谈“二面角”的求法——对高考立体几何试题的思考
- 格式:pdf
- 大小:644.79 KB
- 文档页数:3
考点三二面角[典例](2013·新课标卷Ⅱ)如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=22AB.(1)证明:BC1//平面A1CD;(2)求二面角DA1CE的正弦值.在本例条件下,求平面A1AD与平面A1EC所成二面角的大小.[类题通法]利用法向量求二面角时应注意(1)对于某些平面的法向量要注意题中隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.[针对训练](2014·杭州模拟)如图,已知平面QBC与直线P A均垂直于Rt△ABC所在平面,且P A=AB=AC.(1)求证:P A∥平面QBC;(2)若PQ⊥平面QBC,求二面角QPBA的余弦值.第二课时 空间向量的应用空间向量法解决探索性问题角度一 探索性问题与空间角相结合1.(2014·哈师大附中模拟)如图,三棱柱ABC A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1上的动点,F 是AB 的中点,AC =1,BC =2,AA 1=4.(1)当E 是棱CC 1的中点时,求证:CF ∥平面AEB 1;(2)在棱CC 1上是否存在点E ,使得二面角A EB 1 B 的余弦值是21717若存在,求CE 的长,若不存在,请说明理由.角度二探索性问题与垂直相结合2.(南昌模拟)如图是多面体ABCA1B1C1和它的三视图.(1)线段CC1上是否存在一点E,使BE⊥平面A1CC1?若不存在,请说明理由,若存在,请找出并证明;(2)求平面C1A1C与平面A1CA夹角的余弦值.角度三探索性问题与平行相结合3.江西模拟)如图,四边形ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.(1)求证:AC⊥平面BDE;(2)求二面角FBED的余弦值;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.[类题通法]解决立体几何中探索性问题的基本方法1.通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若推导出与条件或实际情况相矛盾的结论,则说明假设不成立,即不存在.EC,2.探索线段上是否存在点时,注意三点共线条件的应用.如角度二中的CE=λ1这样可减少坐标未知量.空间向量的综合应用[典例](2013·郑州模拟)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′BCDE.(1)在棱A′B上找一点F,使EF∥平面A′CD;(2)当四棱锥A′BCDE的体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.[类题通法]立体几何的综合应用问题中常涉及最值问题,处理时常用如下两种方法:(1)结合条件与图形恰当分析取得最值的条件(2)直接建系后,表示出最值函数,转化为求最值问题.[针对训练]已知正方体ABCDA1B1C1D1的棱长为1,点P在线段BD1上.当∠APC最大时,三棱锥P ABC的体积为_______。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。
浅析二面角的求法摘要:在高中立体几何中,求解二面角是高考的重点和难点,在历年高考中都有所体现。
二面角的求解因为方法多样、灵活多变,具有较高的区分度,较能考察学生的空间想象能力、逻辑思维能力及计算能力,受到命题者的青睐。
本文介绍了二面角以及二面角的平面角的概念,详细讲解了二面角的几种求法。
这些求法分类为定义法、空间变换法、空间向量法以及另类求法。
在每种方法的讲解过程中,都给出了相关具体的例题以及图形,给出了详细的解答过程。
文章又根据不同的问题,分析了了各种求法的适用情况以及各种求法的优缺点。
关键词:二面角平面角面积法引言在高中空间几何的问题中,如何去求解两个平面的二面角的问题对很多同学来说十分棘手。
许多同学一遇到这种问题就比较头疼,特别是针对那些所给已知条件比较少的问题。
例如:在求二面角的问题中,许多都是没有给出直观的二面角的平面角,这就要求同学们会作辅助线,同时,一些问题中还需要很高的计算能力。
在历年的高考题中,多次出现了求二面角的题目,如2009年的安徽卷(第18题)、2010年的安徽卷(第18题)、2012年的安徽卷(第18题)。
这就说明,二面角问题在高考中是一个热门的考点。
因此,探讨求解二面角问题的方法,有很大的研究价值。
二面角问题的求解方法对不同的求二面角的问题,可以用不同的方法来解决。
总体上来讲,可以分为四种方法,分别是:定义法、空间变换法、向量法、另类方法。
1、定义法顾名思义,概念法指的是利用概念直接解答问题。
例1:如图1所示,在四面体ABCD中,1AD=。
AC AB==,3CD BD==,2求二面角A BC D --的大小。
分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。
解:设线段BC 的中点是E ,接AE 和DE 。
根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。
又BC是平面ABC 和平面DBC 的交线。
数学老师重点通知:高中数学求二面角大小的经典巧解技巧方
法整理
Hello,我是洪老师
今天给大家进行的是这个求二面角大小的经典巧解技巧方法整理!
立体几何中的二面角是一个非常重要的数学概念,求二面角的大小更是历年高考的热点问题,每年各省、市的高考试题中几乎都会出现此类题型。
其求解的策略主要有三种方法:其一是定义法,即按照二面角的定义进行求解;其一是射影法,即找其中一个平面的垂线;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.
方法一定义法
使用情景:空间中面面角的求法
解题模板:第一步首先分别在两个平面中找出与交线垂直的直线;
第二步然后运用平移或解三角形的知识求其夹角;
第三步得出结论.
方法二射影法
使用情景:空间中面面角的求法
解题模板:第一步首先求出其中一个平面的垂线;
第二步然后过垂足作交线的垂线即可得到二面角的平面角;
第三步运用解三角形等相关知识即可求出其大小.
具体的方法,可以下载下来进行学习的,是word文档,可以打印的!
如需完整的一套的63套的高中数学的解题技巧方法整理大全,请发私信063给我。
或者关注洪老师以后,点我的上面的头像,然后会看到底下有个【洪粉必看】,按提示操作就可以了。
本资料编号是063!。
【高考地位】立体几何中的二面角是一个非常重要的数学概念,求二面角的大小更是历年高考的热点问题,每年各省、市的高考试题中几乎都会出现此类题型。
其求解的策略主要有三种方法:其一是定义法,即按照二面角的定义进行求解;其一是射影法,即找其中一个平面的垂线;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】方法一 定义法使用情景:空间中面面角的求法解题模板:第一步 首先分别在两个平面中找出与交线垂直的直线;第二步 然后运用平移或解三角形的知识求其夹角;第三步 得出结论.例1. 在边长为a 的正三角形C AB 中,D C A ⊥B 于D ,沿D A 折成二面角D C B -A -后,C 2a B =,这时二面角D C B -A -的大小为 .【变式演练1】【浙江省绍兴市柯桥区2016届高三教学质量调测(二模)数学(理)试题】(本小题满分15分)如图, 以BC 为斜边的等腰直角三角形ABC 与等边三角形ABD 所在平面 互相垂直, 且点E 满足12DE AC = . (1)求证:平面EBC ⊥平面ABC ;(2)求平面EBC 与平面ABD 所成的角的正弦值.方法二 射影法使用情景:空间中面面角的求法解题模板:第一步 首先求出其中一个平面的垂线;第二步 然后过垂足作交线的垂线即可得到二面角的平面角;第三步 运用解三角形等相关知识即可求出其大小.例2. 【河北省衡水中学2017届高三上学期第三次调,19】(本小题满分12分)如图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角的正弦值为12,求锐二面角1A AC B --的大小.【变式演练2】如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,//AB CD ,4AB =,2BC CD ==,12AA =,1,,E E F 分别是棱1,,AD AA AB 的中点.(1)证明:直线1//EE 平面1FCC ;(2)求二面角1B FC C --的余弦值.【变式演练3】如图,在三棱锥A BCD -中,AD ⊥平面BCD ,CB CD =,AD DB =,P ,Q 分别在线段AB ,AC 上,3AP PB =,2AQ QC =,M 是BD 的中点.(1)证明://DQ 平面CPM ;(2)若二面角C AB D --的大小为3π,求tan BDC ∠.方法三 空间向量法使用情景:空间中面面角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出两个平面的法向量;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例3 . 如图,在四棱锥P ABCD -中,PA ⊥底面,,ABCD BC PB BCD ⊥∆为等边三角形,PA BD AB AD ==,E 为PC 的中点.(1)求AB ;(2)求平面BDE 与平面ABP 所成二面角的正弦值.例4、如图, 已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面, 平面ABCD 平面ABPE AB =,且2,1,AB BP AD AE AE AB ====⊥,且AE BP . 求二面角D PE A --的余弦值.【变式演练4】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,2AB BC ==,1CD SD ==,侧面SAB 为等边三角形.(1)证明:AB SD ⊥;(2)求二面角A SB C --的正弦值.错误!未找到引用源。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。