三大微分中值定理及其推广形式和应用
- 格式:pdf
- 大小:210.27 KB
- 文档页数:9
微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。
微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。
这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。
导数的基本定理是微积分中最基本的定理之一。
它告诉我们如何求函数的导数。
导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。
导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。
它是微积分中理论和实际应用的基础。
中值定理是导数的一个重要应用。
它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。
中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。
中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。
积分的基本定理是微积分的重要组成部分。
它告诉我们如何求函数的积分。
积分是求解曲线下面的面积或计算曲线的总变化量的工具。
积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。
微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。
它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。
无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。
通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。
微分中值定理的推广及应用微分中值定理是微积分中的重要定理之一,它在分析函数在区间内的平均速度和瞬时速率之间的关系上展示了重要的性质。
在本文中,我们将探讨微分中值定理的推广及其在实际问题中的应用。
首先,我们回顾一下微分中值定理的基本形式。
设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,那么存在一个点c ∈ (a, b),使得f'(c) = (f(b) - f(a))/(b - a)。
这个定理说明了在[a, b]上函数的瞬时变化率在某一点上与其平均变化率相等。
在进一步研究中,我们可以将微分中值定理推广到更一般的情形。
例如,当函数f(x)在闭区间[a, b]上多次可导时,我们可以得到多次求导的结果。
具体而言,对于任意非负整数n,存在点c ∈ (a, b),使得f^(n)(c) = (f(b) - f(a))/(b - a)^(n),其中f^(n)(c)表示f(x)的n阶导数。
推广定理的证明是基于数学归纳法的。
首先,对于n=1的情况,即一阶导数,我们可以直接应用微分中值定理的基本形式进行证明。
接下来,假设对于k=1,2,...,n-1,定理成立。
我们将其应用于f'(x),得到存在一个点d ∈ (a, b),使得f''(d) = (f'(b) - f'(a))/(b - a)。
然后,我们可以使用拉格朗日中值定理来得到f''(d) = f^(2)(c)。
结合两个等式,我们可以得到f^(2)(c) = (f'(b) - f'(a))/(b - a)。
通过类似的推理,我们可以证明对于更高阶导数的情况也成立。
了解了微分中值定理的推广形式后,我们将进一步探讨其在实际问题中的应用。
微分中值定理常常被用于研究函数在某一区间的极值点及函数图像的凸凹性。
首先,我们考虑函数的极值点。
根据微分中值定理,如果函数在某一区间[a, b]上可导,那么在(a, b)内存在一个点c,使得f'(c) = 0。
微分中值定理的推广及应用微分中值定理是数学分析中一个重要的定理,它是关于微分学中函数的变化性的定理。
这个定理在数学家们探索函数几何性质时,尤其是推广应用中起到了重要的作用。
本文旨在介绍微分中值定理的推广及应用。
2分中值定理微分中值定理是在变分学中最为经典的定理之一。
它往往用来说明函数的连续性、变化率及函数的驻点有关。
它的正式定义如下:定义:设f(x)为连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f′(θ)与[f(a)-f(b)]/[a-b]相等,则称θ为函数f(x)在区间[a,b]上的中值点,令f′(θ)=[f(a)-f(b)]/[a-b],则称为微分中值定理。
3广微分中值定理在原始定义的基础上,可以推广出一系列类似的定理。
3.1阶中值定理高阶中值定理是一种推广微分中值定理,它引入了高阶导数,通过某些极值点解出高阶导数等于函数在该点处的前后变化值的差值。
定义:设f(x)具有N阶可导的连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f^(N)(θ)与[f^(N-1)(b)-f^(N-1)(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的N阶中值点,令f^(N)(θ)=[f^(N-1)(b)-f^(N-1)(a)]/[b-a],则称为高阶中值定理。
3.2展中值定理拓展中值定理是一种推广微分中值定理,它与高阶中值定理的不同之处在于,它把对一个连续函数的某一段求导之后得到的极值点,当做求函数本身的极值点,从而拓展出新的中值定理。
定义:设f(x)是一个连续函数,且f′(x)在区间[a,b]上连续可导,若存在一点θ∈(a,b),使得f′(θ)与[f′(b)-f′(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的拓展中值点,令f′(θ)=[f′(b)-f′(a)]/[b-a],则称为拓展中值定理。
4用微分中值定理及其推广的定理在微积分应用中起到了重要作用,常用于函数的极值求解、区间求值等方面。
微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。
本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。
一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。
其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。
1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。
罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。
3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。
二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。
下面将介绍中值定理在实际问题中的应用案例。
1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。
微分中值定理的证明、推广以及应用篇一:微分中值定理的证明及应用微分中值定理的证明及应用摘要:文章首先介绍了微分中值定理证明时的一种规律性简明方法,即通过构造辅助函数来达到罗尔定理的条件以便利用罗尔定理来证明其他微分中值定理,并且就用这种方法证明了拉格朗日中值定理和柯西中值定理。
然后分类列举微分中值定理在证明等式、不等式、求极限以及在讨论方程根的存在性方面的应用,而且微分中值定理即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理在不同的解题应用方面是各有优劣的,又是相互互补渗透的,因此我们在解题时也要学会综合运用它们。
关键词:罗尔定理拉格朗日中值定理柯西中值定理辅助函数我们知道微分中值定理是整个微分学的理论基础,并且它在数学分析中也占有重要地位作用,它也是连接函数与导数的纽带与桥梁,而我们知道函数在某一点的导数是一种局部性质。
在实际研究中我们有时需要从函数的整体出发考虑其全局性质,因而正式微分中值定理可以解决这种由局部到全局或者有全局到局部的问题。
笔者在学习中借鉴和总结了微分中值定理证明时的一种规律性简明方法,并且简单地讨论了微分中值定理的各种应用。
1微分中值定理的证明11对中值定理[1]的简单证明分析:拉格朗日中值定理的证明要用到罗尔定理,但是定理所给出的已知条件不能够满足罗尔定理条件中的()?()故此我们需要构造一个新的函数,不妨记为()使它满足罗尔定理的全部条件,为此设?()?()?则()?()?(?)即()??()?(1)由(1)可构造新函数()?()?,有题设可知()在[,]上连续,在(,)内可导,且()?(),因此()满足罗尔定理的全部条件。
所以函数()?()?,即我们要构造的函数。
证明:构造辅助函数()?()?,其中?()?()?根据已知条件和连续函数的性质,我们可以知道()在闭区间[,]上是连续的,在开区间(,)内是可导的,并且还有()?(),所以我们可以根据罗尔定理就可以得到函数()在(,)内至少存在一点?,使得?(?)??(?)??0即?(?)?()?()?,故证得()?()??(?)(?)12对中值定理[1]的简单证明分析:若用定理证明这个定理,需要构造一个辅助函数并且使它满足定理的条件,不妨设?()?()()?(),可变形为()?()?()?()(2)由(2)可构造辅助函数()?()?(),有题设可知()在[,]上连续,(,)内可导且()?(),因而()满足定理的条件,即()?()?()为所要构造的函数。
微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。
拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。
2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。
设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。
柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。
3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。
设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。
罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。
微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。
在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。
二、导数的应用导数作为微积分的重要概念,具有很多实际应用。
微分中值定理的主要作用微分中值定理是高等数学中微分学的主要知识点。
在确定罗尔定理、拉格朗日中值定理、柯西中值定理的基础上,深入分析了不同中值定理的推广形式。
在确定微分中值定理经典证明的前提下,分析以上之间的关系。
找出所有相关的证明形式,并分析1.引言在数学研究中,微分中值定理起着非常重要的作用。
在最近的数学考研中,与微分中值定理相关的命题层出不穷。
因此,对这部分问题的分析不仅能使我们深刻理解和认识微分中值定理的知识,而且对后续问题的解决也至关重要。
微分中值定理一般涵盖罗尔(Roll)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理和泰勒(Taylor)公式。
上述部分彼此不断递进。
分析某个函数整体和部分,和众多函数彼此间的关系。
对了解函数的属性和根的存在性等部分具有关键的价值。
学微分中值定理这部分的时候,我们需要了解为何要学习,以及与其他定理间的关系与使用。
基于教材进行分析,我们逐渐了解到导数微分的关键性,然而并未讲解怎样使用,所以需要强化导数的使用,但是微分中值定理是导数使用的理论前提。
因此此部分知识非常关键。
其是此后分析函数极限,单调,凹凸性的前提。
基于微分中值定理的形成进行分析,此处主要的基础是函数最值问题。
而处理上述问题是使用微分中值定理。
学者们对微分中值定理的分析经历了200多年,主要从费马大定理开始,经历了从特殊到一般,从直观到抽象,从强条件到弱条件的发展时期。
也正是在上述发展时期,学者们开始了解它们的内在联系和根本特征。
微分中值定理是浓缩版的概括,上面的概括和美国数学家克莱默对数学史上任何阶段大众对数学贡献的评价,那些能够统一过去,为未来发展找到出路的概念,应该算是最深的定义了。
从广义的角度看,微分中值定理定义如下。
微分中值定理是微分学的主要定理,在数学研究中具备关键位置,是分析函数在某区间内的综合性质的重要方式。
其主要包含众多定理。
此处拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是罗尔中值定理的推广;反之,拉格朗日中值定理是柯西中值定理的特殊案例,罗尔中值定理是拉格朗日中值定理的特殊案例。
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
三大微分中值定理的关系
微分中值定理是微积分中的基础理论之一,它是研究函数在某个区间内的平均变化率和瞬时变化率之间的关系。
其中,三大微分中值定理包括拉格朗日中值定理、柯西中值定理和洛必达中值定理。
这三大微分中值定理都是基于连续函数和可导函数的前提条件
下得出的。
其中,拉格朗日中值定理是指如果函数f在区间[a,b]上
连续,在(a,b)上可导,则存在x∈(a,b),使得f(b)-f(a)=f'(x)(b-a)。
柯西中值定理是指如果函数f和g在区间[a,b]上连续,在(a,b)上可导,且g'(x)≠0,则存在x∈(a,b),使得
[f(b)-f(a)]g'(x)=[g(b)-g(a)]f'(x)。
洛必达中值定理是指如果函
数f(x)和g(x)在x→a的过程中都趋于0或∞,且在a的某个去心邻域内f'(x)/g'(x)存在或趋于∞或-∞,则f(x)/g(x)在x→a的过程
中也趋于这个极限值。
这三个微分中值定理之间存在一定的关系。
在某些条件下,它们可以相互推导和应用。
例如,在证明极限存在时,可以用洛必达中值定理将分子和分母同时求导,然后运用拉格朗日中值定理得到极限存在的结论。
在证明某些不等式时,也可以运用柯西中值定理将函数f 和g进行组合,然后利用拉格朗日中值定理推导出不等式的形式。
总之,三大微分中值定理是微积分中重要的理论基础,它们之间的关系也体现了微积分中不同理论的联系和互补性。
- 1 -。
微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。