2)令*,n n n
a c n N
b =∈,证明:122n
c c c +++< .
21、(本题满分15分)已知抛物线24x y =,F 为其焦点,椭圆()22
2210x y a b a b
+=>>,12,F F 为其左右焦点,离心率12e =
,过F 作x 轴的平行线交椭圆于,P Q 两点,6=3
PQ .(1)求椭圆的标准方程;
(2)过抛物线上一点A 作切线l 交椭圆于,B C 两点,设l
与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,,KED FOD ∆∆的面积分别记为12,S S ,若121849
S S =,且点A 在第一象限.求点A 的坐标.
22、(本题满分15分)设a 为实常数,函数()2f x ax =,()x g x e =,R x ∈.(1)当12a e
=时,求()()()h x f x g x =+的单调区间;(2)设*m N ∈,不等式()()2f x g x m +≤的解集为A ,不等式()()2f x g x m +≤的解集为B ,
当(]0,1a ∈时,是否存在正整数m ,使得A B ⊆或B A ⊆成立.若存在,试找出所有的m ;若不存在,请说明理由.。