初中数学-勾股定理单元试卷
- 格式:doc
- 大小:287.53 KB
- 文档页数:5
C勾股定理测试卷京翰提示:弦定理,又称毕达哥拉斯定理或毕氏定理,是初中数学中常用的公式定理,下面的试卷主要考察同们对勾股定理的基本知识和基础题型的认识程度,在数学学习的过程中,一定要注意对一个问题的延伸,这样才能知识点学习的更加透彻和明晰!一、选择题1。
已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 22。
一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为( ) (A ) 4 (B ) 8 (C) 10 (D ) 123.如图,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( ) (A)321S S S =+ (B )232221S S S =+ (C )321S S S >+ (D ) 321S S S <+4。
若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).(A )3cm 2 (B)32cm 2 (C )33cm 2 (D )4cm 25.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为 ( ) A 、6cm 2 B 、8cm 2 C 、10cm 2 D 、12cm26。
在下列以线段a 、b 、c 的长为三边的三角形中,不能构成 直角三角形的是 ( )(A)a=9 、b=41 、c=40 (B)a=11 、b=12 、c=15 (C )a ∶b ∶c=3∶4∶5 (D ) a=b=5 、c=257、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 338.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ) A 3 B 4 C 5 D 6 9、锐角三角形的三边长分别是2、3、x,则x 的取值范围是( ) (A 513(B 13(13)1〈x 〈510。
初中数学数学勾股定理试题及答案一、选择题1.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .245B .365C .12D .152.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .983.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .4.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A 22d S d +B 2d S d -C .22d S d +D .()22d S d + 5.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .25394+B .25392+C .18253+D .253182+ 6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =8.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1699.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .15二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.13.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.14.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.15.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______18.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.19.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________. 20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.27.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.28.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.29.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 30.(知识背景) 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB=90°即可得出EQ ∥BC ,进而可得出AE EQ AB BC=,代入数据即可得出EQ 的长度,此题得解. 【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,∴2215AB AC BC +=,∵AD 是∠BAC 的平分线,∴∠CAD=∠EAD ,在△ACD 和△AED 中,90CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴AE=AC=9.∵EQ ⊥AC ,∠ACB=90°,∴EQ ∥BC ,AE EQ AB BC ∴=, ∴91512EQ =,653EQ ∴=. 故选B. 【点睛】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C 的对称点E ,及通过点E 找到点P 、Q 的位置是解题的关键. 2.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.3.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 4.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500mC.400m D.300m2.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,下列结论错误的是().A.AF⊥AQ B.AF=AQ C.AF=AD D.F BAQ∠=∠3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为()A.11 B.15 C.10 D.224.如图,已知圆柱的底面直径6BCπ=,高3AB=,小虫在圆柱侧面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程的平方为()A.18 B.48 C.120 D.725.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )A .13 cmB .4cmC .4cmD .52 cm 6.一个直角三角形两边长分别是12和 5,则第三边的长是( ) A .13B .13或15C .13或119D .15 7.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 8.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+9.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+10.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D .10二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________13.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.14.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.15.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.18.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.19.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =3D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.24.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2. 25.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△. (3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =DB ,DA .(1)直接写出BC=__________,AC=__________;(2)求证:ABD∆是等边三角形;(3)如图,连接CD,作BF CD⊥,垂足为点F,直接写出BF的长;(4)P是直线AC上的一点,且13CP AC=,连接PE,直接写出PE的长.29.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22=500m,AB BC∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选B.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.C解析:C【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.3.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.4.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=,∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.5.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A 处绕易拉罐4圈后到达顶端的B 处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm ,∵∵易拉罐底面周长是12cm ,高是20cm ,∴x 2=(12×4)2+202∴x 2=(12×4)2+202,所以彩带最短是52cm .故选D .【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,6.C解析:C【分析】记第三边为c ,然后分c 为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c ,若c 为直角三角形的斜边,则13c ==;若c 为直角三角形的直角边,则c =故选:C .【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.7.A解析:A【解析】已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12×6×8=24,故选A . 8.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22277-x x +=,解得: 1)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.9.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =, ∴225PB PA AB +=∵5∴数轴上点C 51.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.10.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC 中,2222BC=BE +CE =1+3=10,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得BC=2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得DE=222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x 在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53; ②当折叠后点C 的对应点H 在AC 的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH ∴EH=DH +DE=163设CP=PH=y ,则EP= CP -CE =y -83在Rt △PEH 中,EP 2+EH 2=PH 2即(y -83)2+(163)2=y 2解得:y=203 即此时CP=203. 综上所述:CP=53或203. 故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.13.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE. 【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.14.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 15.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,∴C=13.若A=S P =4.C=S Q =9,B=S K ,根据勾股定理,可得A+B=C ,∴B=9-4=5.∴S K 为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.16.71-【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--, ∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴22AD AG DG 65=+=故答案为65【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18.310,62或32【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 都为直角三角形的直角边,则斜边为223332+=;当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.19.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.20.28+ 【分析】依次求出在Rt △OAB 中,OA 1=2;在Rt △OA 1B 1中,OA 2=2OA 1=(2)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2OA 1)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt △AEF 中,AE 2=AF 2+EF 2,AF )2+EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.25.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴2PE ==,∴2222BE +=,解得:BE =作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯⨯+⨯⨯ 13=+,故②正确;③在Rt AHB 中,由①知:62EH HB ==, ∴62AH AE EH =+=+, 22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+, ∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+= ∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DF CD CF CD =+=又DF=BF-BD=AD-BD ∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中, ∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=333PQ CQ CP =-=,。
人教版八年级下册数学单元培优卷第十七章勾股定理(含答案)一.选择题1.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.2.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.3.下列各组数中是勾股数的是()A.4,5,6B.0.3,0.4,0.5C.1,2,3D.5,12,134.已知△ABC的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c.①c2﹣a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2,c=.上述四个条件中,能判定△ABC为直角三角形的有()A.1个B.2个C.3个D.4个5.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14B.4C.14或4D.以上都不对6.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.107.三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:128.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16 10.如图为某楼梯,已知楼梯的长为5米,高3米,现计划在楼梯表面铺地毯,则地毯的长度至少需要()A.8.5米B.8米C.7.5米D.7米二.填空题11.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.12.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.13.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=度.14.已知三角形三边长分别是6,8,10,则此三角形的面积为.15.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.三.解答题16.如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.17.图中的小正方形边长为1,△ABC的三个顶点都在小正方形的顶点上,求(1)△ABC的面积;(2)边AC的长.18.方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.19.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.参考答案一.选择题1.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.2.解:设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x=,∴BC=DE=a﹣=,∴BD2=BC2+CD2=()2+()2=,∴BD=,故选:C.3.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.4.解.①∵c2﹣a2=b2;∴c2+b2=a2;故能判定△ABC为直角三角形;②∠A=∠B=∠C;∵∠A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;③∵c=a=b;∴a2+b2=2a2=c2,故能判定△ABC为直角三角形;④∵a=2,b=2,c=,∴a2+b2=12≠c2,故不能判定△ABC为直角三角形;故选:C.5.解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.6.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.7.解:A、∵32+42=25=52,∴此三角形是直角三角形,故本选项正确;B、∵a2=b2=c2,∴不符合勾股定理的逆定理,故本选项错误;C、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,即a2+c2﹣=b2,∴此三角形是直角三角形,故本选项正确;D、∵52+122=132,∴此三角形是直角三角形,故本选项正确.故选:B.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.9.解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.10.解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故选:D.二.填空题(共5小题)11.解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).12.解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.13.解:∵∠A=90°,AC=AB=4,∴∠ACB=∠ABC=45°,在Rt△ABC中,BC==4,CD2+BC2=22+(4)2=36,BD2=62=36,∴CD2+BC2=BD2,∴∠BCD=90°,∴∠ACD=45°,故答案为:45.14.解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.15.解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.三.解答题(共4小题)16.解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.17.解:(1)△ABC的面积=3×3﹣×1×2﹣×1×3﹣×3×2=;(2)AC==.18.解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D有4个.故答案是:4.19.解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.=AB•CD=BC•AC因为S△ABC所以CD===240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.人教版八年级下册数学第十七章勾股定理强化训练(附解析)一.选择题1.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.直角三角形的两边分别为1和2,则另一边长为()A.B.C.或D.不确定3.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1 B.C.2 D.4.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169 B.119 C.13 D.1445.如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5 B.4 C.3 D.26.如图,OA=,以OA为直角边作Rt△OAA 1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.7.在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F.若AD=AB=,则AF2=()A.8﹣4B.10﹣4C.8+4D.10+48.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周牌算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理.将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()A.120 B.110 C.100 D.909.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=10,BC=12,则AD等于()A.6 B.7 C.8 D.910.能作为直角三角形的三边长的数据是()A.3,4,6 B.5,12,14 C.1,,2 D.,,2 11.满足下列条件的△ABC,不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:512.下列各组数据中,不是勾股数的是()A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,9 13.已知△ABC的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c.①c2﹣a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2,c=.上述四个条件中,能判定△ABC为直角三角形的有()A.1个B.2个C.3个D.4个14.在三角形ABC中,若AB=3cm,AC=4cm,BC=5cm,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.钝角三角形15.下列以a,b,c为边的三角形,不是直角三角形的是()A.a=1,b=1,B.a=1,,c=2C.a=3,b=4,c=5 D.a=2,b=2,c=316.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,5,7 B.5,7,9 C.3,2,D.2,2,2 17.下列各组数中是勾股数的是()A.4,5,6 B.0.3,0.4,0.5C.1,2,3 D.5,12,1318.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米二.解答题19.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积和周长;(2)∠BCD是直角吗?说明理由.20.如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC =12cm,求这个四边形的面积?21.已知:如图,在△ABC中,AB=AC,点D、E分别是BC、AC上的点,且DE=3,AD=4,AE=5.若∠BAD=73°,∠C=35°,求∠AED的度数.参考答案一.选择题1.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.2.解:①长为1的边是直角边,长为2的边是斜边时:第三边的长为:=;②长为1、2的边都是直角边时:第三边的长为:=;综上,第三边的长为:或.故选:C.3.解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.4.解:第三边长的平方是52+122=169.故选:A.5.解:∵AB=AC,AD是∠BAC的平分线,∴BD=BC=4,AD⊥BC,由勾股定理得,AD==3,故选:C.6.解:∵∠OAA 1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA 1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长=,故选:B.7.解:∵AD=AB=,∴AB=1,AD=,∵四边形ABCD是矩形,∴BC=AD=,CD=AB=1,∵在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,∴BE=AB=1,∴CF=CE=BC﹣BE=﹣1,∴DF=CD﹣CF=2﹣,∴AF2=AD2+DF2=()2+(2﹣)2=10﹣4.故选:B.8.解:延长AB交KF于点O,延长AC交GM于点P,如图所示:则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵Rt△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴长方形KLMJ的面积为10×11=110.故选:B.9.解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴BD=DC=AB=5,AD⊥BC,∴AD==8,故选:C.10.解:A、∵32+42≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵52+122=169≠142,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.D、∵()2+()2=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;故选:C.11.解:A、∵∠C=∠A+∠B==90°,是直角三角形,故此选项不合题意;B、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;C、∵32+42=52,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.12.解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.13.解.①∵c2﹣a2=b2;∴c2+b2=a2;故能判定△ABC为直角三角形;②∠A=∠B=∠C;∵∠A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;③∵c=a=b;∴a2+b2=2a2=c2,故能判定△ABC为直角三角形;④∵a=2,b=2,c=,∴a2+b2=12≠c2,故不能判定△ABC为直角三角形;故选:C.14.解:∵AB=3cm,AC=4cm,BC=5cm,32+42=52,∴这个三角形是直角三角形.故选:C.15.解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.16.解:A、32+52≠72,不能构成直角三角形,故错误;B、52+72≠92,不能构成直角三角形,故错误;C、22+32=()2,能构成直角三角形,故正确;D、22+22≠(2)2,不能构成直角三角形,故错误.故选:C.17.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.18.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.二.解答题(共3小题)19.解:(1)由勾股定理可得:AB2=32+32=18,则AB==5,∵BC2=42+22=20,∴BC=2,∵CD2=22+12=5,∴CD=,∵AD2=32+42=25,∴AD=5,故四边形ABCD的周长为:5+2+5+=5+3+5,四边形ABCD的面积为:7×5﹣(1×7+4×2+2×1+4×3)﹣3=35﹣17.5=17.5;(2)由(1)得:BC2=20,CD2=5,而BD2=32+42=25,故DC2+BC2=BD2,则∠BCD=90°.20.解:连接AC,∵AD=4cm,CD=3cm,∠ADC=90°,∴AC===5(cm)∴S△ACD=CD•AD=6(cm2).在△ABC中,∵52+122=132即AC2+BC2=AB2,∴△ABC为直角三角形,即∠ACB=90°,∴S△ABC=AC•BC=30(cm2).∴S四边形ABCD=S△ABC﹣S△ACD=30﹣6=24(cm2).答:四边形ABCD的面积为24cm2.21.解:∵AB=AC,∠C=35°,∴∠B=∠C=35°,∵DE=3,AD=4,AE=5,∴DE2+AD2=3+4=25,AE2=5=25,∴DE2+AD2=AE2,∴△ADE是直角三角形,∠ADE=90°;又∵∠BAD+∠B+∠ADB=180°,∠BAD=73°,∴∠ADB=180°﹣73°﹣35°=72°;又∵∠ADB+∠ADE+∠EDC=180°,∴∠EDC=180°﹣72°﹣90°=18°;∴∠AED=∠EDC+∠C=18°+35°=53°.人教版八年级数学下册第十七章勾股定理单元检测一、选择题(共2小题;共10分)1. 等腰三角形的底边长为,底边上的中线长为,它的腰长为A. B. C. D.2. 如图,个边长为的小正方形及其部分对角线所构成的图形中,如果从点到点只能沿图中的线段走,那么从点到点的最短距离的走法共有A. 种B. 种C. 种D. 种二、填空题(共1小题;共5分)3. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为‘‘赵爽弦图”.如图由弦图变化得到,它由八个全等的直角三角形拼接而成.记图中正方形、正方形、正方形的面积分别为,,.若正方形的边长为,则.三、解答题(共3小题;共39分)4. 如图,在中,,,.求边上的高.5. 如图是用硬纸板做成的四个全等的直角三角形和一个边长为的正方形,直角三角形的两直角边长分别是,,斜边长为,请你将它们拼成一个能证明勾股定理的图形.Ⅰ画出拼成的这个图形的示意图;Ⅱ证明勾股定理.6. 一个直立的火柴盒在桌面上倒下,启迪人们发现了一种新的验证勾股定理的方法.如图火柴盒的一个侧面倒下到的位置,连接,设,,.请利用四边形的面积证明勾股定理:.四、选择题(共1小题;共5分)7. 已知三组数据:① ,,;② ,,;③ ,,.分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的有A. ②B. ①②C. ①③D. ②③五、填空题(共1小题;共5分)8. 若的三边长,,满足关系是,则是三角形.六、解答题(共3小题;共39分)9. 在中,,,,设为最长边.当时,是直角三角形;当时,利用代数式和的大小关系,探究的形状(按角分类).Ⅰ当的三边长分别为,,时,为三角形;当的三边长分别为,,,为三角形.Ⅱ小明同学根据上述探究,有下面的猜想:‘‘当时,为锐角三角形;当时,为钝角三角形.’’请你根据小明的猜想完成下面的问题:当,时,最长边在什么范围内取值时,分别是直角三角形、锐角三角形、钝角三角形?10. 如图,已知于点,且,,,.Ⅰ求:四边形的面积;Ⅱ若。
一、选择题1.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m2.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m3.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条 4.在周长为24的直角三角形中,斜边长为11,则该三角形的面积为( ) A .6B .12C .24D .48 5.下列各组数中,不能作为直角三角形的三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .5,7,32 6.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 7.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 8.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 9.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm 10.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 11.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108 12.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是( )A .5米B .7米C .8米D .9米二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.15.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.16.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.17.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______米.18.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.19.已知等边三角形的边长为2,则其面积等于__________.20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,Rt △ABC 中,∠ACB =90°.(1)作AB 边的垂直平分线交BC 于点D (要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB =10cm ,BC =8cm ,求BD 的长.22.如图,在平面直角坐标系中,点A (4,0),点B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 的坐标.23.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.24.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上.①求AE 的长.②DE 的长 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设水池的深度BC =xm ,则AB =(0.5+x )m ,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC 中,AC =1.5m .AB ﹣BC =0.5m .设水池的深度BC =xm ,则AB =(0.5+x )m .根据勾股定理得出:∵AC 2+BC 2=AB 2,∴1.52+x 2=(x +0.5)2,解得:x =2.故选:A .【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 2.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】 解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.B解析:B【分析】画出直角三角形,由11,24,c a b c =++=可得:222169,a ab b ++=再由勾股定理可得:222121,a b c +==从而求解24,ab =再利用三角形的面积公式可得答案.【详解】解:如图,由题意知:11,24,c a b c =++=13,a b ∴+=222169,a ab b ∴++=222121,a b c +==121+2169,ab ∴=248,ab =24,ab ∴=112.2S ab ∴== 故选:.B【点睛】本题考查的是勾股定理的应用,完全平方公式的应用,掌握以上知识是解题的关键. 5.D解析:D【分析】根据勾股定理的逆定理分别进行判断,即可得出结论.【详解】解:A 、∵222142+==,∴1,2能作为直角三角形的三边长.故此选项不符合题意;B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意;C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意;D 、∵2212+=,218=(,1218≠, ∴故选:D .【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键. 6.C解析:C【分析】先根据勾股定理求出AB ,AC ,AD ,AE 这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:5=,=10=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键. 9.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=,则最长木棒长为26cm ,故选:C .【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.10.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.C解析:C【分析】如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB ,求出AB 即可解决问题.【详解】解:如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB .在Rt △ACB 中,∠C=90°,AC=3米,BC=4米, ∴2222AB AC BC 345=++=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C .【点睛】本题考查勾股定理的应用,解题的关键是理解题意,正确画出图形,运用勾股定理解决问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113, ∴圆O 的半径为21x +=130, ∴圆O 的面积为21303π⎛⎫ ⎪ ⎪⎝⎭=1309π, 故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程. 14.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.15.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.16.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.17.13【分析】根据两点之间线段最短可知:小鸟沿着两棵树的顶端进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出【详解】如图所示ABCD为树且AB=14米CD=9米BD为两树距离12米过C作C解析:13【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB−CD=5,在直角三角形AEC中,AC22+=13.512+=22AE CE答:小鸟至少要飞13米.故答案为:13.【点睛】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.18.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中解析:3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D为BC的中点,∴BD=DC=1,在Rt△ABD中,AB=2,BD=1,∴AD==3,∴△ABC的面积为BC•AD=333.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的11【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,22+>(舍去);6561cm7cm②6cm是斜边,22-.6511cm11cm.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)见解析;(2)254. 【分析】(1)利用基本作图,作AB 的垂直平分线得到D 点;(2)先利用勾股定理计算出AC =6,再根据线段的垂直平分线的性质得到DA =DB ,设BD=x ,则AD =x ,CD =8﹣x ,利用勾股定理得到2(8)x -+26=2x ,然后解方程即可. 【详解】解:(1)如图,点D 为所作;(2)在Rt △ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 22108-6,∵点D 在AB 的垂直平分线上,∴DA =DB ,设BD =x ,则AD =x ,CD =8﹣x ,在Rt △ACD 中,2(8)x -+26=2x ,解得x =254, 即BD 的长为254. 【点睛】本题考查了线段垂直平分线的作法,线段垂直平分线的性质,勾股定理,熟练掌握基本作图,灵活运用性质,是解题的关键.22.点C 的坐标为(-1,0).【分析】根据勾股定理可求出AB 的长,由AB=AC ,根据线段的和差关系可求出OC 的长,进而可求出C 点坐标.【详解】∵点A ,B 的坐标分别为(4,0),(0,3),∴OA=4,OB=3,∴225AB AO BO =+=.∵以点A 为圆心,AB 长为半径画弧,∴5AB AC ==,∴1OC AC AO =-=.∵交x 轴的负半轴于点C ,∴点C 的坐标为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,根据勾股定理求出OC 的长是解题关键. 23.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.24.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+ 2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,c=2222435b a +=+=,∴Rt △ABC 的周长=3+4+5=12; 当a 为直角边,b 为斜边时,c=2222437b a -=-=,∴Rt △ABC 的周长=77+.【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB,∴∠AED=90°设DE=DB=x,则AD=AB-BD=8-x在Rt△ADE中,222=+AD AE DE∴222-=+(8)4x x解得,x=3∴DE=3cm.故答案为:3cm.【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.。
人教版八年级下册《第十七章 勾股定理》单元测试题 一.选择题(共10小题,满分40分,每小题4分) 1.如果一个三角形的三边分别为1、、,则其面积为( B )
A. B. C. D. 2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是( )
A.1 B. C.2 D.
3.下面四组数中是勾股数的有( A )
①3,4,7;②2,2,2;③12,16,20;④0.5,1.2,1.3. A.1组 B.2组 C.3组 D.4组 4.如图是一个直角三角形,它的未知边的长x等于( )
A.13 B. C.5 D.
5.如图所示,有一块地ABCD,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,
则这块地的面积为( D )
A.60米2 B.48米2 C.30米2 D.24米2 6.以下列三个数据为三角形的三边,其中能构成直角三角形的是( )
A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,7 7.下列各组数据中,不是勾股数的是( )
A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,9 8 .在中,,,,则点C到AB的距离是( A )
A. B. C. D. 9.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史
上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为( ) A.4 B.4π C.8π D.8 10.如图,,且,,,则线段
AE
的长为( A ).
A. B. 2 C. 3 D. 4 二.填空题(共5小题,满分20分,每小题4分) 11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 5 .
12.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是___12____m.
13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2= 10 , ∠ABC= 45 °.
一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.以下列各组数为三边的三角形中不是直角三角形的是 ( )A .1,2,5B .3,5,4C .5,12,13D .1,3,7 3.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .44.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =155.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352B .512-C .5﹣1D .512+ 6.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .157.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 8.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .310.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .1311.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,数轴上点A 表示的数是__________.15.已知△ABC 中,AB=AC=5,BC=6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.16.如图,已知点A ,点B 分别为y 轴和x 轴正半轴上两点,以AB 为斜边作等腰直角三角形ABC ,点A ,点B ,点C 按顺时针方向排列,若4,AB AOB =∆的面积为3,则点C 的坐标为_________.17.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.18.如图所示的正方形网格中,A,B,C,D,P是网格线交点.若∠APB=α,则∠BPC的度数为 ____(用含α的式子表示).19.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.20.如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则△ABC最小周长为 ________ .三、解答题21.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一=,E是AC上的一点,块三角形空地将进行绿化,如图,在ABC中,AB ACBC=,12CE=,135BE=.(1)判断ABE △的形状,并说明理由.(2)求线段AB 的长.22.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.23.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,3,5,22;(2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形使这个三角形的面积为6(要求至少画出3个);(3)在图3中,MNP △的顶点M ,N 在格点上,P 在小正方形的边上,问这个三角形的面积相当于多少个小方格的面积?24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.如图,△ABC 中,AB =6cm ,AC =42cm ,BC =25cm ,点P 以1cm/s 的速度从点B 出发沿边BA→AC 运动到点C 停止,运动时间为ts ,点Q 是线段BP 的中点. (1)若CP ⊥AB 时,求t 的值;(2)若△BCQ 是直角三角形时,求t 的值;26.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC 中,两边长分别是52a =10c =,这个三角形是否是奇异三角形?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-,∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A 、∵222125+==, ∴以1、2为三边的三角形是直角三角形,A 不符合题意;B 、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B 不符合题意;C 、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C 不符合题意;D 、∵2221310+=≠,∴以1、3为三边的三角形不是直角三角形,D 符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键. 3.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC ===∴5CD ===∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误;∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD = ∴5BD CD AD ===∵DF AB ⊥ ∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 4.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A 、72+242=52,能构成直角三角形,不符合题意;B 、112+402≠412,不能构成直角三角形,符合题意;C 、52+122=132,能构成直角三角形,不符合题意;D 、82+152=172,能构成直角三角形,不符合题意.故选:B .【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.5.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴12AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 6.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 7.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.8.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;()221433130-+=,不需调整; ()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.9.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.10.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×1ab=102∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A 表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A 表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键. 15.4【分析】过A 作AP ⊥BC 于P 根据勾股定理以及垂线段最短即可得到结论【详解】解:过A 作AP ⊥BC 于P ∵AB=AC=5∴BP=BC=3在Rt △ABP 中由勾股定理得AP=4∵点P 是线段BC 上一动点∴AP解析:4【分析】过A 作AP ⊥BC 于P ,根据勾股定理以及垂线段最短即可得到结论.【详解】解:过A 作AP ⊥BC 于P ,∵AB=AC=5,∴BP=12BC=3, 在Rt △ABP 中,由勾股定理得,AP=4∵点P 是线段BC 上一动点,∴AP≥4所以,AP 的最小值为4故答案为:4.【点睛】本题考查了等腰三角形的性质以及勾股定理,求出AP=4是解题的关键.16.或【分析】过点C 作交x 轴于点N 延长NC 至点M 使根据勾股定理解得ACBC 的长再证明由全等三角形对应边相等解得再根据设用加减消元法解得x 的值最终得到点C 的坐标【详解】解:过点C 作交x 轴于点N 延长NC 至点 解析:()1,1-或()1,1-【分析】过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,根据勾股定理解得AC 、BC 的长,再证明()NAC BCM AAS ≅,由全等三角形对应边相等解得NC BM =,再根据3AOB S =△,设=,NC BM x ON AN CM y ====,用加减消元法解得x 的值,最终得到点C 的坐标.【详解】解:过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,Rt ABC 为等腰直角三角形,222AC BC AB ∴+=22AC BC ∴==90NAC ACN ∠+∠=︒90BCM ACN ∠+∠=︒NAC MCB ∴∠=∠()NAC MCB AAS ∴≅NC BM ∴=设=,NC BM x ON AN CM y ====AO y x ∴=-在t R CMB 中,2228x y BC +==① 3AOB S =1()()32x y y x ∴+-= 226y x -=②①-②得,21x =1x ∴=±(1,1)C ∴-或(1,1)C -故答案为:()1,1-或()1,1-.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定与性质,其中涉及勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.18.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒ 【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则223332+=223332+= ,AC=6222AP PC AC +=∴ △PAC 为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒故答案为:90-α︒【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.20.4【分析】作A 关于OM 的对称点A´A 关于ON 的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:42【分析】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´2244+2(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´2(cm )即△ABC 的周长最小值为2故答案为:2【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键. 22.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.23.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为32,宽为1的矩形的对角线,是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP 的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP 的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)2;(2)4或6+42﹣25【分析】(1)如图1中,作CH ⊥AB 于H .设BH =x ,利用勾股定理构建方程求出x ,当点P 与H 重合时,CP ⊥AB ,此时t =2;(2)由题意易知分两种情形①如图2中,当点Q 与H 重合时,BP =2BQ =4,②如图3中,当CP =CB =25时,CQ ⊥PB ,然后根据题意求解即可解决问题.【详解】解:(1)如图1中,作CH ⊥AB 于H .设BH =x ,∵CH ⊥AB ,∴∠CHB =∠CHA =90°,∴AC 2﹣AH 2=BC 2﹣BH 2,∴(42)2﹣(6﹣x )2=(25)2﹣x 2,解得x =2,∴当点P 与H 重合时,CP ⊥AB ,此时t =2.(2)由(1)可得:BH=2,CH=4,∴点P 的运动路程为1×t=t ,∴如图2中,当点Q 与H 重合时,则有BP =2BQ =4,此时t =4;如图3中,当CP =CB =5CQ ⊥PB ,此时t =6+(2﹣56+2﹣5+,△BCQ是直角三角形.综上所述:当t=4或64225【点睛】本题主要考查等腰三角形的性质及勾股定理,熟练掌握等腰三角形的性质及勾股定理是解题的关键.26.(1)是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形.【分析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.【详解】解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形;理由如下,分两种情况:①当c为斜边时,2252c a-=∴a=b,∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形;②当b为斜边时,22c a=,+56∵a2+b2=200,∴2c2=200,∴a2+b2=2c2,∴Rt△ABC是奇异三角形.【点睛】本题考查的是勾股定理的应用,需要熟练掌握勾股定理的公式,运用分类讨论的思想是解决第(2)问的关键.。
人教版数学科八年级下册第十七章勾股定理(含答案)一、选择题1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A.86B.64C.54D.482.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13B.17C.18D.253.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8 cm,另一只朝东面挖,每分钟挖6 cm,10分钟之后两只小鼹鼠相距()A.100 cmB.50 cmC.140 cmD.80 cm4.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC=20 m,则A,B两点间的距离是()A.200 mB.20mC.40mD.50 m5.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D共有()A.5个B.4个C.3个D.2个6.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数为()(1)(2)(3)(4)B.2C.3D.47.如图,一棵大树在一次强台风中距地面5 m处折断,倒下后树顶端着地点A距树底端B的距离为12 m,这棵大树在折断前的高度为()A.10 mB.15 mC.18 mD.20 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是()A.5 mB.12 mC.13 mD.18 m9.张大爷离家出门散步,他先向正东走了30 m,接着又向正南走了40 m,此时他离家的距离为()A.30 mB.40 mC.50 mD.70 m10.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4B.C.11.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1B.2C.3D.4.812.在△ABC中,AB=AC=17,BC=16,则△ABC的面积为()A.60B.80C.100D.120二、填空题13.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.14.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.15.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD 的面积__________.16.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为________.18.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为____________ m.19.如图,四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”,如果大正方形面积为169,且直角三角形中较短的直角边的长为5,则中间小正方形面积(阴影部分)为________.20.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设秋千的绳索长为x尺,根据题意可列方程为____________.21.如图,在△ABC中,∠C=90°,则BC=________.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.23.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.24.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为________.三、解答题25.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)边AC的长;(3)点B到AC边的距离.26.细心观察图形,认真分析各式,然后回答问题:(1)推算出OA10的长和S10的值.(2)用含n(n为正整数)的式子表示上述规律.(3)求S12+S22+S32+…+S102的值.27.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s 的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.28.东明县是鲁西南的化工基地,有东明石化集团,洪业化工集团,玉皇化工集团等企业,化学工业越来越成为东明县经济的命脉,化工厂里我们会经常看到如图储存罐,根据需要,在圆柱形罐的外围要安装小梯子,如果油罐的底面半径为6米,高24米,梯子绕罐体半圆到达罐顶,则梯子至少要多长?29.在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC的长.30.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.31.阅读下列解题过程已知a、b、c为△ABC为三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2-b2)(a2+b2)②∴c2=a2+b2③∴△ABC是直角三角形回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的序号________.(2)错误原因为________.(3)本题正确结论是什么,并说明理由.32.如图所示,是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm)请计算两圆孔中心A和B的距离.答案解析1.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.2.【答案】C【解析】∵∠ACB=90°,BC=12,AC=5,∴AB==13,根据题意可得EF是AB的垂直平分线,∴D是AB的中点,∴AD=AB=6.5,CD=AB=6.5,∴△ACD的周长为13+5=18,故选C.3.【答案】A【解析】两只鼹鼠10分钟所走的路程分别为80 cm,60 cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100 cm.故选A.4.【答案】C【解析】∵CB=60 m,AC=20 m,AC⊥AB,∴AB==40(m).故选C.5.【答案】C【解析】过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选C.6.【答案】D【解析】(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选D.7.【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5 m,AB=12 m,∴AC===13 m,∴这棵树原来的高度=BC+AC=5+13=18 m.即这棵大树在折断前的高度为18 m.故选C.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】C【解析】根据题意,得AB=30 m,BC=40 m,他离家的距离为AC==50 m,故选C.10.【答案】C【解析】在Rt△ABC中,∠C=90°,AC=2,BC=3,由勾股定理,得AB===;故选C.11.【答案】D【解析】如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,∴BC===10,又∵S△ABC=AC·AB=BC·AD,∴6×8=10AD,∴AD=4.8.故选D.12.【答案】B【解析】如图,作AD⊥BC于点D,∵△ABC中,AB=AC=17,BC=16,∴BD=BC=8,∴在直角△ABD中,由勾股定理,得AD==15,∴S△ABC=×15×16=120,故选:D.13.【答案】2.6【解析】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为=2.6米.14.【答案】【解析】∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4-x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4-x)2,解得x=.15.【答案】36【解析】在△ABD中,∵∠A=90°,AD=3,AB=4,∴BD==5,S△ABD=AB·AD=×4×3=6,在△BCD中,∵BC=12,CD=13,BD=5,∴BD2+BC2=CD2,∴△CBD是直角三角形,∴S△CBD=BC·BD=×12×5=30.∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36.16.【答案】【解析】∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.17.【答案】2【解析】∵BC⊥AB,CD⊥AC,DE⊥AD,∴∠B=∠ACD=∠ADE=90°,在Rt△ABC中,AB=BC=1,根据勾股定理,得AC==,在Rt△ACD中,CD=1,AD=,根据勾股定理,得AD==,在Rt△ADE中,DE=1,AD=,根据勾股定理,得AE==2.18.【答案】500【解析】如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400 m,∴△ABC≌△DEA,∴EA=BC=300 m,在Rt△ABC中,AC==500 m,∴CE=AC-AE=200 m,从B到E有两种走法:①BA+AE=700 m;②BC+CE=500 m,∴最近的路程是500 m.19.【答案】49【解析】设直角三角形中较长的直角边的长为a,由题意得a2+52=169解得a=12,则中间小正方形面积(阴影部分)为(12-5)2=49.20.【答案】x2=102+(x-4)2【解析】设秋千的绳索长为x尺,根据题意可列方程为x2=102+(x-4)2,故答案为x2=102+(x-4)2.21.【答案】4【解析】由勾股定理,得BC==4.22.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.23.【答案】3【解析】由勾股定理得AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,AC2+AB2=CD2,∴能够组成3个直角三角形.24.【答案】8π【解析】在Rt△ABC中,AB===8,所以S半圆=×42=8π.25.【答案】解(1)S△ABC=3×3-(×3×1+×2×1+×2×3)=;(2)AC==;(3)设点B到AC边的距离为h,则S△ABC=×AC×h=,解得h=.【解析】(1)利用三角形所在的正方形面积减三个小直角三角形的面积即可求出;(2)利用勾股定理即可求出AC的长;(3)求出AC,则点B到AC边的距离即为AC边上的高,利用面积定值即可求出.26.【答案】解(1)∵OA122=(OA102)2+1=2,OA32=12+()2=3,OA42=12+()2=4,…,∴OA102=10,∴OA10=;∵S1=,S2=,S3=,…,∴S10=;(2)由(1)可知,OAn=,Sn=;(3)S12+S122+S32+…+S102=+++...+=×(1+2+3+ (10)=×=.【解析】(1)根据规律写出OA102,再根据算术平方根的定义解答;(2)根据题中给出的得数即可得出结论;(3)根据分析写出算式,然后利用求和公式列式计算即可得解.27.【答案】解(1)设经过x秒,△BMN为等边三角形,则AM=x,BN=2x,∴BM=AB-AM=30-x,根据题意得30-x=2x,解得x=10,答:经过10秒,△BMN为等边三角形;(2)经过x秒,△BMN是直角三角形,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=30°,∴BN=BM,即2x=(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=BN,即30-x=×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【解析】(1)设时间为x,表示出AM=x、BN=2x、BM=30-x,根据等边三角形的判定列出方程,解之可得;(2)分①∠BNM=90°时,即可知∠BMN=30°,依据BN=BM列方程求解可得;②∠BMN=90°时,∠BNM=30°,依据BM=BN列方程求解可得.28.【答案】解如图,根据题意,BC=24 m,AB=·2π·6≈18 m,在Rt△ABC中,AC===30 m,答:梯子至少要30 m.【解析】29.【答案】解如图(1),△ABC中,AB=15,AC=20,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理,得BD==9,在Rt△ADC中AC=20,AD=12,由勾股定理,得DC==16,BC的长为BD+DC=9+16=25.如图(2),△ABC中,AB=15,AC=20,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理,得BD==9,在Rt△ACD中AC=20,AD=12,由勾股定理,得DC==16,BC=CD-BD=7.综上所述,BC的长为25或7.【解析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角还是锐角三角形,所以需分情况讨论,即∠ABC是钝角还是锐角,然后利用勾股定理求解.30.【答案】解∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS),∴DC=BE=7 cm,∴AC===(cm),∴BC=2,∴该零件的面积为××=37(cm2).【解析】首先证明△ADC≌△CEB,根据全等三角形的性质可得DC=BE=7 cm,再利用勾股定理计算出AC长,然后利用三角形的面积公式计算出该零件的面积即可.31.【答案】解(1)③;(2)除式可能为零;(3)∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),∴a2-b2=0或c2=a2+b2,当a2-b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.【解析】(1)(2)等式两边都除以a2-b2,而a2-b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.32.【答案】解∵由图可知,AC=120-60=60,BC=140-60=80,∴AB===100.答:两圆孔中心A和B的距离是100 mm.【解析】先根据图例得出AC及BC的长,再由勾股定理即可得出结论.最新人教版七年级(上)期末模拟数学试卷【答案】一、单选题(共10题;共30分)1.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A∶∠B∶∠C=3∶4∶5;③a2=(b+c)(b-c);④a∶b∶c=5∶12∶13,其中能判定△ABC是直角三角形的有( )A. 1个B. 2个C. 3个D. 4个2.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A. 直角三角形两个锐角互补B. 三角形内角和等于180°C. 如果三角形两条边长的平方和等于第三边长的平方D. 如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形3.如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是()A. 12 米B. 13 米C. 14 米D. 15 米4.如图,从电线杆离地面3米高处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有()米.A. 2B. 3C. 4D. 55.如图,△ABC中,∠ACB=90°,AC=24,BC=7,点M, N在AB上,且AM=AC, BN=BC,则MN的长为()A. 4B. 5C. 6D. 76.如图,已知正方形B的面积为100,如果正方形C的面积为169,那么正方形A的面积为()A. 269B. 69C. 169D. 257.如图,已知1号、4号两个正方形的面积和为10,2号、3号两个正方形的面积和为7,则a,b,c三个方形的面积和为()A. 17B. 27C. 24D. 348.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A. 4B. 6C. 8D. 109.如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都在图中的格点上,其中点A、点B的位置如图所示,则点C可能的位置共有()A. 9个B. 8个C. 7个D. 6个10.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A. 0B.C.D. 1二、填空题(共6题;共24分)11.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.12.如图,正方形ABCD中,AE⊥BE于E,且AE=3,BE=4,则阴影部分的面积是________.13.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为________cm(杯壁厚度不计)14.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=________度.15.直角三角形的两条直角边长分别是5和12,则斜边上的高长为________.16.如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为________.三、解答题(共6题;共46分)17.如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)求四边形ABDC的面积.18.在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如下图所示,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.那么水深多少?芦苇长为多少?19.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.20.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?21.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.22.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b)2=4× ab+c2整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.答案解析一、单选题1.C【解析】【解答】解:①∵∠A=∠B-∠C,又∵∠A+∠B+∠C=180°,∴∠B=90°,∴①是直角三角形;②∵∠A:∠B:∠C=3:4:5,∴设∠A=3x ,∠B=4x ,∠ C=5 x ,又∵∠A+∠B+∠C=180°,∴A=45°,∠B=60°,∠C=75°,∴②不是直角三角形;③∵a2=(b+c)(b-c),∴a2+c2=b2,符合勾股定理的逆定理,∴③是直角三角形;④∵a:b:c=5:12:13,∴设a=5x ,b=12x ,c=13x ,∴a2+b2=c2,符合勾股定理的逆定理,∴④是直角三角形.故应选:C 。
一、认识勾股定理(一)勾股定理的概念例1.(10分)求出下列各图中阴影部分的面积(单位:cm²)勾股定理 百分卷答案.()()()22221=0.36+0.64=12=225-144=813224=4+1=5S cm S cm cm S cm ⨯=阴影阴影阴影(二)勾股定理的简单应用例2.(10分)如图,在△ABC 中,∠ACB=90°,过点C 作CD⊥AB 于D.(1)通过观察,找出图中的所有直角三角形;(2)若AC=3cm,BC=4cm,试求CD 的长和△ABC 的面积.()()222221,,290,3,491625511622341255ACB ACD CDB ACBRt ACB ACB AC cm BC cmAB AC BC AB AB cmS AC BC AB CD cm AC BC CD cm AB ∆∆∆∆∠=︒===+∴=+=∴==⋅=⋅=⋅⨯∴=== 解:在中,又二、勾股定理的逆定理(一)勾股定理的逆定理例3.(10分)三角形的三边长分别为:3,4,59,40,417,24,255,12,13①②③④其中能构成直角三角形的有4个.(二)勾股数例4.(10分)下列各组数是勾股数的是(C ).111115.3,4,7.,,.5,12,13.,,3453412A B C D 例5.(10分)在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为__132cm____.三、勾股定理的运用(一)直角的判断例6.(10分)如图,在△ABC 中,D 是△ABC 外一点,AC =6,BC =8,DH ⊥AB 于H ,且S △ABD =60,DH =12,求∠C 的度数.2222221602106,86+8=10+90°ABD AB DH AB ACB AC BC AC BC AB ACB C ∆∆∠︒=⋅=∴=∆==∴=∴∆∠= 解:在ABD中,DHB=90,DH=12,S 在中,为直角三角形,且(二)已知两边关系和一边长解直角三角形例7.(10分)一根32厘米的绳子被折成如图所示的形状钉在P、Q 两点,PQ=16厘米,且RP⊥PQ,则RQ=20厘米。
初中八年级数学下册第十七章勾股定理单元测试习题十(含答案)若△ABC 三边长为a ,b ,c 满足a 2+b 2+c 2+200=12a+16b+20c ,试判断△ABC 的形状.【答案】直角三角形 【解析】 【分析】本题先由已知条件得到222(6)(8)(10)0a b c -+-+-=,进而得到222+=a b c ,再由勾股定理的逆定理判断ABC 的形状为直角三角形.【详解】解:如下图所示,ABC 为直角三角形,理由如下:∵222200121620a b c a b c +++=++∴222(1236)(1664)(20100)0a a b b c c -++-++-+= ∴222(6)(8)(10)0a b c -+-+-= ∴a=6,b=8,c=10 ∴222+=a b c又∵a ,b ,c 分别为ABC 三边的长度∴ABC 为直角三角形.(勾股定理的逆定理) 【点睛】本题考查了勾股定理的逆定理(如果在一个三角形中,两条边的平方和等于第三边的平方,那么这个三角形为直角三角形),熟记并灵活运用该定理是解题的关键.52.如图,我军的一艘军舰在南海海域巡航,在A 处时,某岛上的灯塔P 位于A 的南偏西30方向,距离为20nmile ,军舰沿南偏东15︒方向航行一段时间后到达B 处,此时,灯塔P 位于B 的西北方向上.(1)分别求出PAB ∠和PBA ∠的大小;(2)求B 到灯塔P 的距离(结果保留1位小数) 1.414=,1.732=【答案】(1)45°;30°;(2)28.2(或28.3)n mile . 【解析】 【分析】(1)根据题目中条件,可以得到45PAB ︒∠=,又因为AE ∥BF ,有PBA PBF ABF ∠=∠-∠,从而得出结果;(2)过点P 作PD AB ⊥,垂足为D ,在Rt PDA △中,sin PD PA PAD =⋅∠,可以计算出PD 的长度,在Rt PBD 中,sin PDPB PBD=∠,计算出PB 的长度活用勾股定理也可作答.【详解】 (1)由题意可知301545PAB PAE EAB ︒︒︒∠=∠+∠=+=∵AE ∥BF ,∴15EAB ABF ︒∠=∠= ∴451530PBA PBF ABF ︒︒︒∠=∠-∠=-= 故最后答案分别为:45︒;30︒.(2)解法一:过点P 作PD AB ⊥,垂足为Dsin 20sin 4520PD PA PAD ︒=⋅∠=⨯==sin 2PD PB PBD ===∠ 20 1.4128.2PB ≈⨯≈(n mile )或20 1.41428.3PB ≈⨯≈(n mile )答:B 距离灯塔P 大约是28.2(或28.3)n mile . 解法二:过点P 作PD AB ⊥,垂足为D ∵45PAB ︒∠= ∴45APD ︒∠= ∴PD AD =在Rt PDA △中,由勾股定理得PD =在Rt PBD 中,30PBD ︒∠=,∴2PB PD ==20 1.4128.2PB ≈⨯≈(n mile )或20 1.41428.3PB ≈⨯≈(n mile )答:B 距离灯塔P 大约是28.2(或28.3)n mile .【点睛】本题主要考查了解直角三角形在实际生活中的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.53.如图1,已知抛物线2y x bx c =-++与x 轴交于点(1,0),(3,0)A B -,与y轴交于点C .(1)求b ,c 的值;(2)点P 是第一象限抛物线上一动点,过点P 作x 轴的垂线l ,交BC 于点H .当△PHC 为等腰三角形时,求点P 的坐标;(3)如图2,抛物线顶点为E ,已知直线3y kx k =-+与二次函数图象相交于M ,N 两点.求证:无论k 为何值,△EMN 恒为直角三角形.【答案】(1)23b c ==,;(2)点P 的坐标()1,4,()2,3,()32;(3)见解析.【解析】【分析】(1)将点()()1,03,0A B -,代入解析式中即可求出结论;(2)利用待定系数法求出直线BC 的解析式,设点()2P x,x 2x 3-++,则点(),3H x x -+,过点C 作CM PH ⊥于点M ,根据等腰三角形腰的情况分类讨论,然后根据三线合一、等腰直角三角形的性质列出方程即可求出结论;(3)将二次函数和一次函数的解析式联立,整理得()220x k x k ---=,设点M N ,的坐标为()()1122,,x y x y ,,根据根与系数的关系可得则12122x x k x x k +=-=-,, ()12122y y x x +=+ 2266k k -+=-,21294y y k =-,然后利用平面直角坐标系中任意两点之间的距离公式和勾股定理的逆定理即可证出结论.【详解】解:(1)将点()()1,03,0A B -,代入2y x bx c =-++,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴23b c ==,;(2)设直线BC 的解析式为3y kx =+, 将点()3,0B 代入3y kx =+, 得,1k =-,∴直线BC 的解析式为3y x =-+,设点()2P x,x 2x 3-++,则点 (),3H x x -+,过点C 作CM PH ⊥于点M ,()22,2333,==-++--+=-+CM x PH x x x x x①当CP CH =时,PM MH MCH MCP =∠=∠,, ∵OB OC =, ∴45OBC ∠=︒, ∵//CM OB ,∴45MCH OBC ∠=∠=︒, ∴90PCH ∠=︒, ∴()211322MC PH x x ==-+, 即()2132x x x =-+, 解得,10x =(舍去),21x =, ∴()1,4P ; ②当CH PH =时,23x x =-+,解得1203x x ==-,∴32()P --③当CP PH =时,此时点P 和点M 重合23x x x =-+,解得1202x x ==, ∴()2,3P综上所述点P 的坐标()1,4,()2,3,()32;(3)将二次函数与直线m 的表达式联立并整理得:()220x k x k ---=,设点M N ,的坐标为()()1122,,x y x y ,, 则12122x x k x x k +=-=-,,则()12122y y x x +=+ 2266k k -+=-,同理:21294y y k =-,点M N 、的坐标为()11,x y ,()22,x y ,点()1,4E ,()()222111122111412168EM x y x x y y =-+-=-++-+()()222222222221412168NE x y x x y y =-+-=-++-+()()2222221212121222328EM EN x x x x y y y y +=-++++-+++()()2222121212123428x x y y x x y y ++++-+-+=()()222221212342286x x y y k k =++++---- 2222212128218x x y y k k =+++++-()()221212222212122121222-+-=+++=--x x y y x x x x y y y N y M22221212121222x x y y x x y y =+++--()()2222212122294x x y y k k =+++---- 2222212128218x x y y k k =+++++-∴222EM EN MN += 即:EMN 为直角三角形. 【点睛】此题考查的是二次函数、一次函数和几何图形的综合大题,此题难度较大,掌握利用待定系数法求二次函数解析式、一次函数解析式、等腰三角形的性质、分类讨论的数学思想、解一元二次方程、一元二次方程根与系数的关系、平面直角坐标系中任意两点之间的距离公式和勾股定理的逆定理是解决此题的关键.54.如图①,在正方形网格中,每个小正方形的边长为1.在网格中构造格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),AB、BC、AC三边的长.(1)请你将△ABC的面积直接填写在横线上.(2)在图②中画出△DEF,DE、EF、DF.①判断三角形的形状,说明理由.②求这个三角形的面积.【答案】(1)72(2)见解析【解析】【分析】(1)利用“构图法”求解△ABC的面积即可.(2)根据网格结构与勾股定理确定出点D、E、F,顺次连接可得△DEF,利用勾股定理的逆定理,可判断是直角三角形,代入面积公式可求出面积.【详解】解:(1)S△ABC=3×3-12×1×2-12×2×3-12×1×3=72,(2)如图所示,.①△DEF为直角三角形,∵(2)2+(8)2=(10)2,∴△DEF为直角三角形,②S△DEF =12DE×EF=12×2×22=2.【点睛】本题考查了勾股定理的知识,解答本题关键是熟练勾股定理的应用,注意格点三角形中“构图法”求面积的应用.55.我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,因为222242+=⨯,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在Rt ABC ∆中,90ACB ∠=︒,AB c =,AC b =,BC a =,且b a >,若Rt ABC ∆是奇异三角形,求::a b c ;(3)如图,以AB 为斜边分别在AB 的两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.①求证:ACE ∆是奇异三角形;②当ACE ∆是直角三角形时,求DBC ∠的度数.【答案】(1)真;(2)::a b c =(3)①证明见解析;②75DBC ∠=︒或105DBC ∠=︒.【解析】 【分析】(1)设等边三角形的边长为a ,则a 2+a 2=2a 2,即可得出结论; (2)由勾股定理得出a 2+b 2=c 2①,由Rt △ABC 是奇异三角形,且b >a ,得出a2+c 2=2b 2②,由①②得出a ,,即可得出结论; (3)①由勾股定理得出AC 2+BC 2=AB 2,AD 2+BD 2=AB 2,由已知得出2AD 2=AB 2,AC 2+CE 2=2AE 2,即可得出△ACE 是奇异三角形;②由△ACE 是奇异三角形,得出AC 2+CE 2=2AE 2,分两种情况,由直角三角形和奇异三角形的性质即可得出答案.【详解】(1)解:“等边三角形是奇异三角形”这个命题是真命题,理由如下: 设等边三角形的一边为a ,则2222a a a +=,∴符合奇异三角形”的定义.(2)解:∵90C ∠=︒,则222+=a b c ①,∵Rt ABC ∆是奇异三角形,且b a >,∴2222a c b +=②,由①②得:b =,c =,∴::1:a b c =(3)①证明:∵90ACB ADB ∠=∠=︒,∴222AC BC AB +=,222AD BD AB +=,∵AD BD =,∴222AD AB =,∵AE AD =,CB CE =,∴2222AC CE AE +=,∴ACE ∆是奇异三角形.②由①可得ACE ∆是奇异三角形,∴2222AC CE AE +=,当ACE ∆是直角三角形时,由(2)得:::1:AC AE CE =或::AC AE CE =,当::AC AE CE =时,:1:AC CE =即:AC CB =∵90ACB ∠=︒,∴30ABC ∠=︒,∵AD BD =,90ADB ∠=︒,∴45ABD ∠=︒,∴75DBC ABC ABD ∠=∠+∠=︒. 当::AC AE CE =时,:AC CE =,即:AC CB =,∵90ACB ∠=︒,∴60ABC ∠=°,∵AD BD =,90ADB ∠=︒,∴45ABD ∠=︒,∴105DBC ABC ABD ∠=∠+∠=︒,∴75DBC ∠=︒或105DBC ∠=︒.【点睛】本题是四边形综合题目,考查奇异三角形的判定与性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握奇异三角形的定义、等边三角形的性质和勾股定理是解题的关键.56.如图①,在Rt △ABC 中,∠C =90°,两条直角边长分别为a ,b ,斜边长为c .如图②,现将与Rt △ABC 全等的四个直角三角形拼成一个正方形EFMN .(1)若Rt △ABC 的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN 的边长为8,Rt △ABC 的周长为18,求Rt △ABC 的面积.【答案】(1)1213;(2)9 【解析】【分析】 (1)根据勾股定理得到c ,根据概率公式即可得到结论;(2)根据题意求出c ,得到a +b 的值,根据三角形的面积公式、完全平方公式计算,得到答案.【详解】(1)∵Rt △ABC 的两直角边之比均为23:, ∴设23b k a k =,=,由勾股定理得,222a b c +=,∴c =,∴针尖落在四个直角三角形区域的概率是214231221313k k k ⨯⨯⨯=; (2)∵正方形EFMN 的边长为8,即c =8,∵Rt △ABC 的周长为18,∴a +b +c =18,∴a +b =10,则Rt △ABC 的面积=22211[()()]924ab a b a b =+-+=. 【点睛】本题主要考查了概率的求解及乘法公式求几何图形面积,熟练掌握几何方法求概率及乘法公式的运用是解决本题的关键.57.如图,在Rt ABC 中,90ACB ∠︒=,6AC =,8BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,求CE EF +的最小值.【答案】当C 、E 、F '共线,且点F '与H 重合时,FE EC +的值最小,最小值为245【解析】【分析】在AB 上取点F ′,使AF ′=AF ,过点C 作CH ⊥AB ,垂足为H .因为EF+CE=EF ′+EC ,推出当C 、E 、F ′共线,且点F ′与H 重合时,FE+EC 的值最小.【详解】解:如图所示:在AB 上取点F ',使AF AF '=,过点C 作CH AB ⊥,垂足为H .在Rt ABC 中,依据勾股定理可知10BA =.245AC BC CH AB ⋅==, EF CE EF EC +='+,∴当C 、E 、F '共线,且点F '与H 重合时,FE EC +的值最小,最小值为245. 【点睛】本题主要考查的是轴对称的性质、勾股定理的应用、垂线段最短等知识,解题的关键是学利用对称,解决最短问题.58.一商场为做一幅广告条幅,一端挂在楼顶C 处,另一端挂在与地面垂直高度为3米的栏杆AB 的顶端A 处,已知楼高DC 为19米,栏杆底部距楼底D 的距离为12米,你能算出这幅条幅至少长是多少米?【答案】20m .【解析】【分析】作AE CD ⊥与CD 交于E ,先证明四边形ABDE 是矩形即可得到AE 、DE的长,进而得到CE 的长,根据勾股定理即可求得CA 的长.【详解】作AE CD ⊥与CD 交于E∵AE CD ⊥∴90AED ∠=︒∵90CDB ABD ==︒∠∠∴四边形ABDE 是矩形∴3DE AB m ==,12AE BD m ==∴19316CE CD DE m =-=-=∴20CA m ===故这幅条幅至少长是20米.【点睛】本题考查了勾股定理的实际应用,掌握勾股定理的性质以及用法是解题的关键.59.定义:如图,点M ,N 把线段AB 分割成AM.MN ,NB ,若以AM ,MN ,NB 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知M 、N 线段AB 分割成AM ,MN ,NB ,若2.5 6.56===,,AM MN BN ,则点M ,N 是线段AB 的勾股分割点吗?请说明理由;(2)已知点M 、N 是线段AB 的勾股分割点,且AM 为直角边,若305==,AB AM ,求BN 的长.【答案】(1)点M ,N 是线段AB 的勾股分割点,理由见详解;(2)12或13.【解析】【分析】(1)根据勾股定理的逆定理,即可判断点M ,N 是线段AB 的勾股分割点;(2)设BN=x ,则MN=30-AM-BN=25-x ,分3种情况,分类讨论:①当MN 是最长边时,222AM BN MN +=,②当BN 是最长边时,222AM MN BN +=,③当AM 是最长边时,这种情况不存在;分别进行求解,即可.【详解】(1)点M ,N 是线段AB 的勾股分割点,理由如下:∵ 2.5 6.56===,,AM MN BN ,又∵2222.5642.25 6.5+== ,∴222AM BN MN +=,∴以AM ,BN ,MN 为边的三角形是直角三角形,∴点M ,N 是线段AB 的勾股分割点;(2)设BN=x ,则MN=30-AM-BN=25-x ,①当MN 是最长边时,∵点M ,N 是线段AB 的勾股分割点,∴222AM BN MN +=,∴2225(25)x x +=-,解得:x=12;②当BN 是最长边时,∵点M ,N 是线段AB 的勾股分割点,∴222AM MN BN +=,∴2225(25)x x +-=,解得:x=13;【点睛】本题主要考查勾股定理及其逆定理的应用,根据题意,分类讨论,利用勾股定理列出方程,是解题的关键.60.如图,有一根高为2 m 的圆柱形木材,它的底面周长为0.3 m .为了营造喜庆的气氛,小颖想用一根彩带从圆木的底向顶均匀地缠绕7圈,一直缠到起点的正上方为止.小颖至少要准备多长的一根彩带?【答案】小颖至少要准备2.9 m 的一根彩带.【解析】【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】将圆柱表面切开展开呈长方形,则螺旋线长为七个长方形并排后的长方形的对角线长,∵圆柱高2 m,底面周长0.3 m,x2=(0.3×7)2+22=8.41,解得x=2.9,∴彩带长至少是2.9 m.答:小颖至少要准备2.9 m的一根彩带.【点睛】本题考查的是平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.。
初中数学试卷《第17章勾股定理》(A卷)一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= .2.△ABC,AC=6,BC=8,当AB= 时,∠C=90度.3.等边三角形的边长为6cm,则它的高为cm.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= .5.直角三角形两直角边长分别为5和12,则它斜边上的高为.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为.8.等腰三角形的两边长为2和4,则底边上的高为.9.若等腰直角三角形斜边长为2,则它的直角边长为.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,1216.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.417.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)27.如图,△ABC中,CD⊥AB于D.(1)图中有个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?30.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较=a2+b2c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a2+b2c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:,类比勾股定理的验证方法,相信你能说明其能否成立的理由.《第17章勾股定理》(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= 15 .【考点】勾股定理.【分析】根据勾股定理即可解决.【解答】解:根据勾股定理,得c==15.【点评】主要是考查了勾股定理,熟记9,12,15勾股数.2.△ABC,AC=6,BC=8,当AB= 10 时,∠C=90度.【考点】勾股定理.【分析】由已知得,这是一个直角三角形,则根据勾股定理即可求解.【解答】解:∵∠C=90°∴AB为斜边∴AC2+BC2=AB2,∴AB=10【点评】本题利用了勾股定理来求解,是基础知识比较简单.3.等边三角形的边长为6cm,则它的高为3cm.【考点】等边三角形的性质;勾股定理.【分析】作底边上的高.根据等腰三角形的三线合一,以及勾股定即可求解.【解答】解:底边的一半是3.再根据勾股定理,得它的高为=3cm.【点评】考查了等腰三角形的三线合一性质以及勾股定理.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= 1::2 .【考点】勾股定理.【分析】根据直角三角形各角的度数判断出其所对边的长短,再根据直角三角形的性质及勾股定理解答.【解答】解:∵∠A=30°,∴BC为最短边,设其为1,∵∠C=90°,∴AB为最长边,∴AB=2BC=2,∴AC==,∴BC:AC:AB=1::2.【点评】需注意:在求30°的直角三角形的各边之比时,应设最短边为1,再根据勾股定理解答.5.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为12+6.【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.【解答】解:∵等腰三角形的顶角为120°,底边上的高为3,∴腰长=6,底边的一半=3,∴周长=6+6+2×3=12+6.故答案为:12+6.【点评】本题考查勾股定理及等腰三角形的性质的综合运用.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为96 .【考点】勾股定理.【分析】首先根据比值设出两直角边,利用勾股定理即可求出直角边的长,代入面积公式求解即可.【解答】解:根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16;×12×16=96,所以它的面积是96.【点评】根据比值设出两直角边利用勾股定理求解是本题的考查点.8.等腰三角形的两边长为2和4,则底边上的高为.【考点】勾股定理;等腰三角形的性质.【分析】根据已知确定底边与腰,从而根据勾股定理求得底边上的高.【解答】解:∵等腰三角形底边上的高与底边上的中线互相重合,∴底边上的高与腰长,底边的一半构成直角三角形,∵底边长是2,∴底边的一半是1,∴底边上的高==.【点评】本题应根据三角形三边关系先得到此等腰三角形的腰长与底边的值.然后利用勾股定理求解.9.若等腰直角三角形斜边长为2,则它的直角边长为.【考点】等腰直角三角形.【分析】利用勾股定理,设直角边为a,则2a2=4求解即可.【解答】解:∵三角形为等腰直角三角形,∴设两直角边为a,则a2+a2=22解得a=【点评】本题需注意根据等腰直角三角形的特点,利用勾股定理进行解答,还要注意,三角形的边长是正值.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30 cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是直角三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方.【分析】根据给出的条件求出三角形的三边长,再根据勾股定理的逆定理来判定三角形的形状.【解答】解:∵(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,∴(a﹣5)2+(b﹣12)2+(c2﹣26c+169)=0,∴(a﹣5)2+(b﹣12)2+(c﹣13)2=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形.【点评】本题考查了特殊方程的解法与及勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是5或.【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,12【考点】勾股定理的逆定理.【分析】符合勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.【点评】本题考查了勾股定理的逆定理的应用,是基础知识,要熟练掌握.16.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.【点评】本题需先求出AD长,利用了两次勾股定理进行推理计算.17.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【考点】勾股定理的逆定理.【分析】由已知得其有两条边相等,并且符合勾股定理的逆定理,从而可判断三角形的形状.【解答】解:由题意设三边长分别为:x,x, x∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.故选D.【点评】本题考查了勾股定理的逆定理,三角形三边关系满足a2+b2=c2,三角形为直角三角形.18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm【考点】勾股定理.【分析】设斜边长为x,表示出一直角边为(x﹣2)cm,然后利用勾股定理列出方程求解即可.【解答】解:设斜边长为x,则直角边为(x﹣2)cm,由勾股定理得,x2=(x﹣2)2+62,解得x=10,所以,它的斜边长为10cm.故选C.【点评】本题考查了勾股定理,熟记定理并列出方程是解题的关键.三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.【考点】作图—代数计算作图.【分析】面积是2的直角三角形只需两直角边长为2,2即可;面积是2的正方形的边长为,是直角边长为1,1的两个直角三角形的斜边长.【解答】解:.【点评】直角三角形的两直角边的积等于面积的2倍;边长为无理数应先找到所求的无理数是直角边长为哪两个有理数的直角三角形的斜边长.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?【考点】勾股定理的应用.【专题】探究型.【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC即可解答.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC===10m,∴旗杆的高=AB+BC=2.8+10=12.8m.答:这根旗杆被吹断裂前至少有12.8米高.【点评】本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).【考点】勾股定理的应用.【专题】应用题.【分析】首先根据三角形的内角和定理的推论求得∠BCD=90°;再根据直角三角形的性质求得CD的长,最后运用勾股定理求得BC的长即可.【解答】解:在直角△BCD中,∵∠ABD=150°,∠D=60°,∴∠BCD=90°∠CBD=30°,∴CD=BD=16,∴BC===16≈16×1.732≈27.7km.【点评】综合运用了三角形的内角和定理的推论“30°角所对的直角边是斜边的一半”及勾股定理.23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.【考点】勾股定理.【分析】在解决三角形问题时常需构成直角三角形来解决.∠A=60°应在这个直角三角形中.然后利用勾股定理来进行解答.【解答】解:过B作BD⊥AC于D.∴∠BDA=∠BDC=90°∵∠A=60°∴∠ABD=30°∵AB=15 cm∴AD=AB=cm,∴BD=cm,CD=AC﹣AD=cm,∴BC===21cm【点评】本题的难点在于作辅助线,要求是构造直角三角形,所给的特殊角在直角三角形中.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【考点】勾股定理.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,所以有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【考点】勾股定理的应用.【专题】应用题.【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.27.如图,△ABC中,CD⊥AB于D.(1)图中有 C 个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= 5 ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.【考点】勾股定理的逆定理.【专题】计算题;证明题.【分析】(1)根据直角三角形的判定定理,△ACD和△BCD是直角三角形;(2)根据勾股定理求出CD的值;(3)再通过给出的条件CD2=AD•DB,推出△ABC的三边关系,判定它是直角三角形.【解答】解:(1)C;(2)CD==5;(3)AC2=AD2+CD2①BC2=CD2+BD2②①+②得AC2+BC2=2CD2+AD2+BD2=2AD•BD+AD2+BD2=(AD+BD)2=AB2∴△ABC是直角三角形.【点评】本题考查了直角三角形的判定与及勾股定理等内容.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?【考点】勾股定理的应用.【分析】设出腰的长,则底边的长可表示出来,又已知等腰三角形的高,在Rt△ABD中运用勾股定理可解得腰长.【解答】解:设腰长AB=AC=xcm,则BC=160﹣2x,BD=BC=80﹣x,在Rt△ABD中,AB2=BD2+AD2,即x2=(80﹣x)2+402,解之得:x=50,∴AB=AC=50cm,BC=160﹣2×50=60cm.所以小明在先量取铁丝50cm弯折一次,再量取60cm弯折一次,然后与铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.【点评】本题考查正确运用勾股定理.29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【考点】解直角三角形的应用﹣方向角问题.【专题】应用题.【分析】本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.【解答】解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.【点评】解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.30.学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 9 mm.比较=a2+b2>c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 11 mm.比较a2+b2<c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:若△ABC是锐角三角形,则有a2+b2>c2若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2,类比勾股定理的验证方法,相信你能说明其能否成立的理由.【考点】勾股定理的证明.【专题】阅读型.【分析】熟悉勾股数,然后根据大边对大角,小边对小角,确定第三边的长,从而保证三角形的形状.如取较小的两边是6,8,若是直角三角形,则第三边应是10.故要保证它是锐角三角形,只需取9.要保证它是钝角三角形,只需取11.证明的时候,充分运用勾股定理结合完全平方公式即可分析证明.【解答】解:(1)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=9mm.比较=a2+b2>c2;(2)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=11mm.比较a2+b2<c2;(3)若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.当△ABC是锐角三角形时,理由:过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a﹣x.根据勾股定理,得b2﹣x2=AD2=c2﹣(a﹣x)2,即b2﹣x2=c2﹣a2+2ax﹣x2.∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0;∴a2+b2>c2.当△ABC是钝角三角形时,理由:过B作BD⊥AC,交AC的延长线于D.设CD为x,则有BD2=a2﹣x2,根据勾股定理,得(b+x)2+a2﹣x2=c2,即a2+b2+2bx=c2.∵b>0,x>0,∴2bx>0,∴a2+b2<c2.【点评】本题考查了勾股定理的证明,在给定三角形的三边的时候,还要注意三角形的三边关系.注意勾股定理的熟练运用以及完全平方公式的灵活变形.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达。
一、选择题1.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角AOB ∠走“捷径”,在花圃内走出了一条“路”AB ,他们踩伤草坪,仅仅少走了( )A .4mB .6mC .8mD .10m 2.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 3.如图,分别以Rt ABC 的三边为斜边向外作等腰直角三角形,若斜边6AB =,则图中阴影部分的面积为( ).A .6B .12C .16D .184.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1545.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .456.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .17.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺8.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .413B .810C .41312+D .81012+ 9.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = 10.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个11.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对 12.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.14.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.15.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.16.如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.17.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).18.如图,在Rt△ABC中,∠C=90°,AC=6、BC=8,CD⊥AB,则CD=___.19.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m,若梯子的顶端下滑1m,则梯足将滑动______.20.如图,在Rt△ABC中,∠C=90°,AB=5,则正方形ADEC与正方形BCFG的面积之和为_____.三、解答题21.如图,△ABC和△DCE都是等腰直角三角形,CA=CB,CD=CE,△DCE的顶点D在△ABC的斜边AB上(1)连结AE,求证:△ACE≌△BCD.(2)若BD=1,CD=3,求AD的长.22.如图,ABC中,∠C=90°,BC=5厘米,AB=55厘米,点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动,同时,点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动,P、Q两点运动几秒时,P、Q两点间的距离是210厘米?23.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?24.已知ABC的三个顶点的坐标分别为A(3,2)、B(﹣4,0)、C(0,2)(1)在下面的平面直角坐标系中分别描出A,B,C三点,并画出ABC;(2)求线段BC的长;(3)求ABC的面积.25.现代电视屏幕尺寸的设计,主要追求以下目标:一是更符合人体工程学要求(宽与长的比接近与0.618);二是设计适当的长宽比使屏幕的面积尽可能大现行的电视机屏幕有“宽屏”和“普屏”两种制式,宽屏的长宽比为16:9;普屏的长宽比为4:3.(1)哪种屏幕更适合人体工程学要求?请说明理由.(2)一般地,电视屏幕的“几寸”指的是这个屏幕的长方形的对角线长有多少英寸,1英寸2.54cm =,小明家想买80寸的宽屏..电视机(边框宽都为1cm ),并嵌入到墙中.则需要预留的长方形位置的长、宽各多少cm 33718.4≈,33.7 5.8≈)(3)在相同尺寸的电视机屏幕中,宽屏的屏幕面积大还是普屏的屏幕面积大?请说明理由.26.阅读下列材料并完成任务:中国古代三国时期吴国的数学家赵爽最早对勾股定理作出理论证明.他创制了一幅“勾股圆方图”(如图l),用数形结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为12ab ;中间的小正方形边长为b a -,面积为()2b a -.于是便得到式子:222+=a b c .赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.如图2,是“赵爽弦图”,其中ABH ∆、BCG ∆、CDF ∆和DAE ∆是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD c =,DE a =,AE b =,取10c =,2b a -=.任务:(1)填空:正方形EFGH 的面积为______,四个直角三角形的面积和为______;(2)求()2a b +的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据勾股定理求出AB 即可.【详解】解:∵90AOB ∠=︒,∴22226810AO OB ++=(m ),6+8-10=4(m ),∴他们踩伤草坪,仅仅少走了4m ;故选:A .【点睛】本题考查勾股定理的应用,解题关键是熟练运用勾股定理求线段长.2.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴222BD AD +=. 即2.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN 22DN .∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN.∴CN=AC+AN=AC+BM=CM.∴BC=BM+CM=AC+2BM.∵CD=2CN,∴2CD=2CN=2AC+2BM=AC+2BM+AC.∵AC=12AB,∴2CD=12AB+BC.故此选项说法正确.故选:B.【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.3.D解析:D【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【详解】解:在Rt△AHC中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴2,同理:22,在Rt△ABC中,AB2=AC2+BC2,AB=6,S阴影=S△AHC+S△BFC+S△AEB=12HC•AH+12CF•BF+12AE•BE,即22211112224222++=(AC2+BC2+AB2)14=(AB 2+AB 2) 12=AB 2 2162=⨯ 18=.故选:D .【点睛】本题考查了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.4.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.5.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.6.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,1,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴22222AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴1,在△BDP 和△EDP 中, BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.7.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.8.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==,∴22436210AD AC CD +=+=2103AD BD +=+,一共有4个这样的长度,∴这个风车的外围周长是:()4210381012⨯+=+. 故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长2234+,高为12cm ,由勾股定理可得:杯里面管长22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;=,不需调整;=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.11.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.12.A解析:A 【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.二、填空题13.101【分析】取AB的中点O过D作DE⊥AB于E根据勾股定理解答即可得到结论【详解】解:取AB的中点O过D作DE⊥AB于E如图2所示:由题意得:OA=OB=AD=BC设OA=OB=AD=BC=r寸则解析:101【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.14.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE根据线段的和差关系可得CD的长设CE=x则DE=8-x利用勾股定理列方程求出x的值即可得答案【详解】∵∠ACB=90°BC=解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案.∵∠ACB =90°,BC =6,AB =10,∴,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x ,则DE=AE=AC-CE=8-x ,∴在Rt △DCE 中,DE 2=CE 2+CD 2,即(8-x )2=x 2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键. 15.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.16.16【分析】求不规则四边形的面积可以转化为两个三角形的面积由题意可知:求出与的面积即为四边形ABCD 的面积【详解】连接AC ∵∴∴∵AB+BC=8∴∴∴故答案为:16【点睛】本题主要考查的是四边形面积解析:16【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=, ∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8, ∴222=64AB BC BC AB ++⨯,∴4464ABC ADCS S +=, ∴=16ABC ADC ABCD S SS +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.17.【分析】将容器侧面展开建立A 关于EC 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】如图将容器侧面展开作A 关于EC 的对称点A′连接A′B 交EC 于F 则A′B 即为最短距离∵高为1m 底面周解析:234 5【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,2222234A'D BD2 1.2+=+=,故答案是:2345.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.18.8【分析】根据勾股定理求得AB的长再根据三角形的面积公式得到关于CD 的方程解方程求得CD即可【详解】解:∵在Rt△ABC中∠C=90°AC=6BC=8∴AB=10∵S△ABC=×6×8=×10×CD解析:8【分析】根据勾股定理求得AB的长,再根据三角形的面积公式得到关于CD的方程,解方程求得CD即可.【详解】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,∵S △ABC =12×6×8=12×10×CD , ∴CD =4.8.故答案为:4.8.【点睛】本题考查了直角三角形中的面积的求解,解题的关键是熟知等面积法求线段的长度. 19.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO 中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为 解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 20.【分析】根据勾股定理正方形的面积公式计算即可【详解】在Rt △ACB 中AC2+BC2=AB2=25则正方形ADEC 与正方形BCFG 的面积之和=AC2+BC2=25故答案为:25【点睛】本题考查的是勾股解析:【分析】根据勾股定理、正方形的面积公式计算即可.【详解】在Rt △ACB 中,AC 2+BC 2=AB 2=25,则正方形ADEC 与正方形BCFG 的面积之和=AC 2+BC 2=25.故答案为:25.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)见解析;(2)17AD =【分析】 (1)根据△ABC 和△DCE 都是等腰直角三角形可得DC CE =,BC CA =,再根据两个角的和可得BCD ACE ∠=∠,从而判断两个三角形全等;(2)根据△ACE ≌△BCD ,以及角的和可得DAE △为直角三角形,根据DCE 为等腰直角三角形,可求出DE 的长度,再根据勾股定理求出AD 的长度即可.【详解】(1)△ABC 和△DCE 都是等腰直角三角形∴90BCA DCE ∠=∠=,DC CE =,BC CA =∴BCD DCA DCA ACE ∠+∠=∠+∠∴BCD ACE ∠=∠,∴△ACE ≌△BCD (SAS );(2)△ACE ≌△BCD∴CBD CAE ∠=∠∴90CBD BAC CAE BAC ∠+∠=∠+∠=∴DAE △为直角三角形DCE 为等腰直角三角形∴22223332DE DC CE =+=+=△ACE ≌△BCD∴BD=AE=1∴2218117AD DE AE =-=-=【点睛】本题主要考查了三角形全等的性质、判定定理以及勾股定理得运用,熟练掌握全等三角形的性质和判定定理,熟练运用角和角之间的关系是解题的关键.22.2秒【分析】设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是210厘米,先利用勾股定理求出AC 的长度,得到AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,再利用勾股定理得到(10﹣2x )2+x 2=(210)2求出x 的值.【详解】解:设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是210厘米.在△ABC 中,∠C=90°,BC=5厘米,AB=55厘米,∴AC=2222(55)5AB BC -=-=10(厘米),∴AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,在Rt △CPQ 内有PC 2+CQ 2=PQ 2,∴(10﹣2x )2+x 2=(210)2,整理得:x 2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P 、Q 两点运动2秒时,P 、Q 两点间的距离是210厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.23.132【解析】 试题分析:过点B 作BC ⊥AD 于C ,可以计算出AC 、BC 的长度,在直角△ABC 中根据勾股定理即可计算AB .试题过点B 作BC ⊥AD 于C ,所以AC=4﹣2+0.5=2.5m ,BC=4.5+1.5=6m ,在直角△ABC 中,AB 为斜边,则22225136()22AB BC AC =+=+=m,答:机器人从点A到点B之间的距离是132m.考点:勾股定理.24.(1)见解析;(2)25;(3)3【分析】(1)在平面直角坐标系中,描出A,B,C三点,然后顺次连接,即可画出△ABC;(2)由勾股定理来求线段BC的长度;(3)△ABC的底是BC的长度,高是点C的纵坐标,由三角形的面积公式进行解答.【详解】解:(1)如图所示;(2)在直角△BOC中,由勾股定理得到:BC=22OB OC+=2242+=25,即线段BC的长是25;(3)S△ABC=12AC×OC=12×3×2=3,即△ABC的面积是3.【点睛】本题考查了勾股定理,坐标与图形性质.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.25.(1)宽屏更适合人体工程学要求,理由见解析;(2)需要预留的长方形位置的长为178cm,宽为101cm;(3)普屏的屏幕面积大,理由见解析【分析】(1)根据人体工程学要求求出宽与长的比与0.618比较大小即可(2)根据勾股定理先求出80寸的宽屏..电视机的长和宽,再分别加2即可(3)分别求出宽屏的屏幕面积和普屏的屏幕面积比较大小即可【详解】解:(1)宽屏更适合人体工程学要求,理由如下:∵宽屏的长宽比为16:9;∴宽屏的宽与长的比为9:16=0.5625;∴0.5625-0.618=-0.0555∵普屏的长宽比为4:3.∴普屏的宽与长的比为3:4=0.75∴0.75-0.618=0.132∴宽屏更适合人体工程学要求(2)∵宽屏的长宽比为16:9;∴设长为16xcm ,则宽为9xcm(x>0),∵电视机屏幕为80寸,∴(16x )2+(9x )2=(80 2.54)⨯2, ∴18.4x=80 2.54≈⨯∴x 11≈,∴长为16x=1611=176cm ⨯,宽为9x=911=99cm ⨯∴需要预留的长方形位置的长为:176+2=178cm,宽为:99+2=101cm(3)普屏的屏幕面积大,理由如下:设相同尺寸为a 寸,宽屏电视的长宽分别为16m 和9m ,普屏电视的长宽分别为4n 和3n∴222(16m)(9m)(2.54a)+=,222(4n)(3n)(2.54a)+= ∴2222.54a m 337=,222 2.54a n =25 ∴宽屏的屏幕面积=22214416m 9m 144m =2.54a 337⨯=⨯ 普屏的屏幕面积=222124n 3n 12n =2.54a 25⨯=⨯ ∵1441233725< ∴普屏的屏幕面积大【点睛】本题考查了勾股定理的应用以及长方形的面积,读懂题意,根据已知条件得出所需内容是解题的关键26.(1)4,96;(2)196.【分析】(1)根据题意得图中的四个直角三角形都全等,可得正方形EFGH 的边长为2,即可得正方形EFGH 的面积;再利用正方形ABCD 的面积-正方形EFGH 的面积即可得四个直角三角形的面积和;(2)易求得ab 的值,和a 2+b 2的值,根据完全平方公式即可求得(a+b )2的值,即可解题.【详解】(1)根据题意得,图中的四个直角三角形都全等,∴AB=c=10,AE-AH=b-a=2,∴正方形EFGH 的面积为22=4,正方形ABCD 的面积为102=100,∴四个直角三角形的面积和=正方形ABCD 的面积-正方形EFGH 的面积=100-4=96;(2)由(1)可知四个直角三角形的面积和为96,14962ab ∴⨯=,即296ab =. 222100a b c +==,()222210096196a b a b ab ∴+=++=+=. 【点睛】本题考查了完全平方公式的应用,考查了直角三角形中勾股定理的运用,求得ab 的值是解题的关键.。
一、选择题1.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )A .12B .13C .15D .242.下列各组数据,不能作为直角三角形的三边长的是( )A .5、6、7B .6、8、10C .1.5、2、2.5D .3、2、7 3.在下列四组数中,属于勾股数的是( ) A .0.3,0.4,0.5B .9,40,41C .2,3,4D .1,2,34.《九章算术》奠定了中国传统数学的基本框架,是中国古代最重要的数学著作之一.其中第九卷《勾股》章节中记载了一道有趣的“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”.意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子底部3尺远,问原处还有多高的竹子?(备注:1丈10=尺)这个问题的答案是( )A .4尺B .4.5尺C .4.55尺D .5尺5.下列几组数中,能作为直角三角形三边长度的是( ) A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c ===6.下列各组数中是勾股数的是( ) A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .13,2 7.下列四组数中,是勾股数的是( ) A .5,12,13B .4,5,6C .2,3,4D .2,58.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =2BD =,则线段DF 的长度为( )A.22B.2 C.3D.19.如图,分别以直角三角形ABC的三边为斜边向外作直角三角形,且AD CD=,CE BE=,AF BF=,这三个直角三角形的面积分别为1S,2S,3S,且19S=,216S=,则S3S=()A.25 B.32 C.7 D.1810.一个长方体盒子长24cm,宽10cm,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.10cm B.24cm C.26cm D.28cm11.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5 C.15,8,17 D.35,45,112.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.514 B.8 C.16 D.64二、填空题13.直角三角形纸片的两直角边长分别为6,8.现将ABC如图那样折叠,使点A与点B重合,折痕为DE.则CECB的值是__________.14.如图,在直线l 上依次摆放着7个正方形,斜放置的三个正方形的面积分别是4,6,8,正放置的四个正方形的面积分别是1234,,,S S S S ,则1234S S S S +++=__________.15.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则AC 的长是__________.16.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).17.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________18.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的是________________.19.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).20.一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是___.三、解答题21.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,(1)求证△ACD≌△BCE;(2)求AD的长.22.如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB的长.23.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:OABC是直角三角形;(2)求这块地的面积.24.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC ∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).25.勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△, ∴ABC DAE ∠=∠. ∵ABC 是直角三角形,90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,∴DAB ∠=______+______=_______. ∵ADB DCB ADCB S S S =+=△△四边形_________. ∴222+=a b c . 26.问题背景:在ABC 中,AB 、BC 、AC 51013积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC (即ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需求ABC 的高,而借用网格就能计算出它的面积.(1)请你求出ABC 的面积; 思维拓展:(2)我们把上述求ABC 面积的方法叫做构图法.若ABC 5a 、2a 、17a (0a >),请利用图②的正方形网格(每个小正方形的边长为a )画出相应的ABC ,并求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答. 【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m , 在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x = 故选:A . 【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题.2.A解析:A 【分析】利用勾股定理的逆定理计算判断即可. 【详解】∵2256253661+=+=≠2749=, ∴5、6、7不能作为直角三角形的三边长, ∴选项A 错误;∵22866436100+=+==210100=, ∴6、8、10能作为直角三角形的三边长, ∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=, ∴1.5、2、2.5能作为直角三角形的三边长, ∴选项C 正确;∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确; 故选A . 【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键.3.B解析:B 【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断. 【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1 故选:B . 【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.4.C解析:C 【分析】竹子折断后刚好构成一直角三角形,设原处还有x 尺的竹子,则斜边为(10−x )尺,利用勾股定理解题即可. 【详解】解:设竹子折断处离地面x 尺,则斜边为(10−x )尺,根据勾股定理得:x 2+32=(10−x )2, 解得:x =4.55 故选C . 【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.5.C解析:C 【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案. 【详解】 解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意; 22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C 【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键6.C解析:C 【分析】根据勾股数的定义判断即可. 【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意; B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意; C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 不是正整数,不是勾股数,故此选项不合题意; 故选:C . 【点睛】此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数.7.A解析:A 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方. 【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A . 【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.8.D解析:D 【分析】先证明△BDF ≌△ADC ,得到 【详解】解:∵AD 和BE 是△ABC 的高线, ∴∠ADB=∠ADC=∠BEC=90°, ∴∠DBF+∠C=90°,∠CAD+∠C=90°, ∴∠DBF=∠CAD , ∵45ABC ∠=︒, ∴∠BAD=45°, ∴BD=AD , ∴△BDF ≌△ADC , ∴在Rt △BDF 中,1==.故选:D 【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键.9.A解析:A 【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可. 【详解】解:∵△ADC 为直角三角形,且AD=CD , ∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =,∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+,∴312S S S =+, ∵19S =,216S =, ∴3129+16=25S S S =+=, 故答案为:A . 【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.10.C解析:C 【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可. 【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=, 则最长木棒长为26cm , 故选:C . 【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.11.C解析:C 【分析】根据勾股数的定义,逐一判断选项,即可. 【详解】A. 1中不全是正整数,不是勾股数,不符合题意,B. 0.3,0.4,0.5中都不是正整数,不是勾股数,不符合题意,C. 152+82=172,且15,8,17都是正整数,是勾股数,符合题意,D.35,45,1中不全是正整数,不是勾股数,不符合题意, 故选C . 【点睛】本题主要考查勾股数的定义,熟练掌握“满足222+=a b c ,且a ,b ,c 是正整数,则a ,b ,c 叫做勾股数”是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】先设CE=x 再根据图形翻折变换的性质得出AE=BE=8-x 再根据勾股定理求出x 的值进而可得出的值【详解】解:设CE=x 则AE=8-x ∵△BDE 是△ADE 翻折而成∴AE=BE=8-x 在Rt △B 解析:724【分析】先设CE =x ,再根据图形翻折变换的性质得出AE =BE =8-x ,再根据勾股定理求出x 的值,进而可得出CE CB的值. 【详解】 解:设CE =x ,则AE =8-x ,∵△BDE 是△ADE 翻折而成,∴AE =BE =8-x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74,∴CE CB=746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.14.12【分析】如图易证△CDE ≌△ABC 得AB2+DE2=DE2+CD2=CE2同理FG2+LK2=HL2S1+S2+S3+S4=4+8=12【详解】解:如图∵∴∵在△CDE 和△ABC 中∴△CDE ≌△解析:12【分析】如图,易证△CDE ≌△ABC ,得AB 2+DE 2=DE 2+CD 2=CE 2,同理FG 2+LK 2=HL 2,S 1+S 2+S 3+S 4=4+8=12.【详解】解:如图,∵EDC CBA ACE 90∠∠∠===︒,EC CA =,ECD ACB ACB CAB 90∠∠∠∠+=+=︒,∴ECD ACB ∠∠=, ∵在△CDE 和△ABC 中,EDC CBA ECD CAB EC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ABC (AAS ),∴AB=CD ,BC=DE ,∴AB 2+DE 2=DE 2+CD 2=CE 2=8,同理可证FG 2+LK 2=HL 2=4,∴S 1+S 2+S 3+S 4=CE 2+HL 2=4+8=12.故答案为:12.【点睛】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB 2+DE 2=DE 2+CD 2=CE 2是解题的关键.15.【分析】由折叠的性质可得CD=DE=1∠C=∠AED=90°由直角三角形的性质可求BD的长再运用勾股定理可求解【详解】解:∵将△ABC折叠使点C落在斜边AB上的点E处∴CD=DE=1∠C=∠AED=【分析】由折叠的性质可得CD=DE=1,∠C=∠AED=90°,由直角三角形的性质可求BD的长,再运用勾股定理可求解.【详解】解:∵将△ABC折叠使点C落在斜边AB上的点E处,∴CD=DE=1,∠C=∠AED=90°,∵∠B=30°,∴BD=2DE=2,AB=2AC,∴BC=BD+CD=2+1=3,由勾股定理得,222=+AB BC AC∴4222=+AC BC AC∴AC=【点睛】本题考查了勾股定理与折叠问题,熟练掌握折叠的性质是本题关键.16.【分析】由图可知AC的长根据勾股定理可以求得PAPC的长再利用勾股定理的逆定理可以判断△PAC的形状从而可以得到∠CPA的度数然后即可得到∠BPC=∠CPA−∠APB的度数【详解】设网格的长度为1则︒解析:90-α【分析】由图可知AC的长,根据勾股定理可以求得PA、PC的长,再利用勾股定理的逆定理可以判断△PAC的形状,从而可以得到∠CPA的度数,然后即可得到∠BPC=∠CP A−∠APB的度数.【详解】设网格的长度为1,则==,AC=6222+=AP PC AC∴△PAC为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒︒故答案为:90-α【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.17.2021【分析】根据勾股定理求出生长了1次后形成的图形中所有的正方形的面积和结合图形总结规律根据规律解答即可【详解】解:如图由题意得正方形A的面积为1由勾股定理得正方形B的面积+正方形C的面积=1∴解析:2021【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故答案为:2021.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.①②③【分析】①由条件证明△ABD≌△ACE就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.【详解】解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键. 19.【分析】将容器侧面展开建立A 关于EC 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】如图将容器侧面展开作A 关于EC 的对称点A′连接A′B 交EC 于F 则A′B 即为最短距离∵高为1m 底面周【分析】将容器侧面展开,建立A 关于EC 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,A′B=2222234A'D BD2 1.25+=+=(m),故答案是:234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,==13cm ,故h=16-13=3cm .故h 的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.三、解答题21.(1)见解析;(2)AD=9.【分析】(1)根据已知条件先证出∠BCE=∠ACD ,根据SAS 证出△ACD ≌△BCE ;(2)根据(1)中△ACD ≌△BCE 得出AD=BE ,再根据勾股定理求出AB ,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt △BAE 中,根据AB 、AE 的值,求出BE ,从而得出AD .【详解】解:(1)∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,又∵AC=BC ,DC=EC ,在△ACD 和△BCE 中,AC BC BCE ACD DC EC ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE (SAS ).(2)∵△ACD ≌△BCE (SAS ),∴AD=BE ,∵AC=BC=6,∴,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt △BAE 中,AE=3,∴,∴AD=9.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD ≌△BCE .22.25【分析】根据等腰三角形的性质和勾股定理即可得到结论.【详解】解:∵AB=AC,BC=4cm,AD⊥BC,∴BD=12BC=2,∵AD=4cm,∴在直角三角形ABD中AB=22AD BD+=25cm.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.23.(1)见解析;(2)这块地的面积是24平方米.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;(2)根据三角形的面积公式求解即可.【详解】(1)∵AD=4,CD=3,AD⊥DC,由勾股定理可得:AC=2222435AD CD+=+=,又∵AC2+BC2=52+122=132=AB2 ,∴△ABC是直角三角形;(2)△ABC的面积-△ACD的面积=115123422⨯⨯-⨯⨯=24(m2),所以这块地的面积是24平方米.【点睛】本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.24.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C在线段AB右侧,且满足AC=BC,画出周长最小的格点△ABC,即可求出△ABC的面积;(2)根据格点D在线段AB左侧,且满足AD⊥BD,分别画出格点△ABD,即可得三角形的面积.【详解】解:(1)如图,△ABC 即为所求;△ABC 的面积为:1552⨯⨯=2.5, 故答案为:2.5;(2)如图点D 1,D 2,D 3 即为所求;△ABD 的面积分别为:12222⨯⨯=2, 1552⨯⨯=2.5, 1132⨯⨯=1.5, 故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.25.见详解【分析】先推出DAB ∠=90°,再根据ADB DCB ADCB S S S =+=△△四边形ADC ACB S S +△△,即可得到结论.【详解】证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△,∴ABC DAE ∠=∠.∵ABC 是直角三角形,90ACB ∠=︒, ∴90ABC BAC ∠+∠=︒,∴DAB ∠=∠DAE+∠BAC=90°. ∵ADB DCB ADCB S S S =+=△△四边形212c +1()2a b a -. 又∵21122ADC ACB ADCB S S S b ab =+=+△△四边形,∴212c +1()2a b a -=21122b ab +, ∴222+=a bc .【点睛】本题主要考查勾股定理的证明,添加辅助线,利用割补法表示图形的面积,是解题的关键.26.(1) 3.5ABC S =△;(2)作图见解析;23ABC S a =△.【分析】(1)利用网格图及割补法求解图形面积;(2)结合勾股定理作图,然后利用割补法求图形面积【详解】解:(1)11133123132 3.5222ABC S ⎛⎫=⨯-⨯⨯+⨯⨯+⨯⨯= ⎪⎝⎭△ (2)22512AB a a ==+;2222211BC a a ==+;221714AC a a ==+. 所做ABC 如图所示21112422243222ABC S a a a a a a a a a ⎛⎫=⨯-⨯⨯+⨯⨯+⨯⨯= ⎪⎝⎭△. 【点睛】本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.。
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCD S S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个3.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 4.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( ) A .6 B .12C .62D .35.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .15 6.有一个直角三角形的两边长分别为3和4,则第三边的长为( )A .5B .7C .5D .5或7 7.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .1428.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )A .1B .2021C .2020D .20199.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .4C .3D 1010.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )A .0.6米B .0.7米C .0.8米D .0.9米二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.14.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.15.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.16.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.17.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.18.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .23.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.24.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 25.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 .(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(62)m ,BC =5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为最短路径,由勾股定理求出A′D即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.C解析:C【分析】过M 作ME AD ⊥于E ,得出12MDE CDA ∠=∠,12MAD BAD ∠=∠,求出1()902MDA MAD CDA BAD ∠+∠=∠+∠=︒,根据三角形内角和定理求出AMD ∠,即可判断①;根据角平分线性质求出MC ME =,ME MB =,即可判断④和⑤;由勾股定理求出DC DE =,AB AE =,即可判断③;根据SSS 证DEM DCM ∆≅∆,推出DEM DCM S S =三角形三角形,同理得出AEM ABM S S =三角形三角形,即可判断②.【详解】解:过M 作ME AD ⊥于E ,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,12MDE CDA ∴∠=∠,12MAD BAD ∠=∠, //DC AB ,180CDA BAD ∴∠+∠=︒,11()1809022MDA MAD CDA BAD ∴∠+∠=∠+∠=⨯︒=︒, 1809090AMD ∴∠=︒-︒=︒,故①正确;DM 平分CDE ∠,90()C MC DC ∠=︒⊥,ME DA ⊥,MC ME ,同理ME MB =, 12MC MB ME BC ∴===,故⑤正确; M ∴到AD 的距离等于BC 的一半,故④错误;由勾股定理得:222DC MD MC =-,222DE MD ME =-,又ME MC =,MD MD =,DC DE ∴=,同理AB AE =, AD AE DE AB DC ∴=+=+,故③正确;在DEM ∆和DCM ∆中DE DC DM DM ME MC =⎧⎪=⎨⎪=⎩, ()DEM DCM SSS ∴∆≅∆,DEM DCM S S ∴=三角形三角形同理AEM ABM S S =三角形三角形,12AMD ABCD S S ∴=三角形梯形,故②正确; 故选:C .【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.3.B解析:B【分析】根据翻折的性质可知:AC =AE =6,CD =DE ,设CD =DE =x ,在Rt △DEB 中利用勾股定理解决.【详解】解:在Rt △ABC 中,∵AC =6,BC =8,∴AB =10,△ADE 是由△ACD 翻折,∴AC =AE =6,EB =AB−AE =10−6=4,设CD =DE =x ,在Rt △DEB 中,∵222DE EB DB +=,∴()22248x x +=-,∴x =3,∴CD =3.故答案为:B .【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题. 4.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D .【点睛】 本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.5.C解析:C【分析】本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【详解】依题意得:2240,30x y -=-=, ∴2,x y ==,斜边长==所以正方形的面积27==.故选C .考点:本题综合考查了勾股定理与非负数的性质点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.6.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=,故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF 的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴=故选D .【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.8.B解析:B【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:由题意得,正方形A 的面积为1,由勾股定理得,正方形B 的面积+正方形C 的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B .【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.9.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=, 22CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键. 10.B解析:B【解析】试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:222.5 2.4-=0.7(米).故选B .二、填空题11.8【解析】如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于的最小值作交于,则为所求; 设,,由,,h+5=8,即BM+MN 的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.12.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 13.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.14.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S =.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.15.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1=2,OA 2=(2)2,…,OA 2018=(2)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=()20182=21009, 故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.16.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE是等腰直角三角形所以20==所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.17.25 8【分析】先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴=5;∵DE垂直平分AC,垂足为F,∴FA=12AC=52,∠AFD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.48 5【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC边上的高为8,然后根据三角形的面积法可得111012822BD⨯⨯=⨯⨯,解得BD=485.19.41【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +' 41BD 2=41.故答案是:41.20.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.作图见解析,325【分析】 作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,AA'=2AH=1655,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.23.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF ,∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()26231CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.24.(1)2,2)证明见解析(3)7(4)3【分析】 (1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,DE =∴BD =,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,AC ,AD=4,∴CD =∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,∴7BF =(4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.25.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中, ∴22224(23)27BC BO OC =+=+=【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.26.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC 的面积=11AC BF=AB CD 22⋅⋅,AB=AC ∴BF=CD 在Rt △CPD 和Rt △BQF 中∵CP=BQ ,CD=BF ,∴Rt △CPD ≌Rt △BQF (HL )∴PD=QF在Rt △ACD 中,CD=8,AC=AB=10∴22AD=AC CD =6-同理可得AF=6∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t由PD=QF 得6-t=6-2t ,解得t=0,∵t >0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6,整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=tvt(26t≤<)【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.【解析】【分析】(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,,∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,。
一、选择题1.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 2.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC === 3.如图,在ABC 中,2,30,105AC ABC BAC =∠=︒∠=︒,D 为AB 边上一点,连接CD ,15ACD =︒∠,把ACD △沿直线AC 翻折,得到ACD '△,CD '与BA 延长线交于点E ,则D E '的长为( )A .333+B .33-C .336+D .336- 4.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A 73B .10厘米C .82D .8厘米 5.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 6.下列各组线段中,不能构成直角三角形的是( ) A .3,4,5 B .5,12,13 C .8,16,17 D .7,24,25 7.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .188.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =9.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .2210.已知ABC 中,a 、b 、c 分别是A ∠、B 、C ∠的对边,下列条件中不能判断ABC 是直角三角形的是( )A .::3:4:5ABC ∠∠∠=B .C A B ∠=∠-∠ C .222+=a b cD .::6:8:10a b c =11.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =12.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .125二、填空题13.如图,ABC 中,AB 5=,BC 6=,BC 边上的中线AD 4=,则ADC ∠=________.14.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.15.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)16.如图,在直角ABC 中,90B ∠=︒,AE 平分BAC ∠,交BC 边于点E ,若5BC =,13AC =,则AEC 的面积是________.17.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.18.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.19.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)20.在直角三角形中,其中两边分别为3,4,则第三边是______.三、解答题21.在ABC 中,AB c =,BC a =,AC b =.如图1,若90C ∠=︒时,根据勾股定理有222+=a b c .(1)如图2,当ABC 为锐角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(2)如图3,当ABC 为钝角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD ,已知90B ∠=︒,80AB =米,60BC =米,90CD =米,110AD =米,求这块试验田的面积.22.在ABC 中,,90︒=∠=AB AC BAC .(1)如图1,点,P Q 在线段BC 上,,15AP AQ BAP ︒=∠=,求AQB ∠的度数;(2)点,P Q 在线段BC 上(不与点,B C 重合),AP AQ =,点Q 关于直线AC 的对称点为M ,连接,AM PM .①依题意将图2补全;②用等式表示线段,,BP AP PC 之间的数量关系,并证明.23.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,3,5,22;(2)在图2中,线段AB的端点在格点上,请画出以AB为一边的三角形使这个三角形的面积为6(要求至少画出3个);△的顶点M,N在格点上,P在小正方形的边上,问这个三角形的(3)在图3中,MNP面积相当于多少个小方格的面积?24.如图,铁路MN和铁路PQ在P点处交汇,点A处是重庆市第九十四中学,AP=160米,点A到铁路MN的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN上沿PN方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?25.如图,已知等腰△ABC的腰AB=13cm,D是腰AB上一点,且CD=12cm,AD=5cm.(1)求证:△BDC是直角三角形;(2)求△BDC的面积.26.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB=4,AD=8,求BE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选:B .【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度. 2.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.3.D解析:D【分析】先根据三角形的内角和定理60CDE ∠=︒,再根据翻折的性质可得,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒,从而可得90,30CED D AE '∠=︒∠=︒,设D E x '=,然后利用直角三角形的性质、勾股定理可得(,3AE CE x ==+,最后在Rt ACE △中,利用勾股定理即可得.【详解】 3150,105,ABC B D A AC C ∠=︒∠=∠=︒︒,30018BCD ABC BAC ACD ∴∠=︒-∠-∠-∠=︒,60ABC BC CDE D ∴∠=∠+∠=︒,由翻折的性质得:,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒, 30DCE ACD ACD '∴∠=∠+∠=︒,90,9030CED D AE D ''∴∠=︒∠=︒-∠=︒,设D E x '=,则2,AD AD x AE '===,(2DE AD AE x ∴=+=,在Rt CDE △中,((222,3CD DE x CE x ==+==+,在Rt ACE △中,222AE CE AC +=,即)(2223x ⎡⎤++=⎣⎦,解得36x =或306x -+=<(不符题意,舍去),即336D E'=-,故选:D.【点睛】本题考查了翻折的性质、直角三角形的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.4.B解析:B【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.5.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC ===cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.6.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、32+42=52,故是直角三角形,故本选项不符合题意;B 、52+122=132,故是直角三角形,故本选项不符合题意;C 、82+162≠172,故不是直角三角形,故本选项符合题意;D 、72+242=252,故是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+,∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.8.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.9.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 10.A解析:A【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【详解】解:A 、∠A :∠B :∠C=3:4:5,且∠A+∠B+∠C=180°,所以∠C=75°≠90°,故△ABC 不是直角三角形;B 、因为∠C=∠A-∠B ,且∠A+∠B+∠C=180°,所以∠A=90°,故△ABC 是直角三角形; C 、因为a 2+b 2=c 2,故△ABC 是直角三角形;D 、因为a :b :c=6:8:10,设a=6x ,b=8x ,c=10x ,(6x )2+(8x )2=(10x )2,故△ABC 是直角三角形.故选:A .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.11.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 12.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.二、填空题13.【分析】根据中线的性质及勾股定理的逆定理即可求出的度数【详解】∵边上的中线∴∵∴【点睛】本题考查中线的性质勾股定理的逆定理的应用掌握相应的性质定理是解答此题的关键解析:90【分析】根据中线的性质及勾股定理的逆定理即可求出ADC ∠的度数.【详解】∵AB 5=,BC 6=,BC 边上的中线4AD =,=,∴BD3∵222+=,345∴ADC ADB90∠∠==.【点睛】本题考查中线的性质勾股定理的逆定理的应用,掌握相应的性质定理是解答此题的关键.14.【分析】根据勾股定理求出AC根据全等三角形的性质得到AF=BC=6EF=AC=8求出FC根据勾股定理计算得到答案【详解】解:在Rt△ABC中AC=∵Rt△ACB≌Rt△EFA∴AF=BC=6EF=A解析:217【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=2222-=-=,AB BC1068∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=222282217+=+=,EF FC故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.15.【分析】要求一只蚂蚁从A点出发从侧面爬行到C点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC的长度即为所求在Rt△ABC中AB=2+4a【分析】要求一只蚂蚁从A点出发,从侧面爬行到C点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以AC=2+4a . 即蚂蚁爬行的最短路线的长度为2+4a .故答案是2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 16.【分析】如图(见解析)先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设在中利用勾股定理可求出x 的值最后利用三角形的面积公式即可得【详解】如图过点E 作于点 解析:785【分析】如图(见解析),先利用勾股定理可得12AB =,再根据角平分线的性质可得BE DE =,然后根据直角三角形全等的判定定理与性质可得12AD AB ==,从而可得1CD =,设DE BE x ==,在Rt CDE △中,利用勾股定理可求出x 的值,最后利用三角形的面积公式即可得.【详解】如图,过点E 作ED AC ⊥于点D ,在Rt ABC 中,90,5,13B BC AC ∠=︒==,2212AB AC BC ∴=-=,AE ∵平分BAC ∠,且,90ED AC B ⊥∠=︒,BE DE ∴=,在Rt ABE △和Rt ADE △中,BE DE AE AE =⎧⎨=⎩, ()Rt ABE Rt ADE HL ∴≅,12AD AB ∴==,1CD AC AD ∴=-=,设DE BE x ==,则5CE BC BE x =-=-,在Rt CDE △中,222CD DE CE +=,即2221(5)x x +=-, 解得125x =, 即125DE =, 则AEC 的面积是111278132255AC DE ⋅=⨯⨯=, 故答案为:785. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.17.8【分析】过B 点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B 点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在 解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.18.【分析】过点A 作AD ⊥l3于D 过点B 作BE ⊥l3于E 易证明∠BCE =∠CAD 再由题意可证明△ACD ≌△CBE (AAS )得出结论BE =CD 由l1l2之间的距离为2l2l3之间的距离为3即得出CD 和AD 17【分析】过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴BE =CD ,∵l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,∴CD =3,AD =2+3=5,在Rt △ACD 中,AC 2222AD CD 5334=+=+=∵AC ⊥BC ,AC =BC ,∴△ABC是等腰直角三角形,∴AB2=⨯=217.=AC234故答案为:17【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE=CD是解答本题的关键.19.6【分析】设长方形门的宽x尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x=28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x尺,则高是(x+6.8)尺,根据题意得x2+(x+6.8)2=102,解得:x=2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.20.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5解析:57【分析】从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,22+,34当此直角三角形的一个直角边为3,斜边为4时,则第三边为2243=7-.故答案为:5或7.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.三、解答题21.(1)猜想:222a b c +> ,证明见解析;(2)猜想:222+b a c <,证明见解析;(3)四边形ABCD 的面积是()240030002+米2.【分析】(1)先作高线如图2,过点A 作AD BC ⊥于点D ,构造两个直角三角形,设CD x =,则BD a x =-,由勾股定理和AD 构造等式2222()b x c a x -=-- ,利用放缩法可得 222b a c +>(2)先作高线如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,构造两个直角三角形设CD y =,则BD a y =+,利用勾股定得2222()b y c a y -=-+,整理得,2222b a c ay +=-利用放缩法222b a c +<(3)如图4,连接AC .过点D 作DE AC ⊥于点E ,由勾股定理求出100AC = 设AE x =,则EC=100-x ,由勾股定理构造方程222211090(100)x x -=--,解方程的70x =,再求出DE ,利用分割法求面即可【详解】解:(1)猜想:222a b c +> ,证明:如图2,过点A 作AD BC ⊥于点D ,设CD x =,则BD a x =-,在Rt ACD △中,有222b x AD -=,在Rt ABD △中,有222()c a x AD --= ,∴2222()b x c a x -=-- ,解之:2222b a c ax +=+,∵a b c x ,,,均为正数,∴222b a c +> ;(2)猜想:222b a c +<证明:如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,设CD y =,则BD a y =+,在Rt ACD △中,有222b y AD -=,在Rt ABD △中,有222()c a y AD -+= , ∴2222()b y c a y -=-+,解之:2222b a c ay +=-,∵a b c y ,,,均为正数,∴222b a c +< ; (3)如图4,连接AC .在Rt ABC 中,有222AC AB BC =+, ∴222806010000AC =+=, ∵0AC >,∴100AC = ,过点D 作DE AC ⊥于点E ,设AE x =,则EC=100-x ,在Rt ADE 中,有222AD AE DE -=,即222110x DE -=,在Rt CDE △中,有222CD CE DE -=,即22290(100)x DE --= ,∴222211090(100)x x -=--, 解之:70x =,在Rt ADE 中,有2222211070DE AD AE =-=-, ∴DE=602±∴DE=602, ∴1122ABC ADC ABCD S SS AB BC AC DE =+=⨯⨯+⨯⨯四边形, =11608010060222=⨯⨯+⨯⨯ =240030002+2),∴四边形ABCD 的面积是(240030002+米2.【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.22.(1)60︒;(2)①见解析;②2222PC BP AP +=,证明见解析【分析】(1)根据三角形的外角性质和等腰三角形的性质可以得解;(2)①根据轴对称的意义和性质可以作出图形;②连结MC ,然后根据轴对称的性质和直角等腰三角形的性质以及三角形全等的判定和性质可以得到解答.【详解】解:(1)∵在ABC 中,,90AB AC BAC ︒=∠=,45B C ︒∴∠=∠=.APQ ∠是ABP △的一个外角,APQ B BAP ∴∠=∠+∠.15BAP ︒∠=,60APQ ︒∴∠=.AP AQ =,60AQB APQ ︒∴∠=∠=.(2)①如图,由题意可得补全图如下:②2222PC BP AP +=,理由如下:如上图,连接MC .,90AB AC BAC ︒=∠=,45B ACB ︒∴∠=∠=.AP AQ =,APQ AQP ∴∠=∠.BAP CAQ ∴∠=∠.ABP ACQ ∴△≌△.BP CQ ∴=.∵点Q 关于直线AC 的对称点为M ,,,,45AQ AM CQ CM CAM CAQ ACM ACQ ︒∴==∠=∠∠=∠=.,45,AP AM B ACM BAP CAM ︒∴=∠=∠=∠=∠,∴△ABP ≌△ACM ,∴BP=CM ,90BAC PAM ︒∴∠=∠=.在Rt APM △中,,90AP AM PAM =∠=︒, 2PM AP ∴=.45ACQ ACM ︒∠=∠=,90PCM ︒∴∠=.在Rt PCM 中,90PCM ︒∠=,222PC CM PM ∴+=,2222PC BP AP ∴+=【点睛】本题考查直角三角形的综合应用,熟练掌握直角等腰三角形和三角形的性质、轴对称的意义和性质、三角形全等的判定和性质以及勾股定理的应用是解题关键.23.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为3的线段,根据勾股定理可得5为长为2,宽为1的矩形的对角线,22是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP 的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP 的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.24.(1)学校会受到影响,理由见解析;(2)学校受到影响的时间是2.4秒.【分析】(1)过点A 作AE ⊥MN 于点E ,由点A 到铁路MN 的距离为80米可知AE =80m ,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100米为半径画圆,交直线MN 于BC 两点,连接AB 、AC ,则AB =AC =100m ,在Rt △ABE 中利用勾股定理求出BE 的长,进而可得出BC 的长,根据火车的速度是180千米/时求出火车经过BC 是所用的时间即可.【详解】解:(1)会受到影响.过点A 作AE ⊥MN 于点E ,∵点A 到铁路MN 的距离为80米,∴AE =80m ,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A 为圆心,100米为半径画圆,交直线MN 于BC 两点,连接AB 、AC ,则AB =AC =100m ,在Rt △ABE 中,∵AB =100m ,AE =80m ,∴BE 22AB AE -2210080-=60m ,∴BC =2BE =120m ,∵火车的速度是180千米/时=50m /s ,∴t =50BC =12050=2.4s . 答:学校受到影响的时间是2.4秒.【点睛】本题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.25.(1)证明见解析;(2)48cm 2.【分析】(1)由AB=AC=13cm ,CD=12cm ,AD=5cm ,知道AC 2=AD 2+CD 2,所以△BDC 为直角三角形,(2)根据三角形面积公式解答.【详解】证明:(1)∵AB =AC =13cm ,CD =12cm ,AD =5cm ,∴AC 2=AD 2+CD 2,∴∠ADC =90°,∴∠BDC =90°,∴△BDC 为直角三角形;(2)∵AB =13cm ,AD =5cm ,∴BD =13﹣5=8cm .∵CD =12cm , ∴281248()2BDC S cm ∆⨯==. 【点睛】本题考查勾股定理逆定理的应用.理解如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形是解题关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
一、选择题1.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是()A.12 B.13 C.15 D.242.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m3.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条4.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m,此时测得绳结离地面的高度为 1m,则学校教学楼的高度为()A.11 m B.13 m C.14 m D.15 m走“捷径”,在花5.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角AOB圃内走出了一条“路”AB,他们踩伤草坪,仅仅少走了()A .4mB .6mC .8mD .10m6.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .41 7.已知Rt ABC 中,A ∠,B ,C ∠的对边分别为a 、b 、c ,若90B ∠=︒,则( ).A .222b a c =+B .222c a b =+C .222a b c =+D .a b c +=8.下列各组数是勾股数的是( ) A .1,2,3B .0.6,0.8,1C .3,4,5D .5,11,12 9.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 10.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .13B .10C .1312D .81012 11.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A 3B 5C 3131-D 5151 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .84B .64C .48D .46二、填空题13.如图,在四边形ABCD 中,22AD =,27AB =,10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.14.已知一个直角三角形的两边长为3和5,则第三边长为______.15.定义:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形,在Rt ABC 中,90,C ∠=,,AB c AC b BC a ===,且b a >,如果Rt ABC 是奇异三角形,那么::a b c =______________.16.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .17.如图,长方体的底面边长分别为3cm 和3cm ,高为5cm ,若一只蚂蚁从A 点开始经过四个侧面爬行一圈到达B 点,则蚂蚁爬行的最短路径长为_____cm .18.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______米.19.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A点爬到B点,那么最短的路径是_______________分米.(结果保留根号)20.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离______cm.三、解答题21.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为10的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.22.已知:如图,Rt△ABC中,∠C=90°,3232求(1)Rt△ABC的面积;(2)斜边AB的长.23.如图,在ABC中,D是BC上一点,若AB=10,BD=6,AD=8,AC=17.(1)求DC的长;(2)求ABC的面积.24.如图,在下列方格纸中,A、B是两个格点,请用无刻度的直尺在方格纸中完成下列画图.(不写画法,保留画图痕迹)(1)画出一个∠ABC,使得∠ABC=45°;(2)画出线段AB的垂直平分线.25.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.26.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、 B、C在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A′B′C′;(2)在直线l 上找一点P(在答题纸上图中标出),使PB+PC 的长最短,这个最短长度的平方值是___.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答.【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m ,在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x =故选:A .【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题. 2.A解析:A【分析】设水池的深度BC =xm ,则AB =(0.5+x )m ,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC 中,AC =1.5m .AB ﹣BC =0.5m .设水池的深度BC =xm ,则AB =(0.5+x )m .根据勾股定理得出:∵AC 2+BC 2=AB 2,∴1.52+x 2=(x +0.5)2,解得:x =2.故选:A .【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 3.B解析:B【分析】由勾股定理求出a 、b 、c 、d ,即可得出结果.【详解】∵a=221417+=,b=22345+=,c=223213+=,d=2,∴长度是无理数的线段有2条,故选B .【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.5.A解析:A【分析】根据勾股定理求出AB 即可.【详解】解:∵90AOB ∠=︒,∴10=(m ),6+8-10=4(m ),∴他们踩伤草坪,仅仅少走了4m ;故选:A .【点睛】本题考查勾股定理的应用,解题关键是熟练运用勾股定理求线段长.6.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.7.A解析:A【分析】先根据题意画出图形,再根据勾股定理即可得.【详解】由题意,画出图形如下:由勾股定理得:222b a c =+,故选:A .【点睛】本题考查了勾股定理,依据题意,正确画出图形是解题关键.8.C解析:C【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 23A 错误;B 、0.6,0.8,不是整数,故B 错误;C 、3,4,5是整数,且222345+=,故C 正确;D 、5,11,12是整数,但22251112+≠,故D 错误;故选:C .【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.9.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.10.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==, ∴AD ==3AD BD +=,一共有4个这样的长度,∴这个风车的外围周长是:()4312⨯=.故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.11.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.【详解】解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=, ∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.12.B解析:B【分析】根据正方形的面积等于边长的平方和勾股定理求解即可.【详解】解:设中间直角三角形的边长分别为a 、b 、c ,且a 2=225,c 2=289,由勾股定理得b 2=c 2﹣a 2=289﹣225=64,∴字母A 所代表的正方形的面积为b 2=64,故选:B .【点睛】本题考查勾股定理的应用、正方形的面积,熟练掌握勾股定理是解答的关键.二、填空题13.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC解析:+24【分析】连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒, ∴BD =∵AD =,AB = ∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD 2+CD 2=BC 2,∴∠BDC=90°,S △ABD =12⨯=, S △BDC =168242⨯⨯=,四边形ABCD 的面积是= S △ABD + S △BDC =+24故答案为:.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.4或【分析】分5是斜边和5是直角边两种情况再分别利用勾股定理即可得【详解】由题意分以下两种情况:(1)当5是斜边时则第三边长为;(2)当5是直角边时则第三边长为;综上第三边长为4或故答案为:4或【点解析:434【分析】分5是斜边和5是直角边两种情况,再分别利用勾股定理即可得.【详解】由题意,分以下两种情况:(1)当5是斜边时,22-=;534(2)当5是直角边时,225334+=综上,第三边长为434故答案为:434【点睛】本题考查了勾股定理,依据题意,正确分两种情况讨论是解题关键.15.1::【分析】由△ABC为直角三角形利用勾股定理列出关系式c2=a2+b2记作①再由新定义两边平方和等于第三边平方的2倍的三角形叫做奇异三角形列出关系式2a2=b2+c2记作②或2b2=a2+c2记解析:123【分析】由△ABC为直角三角形,利用勾股定理列出关系式c2=a2+b2,记作①,再由新定义两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,列出关系式2a2=b2+c2,记作②,或2b2=a2+c2,记作③,联立①②或①③,用一个字母表示出其他字母,即可求出所求的比值.【详解】∵Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,∴根据勾股定理得:c2=a2+b2,记作①,又Rt△ABC是奇异三角形,∴2a2=b2+c2,②,将①代入②得:a2=2b2,即a=2b(不合题意,舍去),∴2b2=a2+c2,③,将①代入③得:b2=2a2,即b=2a,将b=2a代入①得:c2=3a2,即c=3a,则a:b:c=1:2:3.故答案为:1:2:3.【点睛】此题考查了新定义的知识,勾股定理.解题的关键是理解题意,抓住数形结合思想的应用.16.7【解析】∵在△ABC中∠B=90°AB=3AC=5∴BC=∵△ADE是△CDE翻折而成∴AE=CE∴AE+BE=BC=4∴△ABE的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=2222-=-=.534AC AB∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.17.13【分析】要求长方体中两点之间的最短路径只需将长方体展开然后利用两点之间线段最短及勾股定理求解即可【详解】解:展开图如图所示:由题意在中AD=12cmBD=5cm蚂蚁爬行的最短路径长为:故答案为1解析:13【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在Rt ADB中,AD=12cm,BD=5cm,∴蚂蚁爬行的最短路径长为:2222AB AD BD cm=+=+=,12513故答案为13.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.18.13【分析】根据两点之间线段最短可知:小鸟沿着两棵树的顶端进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出【详解】如图所示ABCD为树且AB=14米CD=9米BD为两树距离12米过C作C解析:13【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB−CD=5,在直角三角形AEC中,AC22+=13.512AE CE+=22答:小鸟至少要飞13米.故答案为:13.【点睛】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.19.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股解析:32【分析】有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB的长度即可判断.【详解】正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理()2212332AB =++= ∵322526<<∴最短的路径是32故答案为32【点睛】本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.20.15【分析】在侧面展开图中过C 作CQ ⊥EF 于Q 作A 关于EH 的对称点A′连接A′C 交EH 于P 连接AP 则AP+PC 就是蚂蚁到达蜂蜜的最短距离求出A′QCQ 根据勾股定理求出A′C 即可【详解】解:沿过A 的圆解析:15【分析】在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【详解】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP , 则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E ,A′P=AP ,∴AP+PC=A′P+PC=A′C ,∵CQ=12×18cm=9cm ,A′Q=12cm -3cm+3cm=12cm , 在Rt △A′QC 中,由勾股定理得:2222A'Q CQ 129+=+=15(cm),故答案为:15.【点睛】本题考查了平面展开-最短路径问题,勾股定理的应用,同时也考查了学生的空间想象能力.将图形侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和310,由此可得线段PQ ;(2)由勾股定理可知当直角边为2和313可得到面积为13的正方形ABCD .【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(1)12;(210 【分析】(1)根据三角形面积公式可求Rt △ABC 的面积;(2)根据勾股定理可求斜边AB 的长.【详解】(1)Rt △ABC 的面积=12AC×BC=12×3232)=12; (2)斜边AB 的长22(32)(32)++-10.答:斜边AB 10【点睛】此题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了三角形面积公式.23.(1)15;(2)84.【分析】(1)先根据勾股定理的逆定理可得AD BC ⊥,再根据勾股定理即可得;(2)先根据线段的和差可得BC 的长,再根据三角形的面积公式即可得.【详解】(1)在ABD △中,222268100BD AD +=+=,2210100AB ==,∴222BD AD AB +=,∴90ADB ∠=︒,即AD BC ⊥,∴90ADC ∠=︒,在Rt ACD △中,222217815DC AC AD =-=-=;(2)由(1)得:61521BC BD DC =+=+=,AD BC ⊥, 则112188422ABC BC AD S =⋅=⨯⨯=. 【点睛】本题考查了勾股定理、勾股定理的逆定理等知识点,根据勾股定理的逆定理得出AD BC是解题关键.24.(1)详见解析;(2)详见解析【分析】(1)根据网格即可画出一个∠ABC,使得∠ABC=45°;(2)根据网格即可画出线段AB的垂直平分线.【详解】解:(1)如图,∠ABC即为所求;(2)如图,直线l即为所求.【点睛】本题考查了作图-应用与设计作图、线段垂直平分线的性质,解决本题的关键是掌握线段垂直平分线的性质.25.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×12ab=13﹣3=10,∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.26.(1)见解析;(2)图见解析,13【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P点位置.【详解】(1)分别找到各点的对称点,顺次连接可得△A′B′C′.(2)连接B'C,则B'C与l的交点即是点P的位置,求出PB+PC的值即可.【解答】解:(1)如图所示:(2)如图所示:连接B′C,与直线l交于点P,此时PB+PC最短,PB+PC=PB'+PC=B'C221323则这个最短长度的平方值是13.【点睛】本题考查了轴对称作图及最短路线问题,以及勾股定理,解答本题的关键是掌握轴对称的性质,难度一般.。
1
D
CB
A
F
E
D
C
B
A
初中数学-勾股定理单元试卷
一、填空题(每小题2分,共24分)
1. 如图,在长方形ABCD中,已知BC=10cm,AB=5cm,则对角线BD= cm。
2. 如图,在正方形ABCD中,对角线为22,
则正方形边长为 。
3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来
的 。
4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。
5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机
距离小刚5000米,则飞机每小时飞行 千米。
6. 在Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
8. 如图所示,在矩形ABCD中,AB=16,BC=8,将矩形沿AC折叠,点D落在点E处,且CE
与AB交于点F,那么AF= 。
9. 如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷
子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是 。
10. 如图,数轴上有两个Rt△ABC、Rt△ABC,OA、OC是斜边,且
OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA、OC为半径
画弧交x轴于E、F,则E、F分别对应的数是 。
11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12
海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。
12. 所谓的勾股数就是指使等式a2+b2=c2成立的任何三个自然数。我国清代数学家罗士林
钻研出一种求勾股数的方法,即对于任意正整数m、n(m>n),取a=m2-n2,b=2mn,c=m2+n2,
则a、b、c就是一组勾股数。请你结合这种方法,写出85(三个数中最大)、84和 组
成一组勾股数。
二、选择题(每小题3分,共18分)
D
C
B
A
2
13. 在△ABC中,∠A=90°,∠A、∠B、∠C的对边长分别为a、b、c,则下列结论错误的
是( )
(A)a2+b2=c2 (B)b2+c2=a2 (C)a2-b2=c2 (D)a2-c2=b2
14. 在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于( )
(A)108cm2 (B)90cm2 (C)180cm2 (D)54cm2
15. 在直角坐标系中,点P(-2,3)到原点的距离是 ( )
(A)5 (B)13 (C)11 (D)2
16. 池塘中有一朵荷花,它直立在水中,荷花高出水面半尺处长着一朵红莲,一阵风吹来
把荷花吹倒在一边,红莲倒在水面位置距荷花生长处水平距离为2尺,则池塘深( )
(A)3.75尺 (B)3.25尺 (C)4.25尺 (D)3.5尺
17. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股园
方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图
所示,如果大正方形的面积是13,小正方形式面积是1,直角三角形的短直角边为a,
较长直角边为b,那么(a+b)2的值为 ( )
(A)13 (B)19 (C)25 (D)169
18. 如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面距
离为7m,现将梯子的底端A向外移到A′,使梯子的底端A′到墙根O距离为3m,同时梯子
顶端B下降至B′,那么BB′ ( )
(A)等于1m (B)小于1m (C)大于1m (D)以上都不对
三、解答题(共58分)
19.(8分)如图,从电线杆离地6米处向地面拉一条长10米的缆绳,这条缆绳在地面的
固定点距离电线杆底部有多远?
3
20.(8分)三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所
示的图形,则△ABC一定是直角三角形吗?说明理由。
21.(12分)求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草
皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200天,
问学校需要投入多少资金买草皮?
22.(12分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,
BC=10cm,求EC的长。
23.(10分)如图,李叔叔想要检测雕塑底座正面的AD和BC是否分别垂直于底边AB,但
他随身只带了有刻度的卷尺。
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长30厘米,AB长40厘米,BD长50厘米,则AD边垂直于AB边吗?
D
C
B
A
4
24.(8分)观察下列各式,你有什么发现?
32=4+5,52=12+13,72=24+25 92=40+41……
这到底是巧合,还是有什么规律蕴涵其中呢?
(1)填空:132= +
(2)请写出你发现的规律。
(3)结合勾股定理有关知识,说明你的结论的正确性。
5
参考答案
一、填空题
1. 55 2. 2 3. 2倍 4. 直角 5. 540 6. 12、16
7. 5或7 8. 10 9. 12cm≤a≤13cm 10. -2、5
11. 30 12. 13
二、选择题
13. A 14. D 15. B 16. A 17. C 18. B
三、解答题
19. 13米
20. △ABC一定是直角三角形。理由略。
21. 学校需投入7200元购买草皮。
22. 3cm
23. (1)用卷尺分别测量AD、AB、BD的长,然后计算AD2+AB2,看是否与BD2相等,如果相
等,则△ABC是直角三角形,AD⊥AB;否则不是直角三角形, DA不垂直AB,同
理,可判断BC与AB是否垂直。
(2)∵AD2+AB2=302+402=502=BD2
∴∠DAB=90° ∴AD边垂直AB边
24. (1)132=84+85
(2)任意一个大于1的奇数的平方可拆成两个连续整数的和,并且这两个连续整数与
原来的奇数构成一组勾股数。
(3)略