发动机悬置系统
- 格式:pptx
- 大小:2.53 MB
- 文档页数:66
悬置系统AEB21.36
* 适当隔绝发动机振动对车辆及驾驶室的影响。
对于直列六缸发动机,怠速为600 rpm或更高时,其计算自振频率应低于15 Hz 。
* 限制由于发动机爆发压力、振动扭矩反作用力、道路凹凸及大梁偏斜等造成的发动机运动,以避免发动机与车辆底盘或驾驶室接触、碰撞。
对于因振动而引起的负荷,一般设计考虑为垂直及前进方向 6G以上,后退方向为 9G 。
* 确保施加于缸体后端面的静弯矩,符合发动机技术参数表的要求。
对于质量较大的变速箱,应考虑使用辅助支撑以达到要求。
* 避免由于底架变形及道路凹凸所引起的变形力通过悬置系统,对发动机零部件产生过高应力。
* 对于发动机与底盘所有连接零部件,均应使用适当的柔性连接,以避免发动机向车辆传递过大的振动,这些连接包括管路导线及皮带驱动等。
汽车动力总成悬置系统布置研究汽车动力总成悬置系统是汽车中非常重要的部件,它直接关系到汽车的操控性能、舒适性以及安全性。
在汽车制造领域,悬置系统的设计与研究一直是一个重要的课题。
随着汽车制造技术的不断进步,悬置系统布置研究也愈发的重要。
本文将探讨汽车动力总成悬置系统布置研究的相关内容,分析当前研究的现状与存在的问题,并提出改进方案,以期为汽车制造领域的技术进步提供参考。
悬置系统是汽车中用于支撑车身,并确保车辆在行驶过程中平稳、舒适地行驶的重要组成部分。
悬置系统也直接影响到汽车的操控性能和安全性能。
悬置系统的设计理念和布置方案对汽车的整体性能具有重要的影响。
目前,随着电动汽车技术的发展和应用,汽车动力总成的设计和布置也在发生着重大变革。
传统的内燃机动力总成被电动机替代,这就要求悬置系统的设计要适应不同的动力总成布置,以保证汽车的性能和安全性。
对汽车动力总成悬置系统布置的研究变得尤为重要。
针对汽车动力总成悬置系统布置的研究,目前已经取得了一些进展。
在传统的内燃机动力总成中,悬置系统的设计主要考虑车身的支撑和减震功能,一般采用独立悬挂或者横臂式悬挂等结构。
而在电动汽车中,由于电池组等部件的布置,传统的悬置系统设计已经不能满足要求,需要新的设计理念和方案。
针对这一问题,一些学者和汽车制造商开始研究新型的悬置系统设计方案,以适应电动汽车的动力总成布置。
可以对悬置系统的结构进行优化调整,使之更好地适应电动汽车的动力总成布置。
也可以通过新材料的应用和制造工艺的改进,提高悬置系统的强度和耐久性,以配合电动汽车的工作环境。
汽车动力总成悬置系统布置的研究也需要考虑车辆的操控性能和安全性能。
悬置系统的设计不仅要满足车身的支撑和减震需求,还要考虑汽车的操控性能。
在设计悬置系统的布置方案时,需要考虑悬置系统与车身的连接方式、减震器的性能、悬挂的调校等因素,以保证汽车在行驶过程中具有良好的操控性能和安全性能。
针对汽车动力总成悬置系统布置的研究也存在一些问题。
动力总成悬置系统设计总结第一章悬置系统的经验设计悬置系统的功能与设计原则发动机悬置系统是发动机应用工程的重要组成部分。
悬置系统的功能与设计原则大致可归纳如下:1隔离振动在发动机所有工作转速范围内,发动机产生的振动必须通过悬置系统加以隔离,尽可能降低传递给汽车底盘和车身的振动。
同时悬置系统还必须隔离道路不平引起的车轮悬挂系统的振动,防止这一振动向发动机传递,避免发动机振动加剧以满足车辆运行时的平稳性和舒适性,并保证怠速和停机时发动机的稳定性。
2发动机支承和定位为了隔离振动,发动机被支承在几个弹簧软垫上。
因而在发动机本身振动和外界作用力驱动下,发动机和底盘之间必然存在着相对运动。
所以悬置系统必须具有控制发动机相对运动和位移的功能,使发动机始终保持在相对稳定和正确的位置上,决不能让发动机在向各方向运动中与底盘车身上的零件发生干涉和碰撞。
3保护发动机车辆在行驶过程中同时承受着动态负荷和冲击负荷。
悬置系统应具有保护发动机的能力,防止发动机上个别部位因承受过大的冲击载荷而损坏,特别要保证发动机缸体后端面与飞轮壳的结合面上的弯曲力矩不超过制造厂规定的限值。
此外车辆在崎岖道路上行驶时,车架的扭曲变形会使发动机承受扭曲应力,使发动机局部受到损伤。
悬置系统应布置合理,并正确选择软垫刚度等参数,以保证能充分缓冲和抵御外力的冲击并消除薄弱环节。
4克服和平衡因扭矩输出而产生的反作用力悬置系统必须有足够强度,当发动机变速箱总成输出最大扭矩时能克服最大扭矩所产生的最大反作用力。
悬置软垫和支架在这种条件下都必须具有足够的可靠性。
5发动机与底盘之间的连接零件必须有足够柔性这些零件是排气管进气管、燃油管、冷却水管、压缩空气管、油门操纵机构及变速箱操纵机构等。
如果它们的刚度较大,则发动机的振动容易造成这些零件的损坏,特别是在怠速停机和出现共振时表现得尤其剧烈。
另一方面如果它们刚度较大,也会改变发动机悬置系统的刚度和自振频率,从而影响隔振效果并导致噪声升高,因此这些连接件必须采用柔性软管或柔性连接。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对整车舒适性和耐久性的影响日益显著。
汽车动力总成悬置系统作为连接发动机和车身的重要部分,其振动特性的优劣直接关系到整车的运行平稳性和乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。
本文旨在探讨汽车动力总成悬置系统的振动分析方法及优化设计策略。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置支架、橡胶衬套、减震器等组成,其作用是支撑和固定发动机,减少发动机振动对整车的影响,保证车辆行驶的平稳性和乘坐的舒适性。
三、汽车动力总成悬置系统振动分析1. 振动来源分析汽车动力总成悬置系统的振动主要来源于发动机的运转和路面传递的振动。
发动机的运转会引发振动和噪声,这些振动和噪声会通过悬置系统传递到整车。
此外,路面不平度等外界因素也会引起汽车的振动,进而影响到动力总成悬置系统的稳定性。
2. 振动传递路径分析汽车动力总成悬置系统的振动传递路径主要包括发动机与悬置支架之间的连接、悬置支架与车身之间的连接等。
在振动传递过程中,各部分之间的相互作用和影响会导致振动的传递和衰减过程复杂多变。
3. 振动特性分析针对汽车动力总成悬置系统的振动特性,可采用实验和仿真分析方法。
实验方法主要包括模态测试、频谱分析等,可获取系统在不同工况下的振动特性;仿真分析则可通过建立动力学模型,分析系统在不同参数下的振动响应。
四、汽车动力总成悬置系统优化设计针对汽车动力总成悬置系统的振动问题,可采取以下优化设计策略:1. 材料选择与结构优化选用高强度、低刚度的材料,如铝合金等,以减轻系统重量,提高系统刚度和减震性能。
同时,对系统结构进行优化设计,如改进悬置支架的结构布局、优化橡胶衬套的形状和硬度等。
2. 动力学参数优化通过仿真分析,调整系统动力学参数,如刚度、阻尼等,以改善系统的振动特性。
同时,根据实际工况和需求,合理匹配发动机与车身的连接方式,以降低整车的振动水平。
悬置系统发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源作用于发动机悬置系统的激振源主要如下:①发动机起动及熄火停转时的摇动;②怠速运转时的抖动;③发动机高速运转时的振动;④路面冲击所引起的车体振动;⑤大转矩时的摇动;⑥汽车起步或变速时转矩变化所引起的冲击;⑦过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按着振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz的低频振动源如下:①发动机低速运转时的转矩波动;②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功;③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④路面不平使车身产生的振动;⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;②变速时产生的振动;③燃烧压力脉动使机体产生的振动;④发动机配气机构产生的振动;⑤曲轴的弯曲振动和扭振;⑥动力总成的弯曲振动和扭振;⑦传动轴不平衡产生的振动。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为决定汽车乘坐舒适性和驾驶稳定性的关键因素之一。
然而,由于动力总成系统在运行过程中产生的振动和噪音,严重影响了汽车的性能和使用寿命。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,具有重要的理论价值和实践意义。
本文将重点对汽车动力总成悬置系统的振动进行分析,并探讨其优化设计的方法和措施。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,是汽车的核心部件之一。
其作用是支撑和固定动力总成,减少振动和噪音的传递,保证汽车行驶的平稳性和舒适性。
然而,由于动力总成系统的复杂性和运行环境的多样性,使得其振动问题较为突出。
三、汽车动力总成悬置系统振动分析(一)振动产生的原因汽车动力总成悬置系统振动产生的原因主要包括发动机的燃烧过程、变速器的齿轮啮合、离合器的接合与分离等。
此外,道路不平度、车辆行驶速度等因素也会对系统振动产生影响。
(二)振动分析的方法目前,常用的汽车动力总成悬置系统振动分析方法包括实验分析和仿真分析。
实验分析主要通过在真实环境下对系统进行测试,获取其振动数据;仿真分析则通过建立系统的数学模型,利用计算机软件进行模拟分析。
(三)振动的影响汽车动力总成悬置系统的振动会直接影响汽车的乘坐舒适性和驾驶稳定性。
同时,长时间的振动还会导致系统零部件的磨损和损坏,影响汽车的使用寿命。
四、汽车动力总成悬置系统优化设计(一)优化设计的目标汽车动力总成悬置系统优化设计的目标主要包括提高汽车的乘坐舒适性和驾驶稳定性,延长汽车的使用寿命,降低噪音和振动等。
(二)优化设计的措施1. 改进材料:采用高强度、轻量化的材料,提高系统的刚度和减振性能。
2. 优化结构:通过改变系统的结构形式和参数,如增加橡胶减振器、调整悬置点的位置等,提高系统的减振效果。
3. 智能控制:利用现代控制技术,如主动悬挂系统、半主动悬挂系统等,实现对系统振动的主动控制。
主动悬置工作原理
主动悬置是一种用于减少发动机振动传递到车身的技术。
它的工作原理基于反作用力原理,即通过产生与发动机振动相反的力来抵消振动。
主动悬置系统通常由一个或多个惯性质量块、弹簧和阻尼器组成。
惯性质量块通过弹簧与发动机相连,而阻尼器则用于控制质量块的运动。
当发动机产生振动时,惯性质量块会受到振动的影响而产生运动。
然而,由于惯性质量块的惯性较大,它的运动速度比发动机的振动速度慢,因此会产生一个与发动机振动相反的力,从而抵消发动机振动。
主动悬置系统还可以通过电子控制单元(ECU)来调整惯性质量块的运动。
ECU 可以根据发动机的转速和负载情况来调整惯性质量块的运动,以最大程度地减少振动传递到车身。
主动悬置系统的优点是可以有效地减少发动机振动传递到车身,从而提高车辆的舒适性和驾驶稳定性。
此外,它还可以减少发动机和车身之间的磨损,延长车辆的使用寿命。
AUTO PARTS | 汽车零部件随着现代社会的不断进步和汽车技术的不断发展,汽车乘坐的舒适性受到了广泛关注。
汽车制造企业在生产设计汽车时,往往在汽车NVH方面投入了大量资金和人力,汽车发动机产生的噪音和振动直接影响了汽车的NVH性能[1]。
提高发动机悬置系统隔振性能是汽车制造相关人员的一个重要课题,而悬置系统的固有特性与模态解耦是影响悬置系统隔振性能的重要因素之一。
1 发动机悬置的作用与分类发动机悬置就是连接发动机和汽车车身的装置,如图1所示。
主要作用有限位功能、支承功能和降噪隔振功能。
随着汽车工业的不断发展,发动机悬置的种类也多了起来,主要有橡胶悬置、液压悬置和空气悬置。
图1 发动机悬置朱锋上海科创职业技术学院 上海市 201620摘 要:随着汽车隔振技术的发展,人们对汽车乘坐舒适性有了更高的要求,各个汽车生产商也在逐渐增加这方面的投入。
科学地设计动力总成的悬置系统,能有效降低车身和发动机的振动,在提升整车NVH性能的同时也给车内人员带来更舒适的体验。
在悬置系统设计过程中悬置的固有特性和模态解耦是悬置系统设计的主要参数之一。
本文对系统固有特性和模态解耦进行分析,为悬置系统隔振设计提供参考与帮助。
关键词:发动机悬置 固有特性 模态解耦Analysis of Intrinsic Characteristics and Modal Decoupling of Engine Mount SystemsZhu FengAbstract: W ith the development of automobile vibration isolation technology, people have higher requirements for car riding comfort, and various automobile manufacturers are gradually increasing their investment in this area. The scientific design of the powertrain suspension system can effectively reduce the vibration of the body and engine, improve the NVH performance of the whole vehicle, and bring a more comfortable experience to the people in the car. In the process of suspension system design, the intrinsic characteristics and modal decoupling of suspension are one of the main parameters of suspension system design. In this paper, the intrinsic characteristics and modal decoupling of the system are analyzed, and the design of vibration isolation of the suspension system is provided as a reference and help.Key words: E ngine Mounting, Intrinsic Characteristics, Modal Decoupling发动机悬置系统的固有特性与模态解耦分析2 悬置系统固有特性分析2.1 悬置系统六自由度模型分析汽车动力总成的振动是一个复杂的振动系统,为了更好地分析该系统的振动特性,我们假设汽车发动机和变速箱组成的动力总成和车身都为刚体,把橡胶悬置元件视为三向正交的弹性元件,从而建立动力总成悬置系统的六自由度振动方程。
动力总成悬置系统匹配设计规范一、悬置系统主要作用 (1)二、元件的主要种类 (1)三、悬置系统的设计指标 (2)四、悬置系统设计参数的输入 (3)1、动力总成的惯性参数 (3)2、动力总成悬置系统的位置数据 (4)3、动力总成悬置系统的刚度数据 (4)4、变速器的各挡速比和主减速比 (5)5、发动机的其他参数 (5)6、动力总成悬置系统及周边的相关数模 (5)五、总成悬置系统的解耦设计及固有频率的合理配置 (5)1、解耦设计的原因 (5)2、固有频率的合理配置 (6)3、悬置系统解耦特性和固有频率的计算方法 (6)4、解耦和固有频率的合理配置的评价方法 (9)5、悬置系统解耦计算和固有频率配置的目的 (9)六、悬置系统的工况计算 (10)七、悬置支架设计 (12)八、置系统设计时应遵循的主要规范 (12)九、结语 (16)一、悬置系统主要作用发动机悬置是指专门设计制造的可以作为一个独立系统进行装备使用的安装在发动机与汽车底盘之间,以隔离(减少)发动机振动能量向周围环境的传播和影响为目的的隔振系统。
合理设计和使用发动机悬置,可以明显降低动力总成及车体的振动水平,减少系统传递给车体的激振力,以及由此激发的车身钣合金和底盘相关零件的振动和噪声,从而明显提高车辆的耐久性和乘坐舒适性。
悬置系统的主要作用如下:1、固定并支承汽车动力总成;悬置首先是一个支撑元件、它必须能支承发动机总成的重量,使其不至于产生过大的静态位移而影响正常工作。
从支承的角度考虑,要求悬置刚度越高越好;从隔振的角度考虑,要求悬置的刚度越低越好。
因此悬置要有合适的刚度。
2、限位作用发动机在受到各种干扰力(如制动、加速或其他动载荷)作用的情况下,悬置能有效的限制其最大位移,以避免发生与相邻件的碰撞与干涉,确保发动机能正常工作。
衰减作用于动力总成上的一切动态力和对车身造成的冲击。
3、隔振降噪作用承受和衰减动力总成内部因发动机不平衡旋转和平移质量产生的往复惯性力、力矩和不平衡扭矩;隔离发动机激励而引起的车架或车身的振动。
发动机悬置的结构、作用、设计要求有兴趣的看看发动机悬置的结构、作用、设计要求1. 概述:随着当前底盘、发动机技术的日臻完善,车辆的振动、噪声的控制转而成为各个整车厂在研发上的重中之重。
据统计分析在一个车辆系统的上万个零部件中,对振动起关键作用的大概有二百个。
它们又分别在整车的振动系统中起不同的作用。
这里仅对发动机产生的振动经由发动机悬置到车身的振动系统的结构、作用、设计要求给出一定程度的阐述和说明。
整车不同的部件都有自己的固有频率,见下表:振动情况及位置频率Hz路面激励的频率范围车体1~3座椅和驾驶员4~8发动机总成5~18前后桥10~16车轮共振11~15排气管机械系统12~22发动机的振动频率范围怠速抖动20~30车体弯曲扭转25~40方向盘抖动25~40发动机总成弯曲130~230排气管气体系统100~1000变速器噪声350~600进气系统噪声100~600发动机噪声1000~5000基于汽车振动学的相应设计优化,应最大可能的避免整车主要部件在各种工况下的振动耦合。
悬置的作用概括来说就是对发动机振动和路面激励的隔离和吸收,减少乘客舱中人所受的影响,降低其他零部件因为过多振动产生的疲劳破坏。
2. 悬置系统的结构2.1 布置概念:* 前轮驱动——较低排量,* 后轮驱动——较大排量。
质量发动机+变速箱发动机+变速箱+驱动轴转距约1/4的驱动转距T全部的驱动转距T转距方向纵向横向* 动力总成纵置,如海狮、阁瑞斯。
* 动力总成横置,如尊驰、骏捷等。
2.2 结构概念:* 橡胶悬置悬置结构为橡胶+金属支架,在低频、大振幅的动刚度和滞后角变化小。
在高频、小振幅激励下的动刚度和滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。
* 液力悬置悬置结构为橡胶形腔+液体(乙二醇)+金属支架,在低频、大振幅的激励下具有大阻尼;在高频、小振幅的激励下具有小刚度。
可根据实际和成本情况决定采用一个液压悬置还是采用多个液压悬置。
如有你有帮助,请购买下载,谢谢!第七章悬置系统第一节零部件位置分布图及分布描述1.1 零部件位置分布图1.2 分布描述发动机左悬置软垫带支架总成:通过3个Q1841025的螺栓安装在发动机舱左前纵梁上。
发动机左悬置支架:通过4个Q1841035的螺栓安装在变速箱壳体上。
它们两者之间是通过3个Q1841045的螺栓相连接的。
发动机右悬置软垫带支架总成:通过2个Q1841025的螺栓安装在发动机舱右前纵梁上。
支架通过2个Q1841045的螺栓和1个螺母安装在发动机上。
发动机后悬置软垫带支架总成:通过1个Q1841485的螺栓安装在前副车架上。
发动机后悬置支架总成:通过3个Q1841022的螺栓安装在变速箱底部。
它们两者之间是通过1个Q1841473的螺栓相连接的。
1页如有你有帮助,请购买下载,谢谢!2页第二节 悬置系统拆除2.1 后悬置总成拆除2.1.1 拆除发动机后悬置5个螺栓。
2.1.2 拆下发动机后悬置支架和后悬置软垫带支架总成。
2.1.3 将发动机总成支撑起来。
2.2 蓄电池总成拆除2.2.1 断开蓄电池负极。
2.2.2 断开蓄电池正极。
2.2.3 移除蓄电池压板上的1个螺栓,取下蓄电池。
2.2.4 移除蓄电池托架上的3个螺栓,取下蓄电池托架。
提示:从蓄电池托架上的维修孔拆除螺栓A 。
2.3 左悬置总成拆除2.3.1 拆除发动机上左悬置支架的4个螺栓。
2.3.2 拆除发动机左悬置支架与左悬置软垫带支架总成之间的3个螺栓。
2.3.3 拆除发动机左悬置软垫带支架总成与左前纵梁上的3个螺栓。
2.4 右悬置总成拆除2.4.1 拆除发动机右悬置软垫带支架总成上的4个螺栓。
2.4.2 拆除发动机右悬置软垫带支架总成上的1个螺母。
第三节 悬置系统安装3.1 右悬置总成安装3.1.1 将发动机总成支撑起来。
3.1.2 安装发动机右悬置软垫带支架总成上的4个螺栓,力矩为52N ·m 。
3.1.3 安装发动机右悬置软垫带支架总成上的1个螺母, 力矩为52N ·m 。