高中数学导数及其应用第六讲 导数的几何意义、定积分与微积分基本定理(解析版)
- 格式:doc
- 大小:835.29 KB
- 文档页数:6
6。
1.2 导数及其几何意义必备知识·素养奠基1。
(1)定义:一般地,设函数y=f(x)在x0附近有定义,自变量在x=x0处的改变量为Δx,当Δx无限接近于0时,若平均变化率=无限接近于一个常数k,那么称常数k为函数f(x)在x=x0处的瞬时变化率,此时,也称f(x)在x0处可导,并称k为f(x)在x=x0处的导数,记作f′(x0)=k.“当Δx无限接近于0时,无限接近于常数k”还可以怎样表示?提示:还可以表示为,当Δx→0时,→k,或者写成=k,即f′(x0)=。
(2)瞬时变化率f′(x0)的实际意义:当自变量在x=x0处改变量Δx 很小时,因变量对应的改变量的近似值为f′(x0)Δx。
(1)函数y=f在x=x0处的导数一定存在吗?提示:当Δx→0时,平均变化率的极限存在,则函数y=f在x=x0处可导,否则在x=x0处不可导或无导数。
(2)函数y=f在x=x0处的导数的定义还可以用别的式子表示吗?提示:还可以表示为f′==等。
2.导数的几何意义(1)割线:一般地,设S是平面上的一条曲线,P0是曲线S上的一个定点,P是曲线S上P0附近的点,则称直线PP0为曲线S的割线.(2)切线:如果P无限接近于P0时,割线PP0无限接近于通过P0的一条直线l,则称直线l为曲线S在点P0处的切线.f′(x0)就是曲线y=f(x)在点(x0,f(x0))处(也称在x=x0处)的切线的斜率.切线方程为y-f(x0)=f′(x0)(x-x0)。
(1)曲线的切线与曲线一定只有一个公共点吗?提示:曲线的切线并不一定与曲线只有一个公共点,可以有多个,甚至可以有无穷多个。
(2)曲线的切线与导数有什么关系?提示:①函数f(x)在x=x0处有导数,则函数f(x)在该点处必有切线,并且导数值就是该切线的斜率.②函数f(x)表示的曲线在点(x0,f(x0))处有切线,但函数f(x)在该点处不一定可导,例如f(x)=在x=0处有切线,但不可导.1.思维辨析(对的打“√”,错的打“×")(1)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点x=x0处的函数值. ()(2)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线与x轴所夹锐角的正切值。
导数的几何意义与应用导数是微积分中的重要概念,它具有丰富的几何意义和广泛的应用。
本文将详细阐述导数的几何意义以及在实际问题中的应用。
一、导数的几何意义导数的几何意义是切线的斜率。
考虑函数f(x)在点x=a处的导数f'(a),这个导数值代表函数曲线在该点处的斜率。
换言之,导数告诉我们曲线在特定点的变化速率。
如果导数为正,表示曲线在该点处是上升的;如果导数为负,表示曲线在该点处是下降的;如果导数为零,表示曲线在该点处有极值(最大值或最小值)。
基于这个几何意义,我们可以通过导数来研究曲线的特性。
例如,我们可以通过导数的正负来确定函数的增减性,也可以通过导数的零点来确定函数的极值点。
此外,导数还可以帮助我们理解曲线的弯曲程度。
曲线的弯曲程度与导数的变化率有关,较大的导数变化率表示曲线弯曲较陡峭,较小的导数变化率表示曲线弯曲相对平缓。
二、导数的应用1. 线性逼近导数的几何意义使得它在线性逼近问题中非常有用。
我们可以利用导数来构造一个称为切线的线性函数,用来近似曲线在该点的行为。
这种线性逼近方法在很多实际问题中被广泛应用。
例如,当我们需要确定一条曲线在某点的近似切线时,可以使用导数来计算该点处的切线斜率,并进一步确定切线方程。
2. 最优化问题导数在最优化问题中有重要的应用。
最优化问题涉及如何找到一个函数的最大值或最小值。
通过对函数求导,我们可以找到导数为零的点,即函数的极值点。
进一步分析导数的符号,可以确定函数的最大值或最小值。
这一方法在经济学、物理学和工程学等领域都有广泛的应用。
3. 运动学问题导数在运动学中也有广泛的应用。
例如,我们可以通过对位移函数求导来得到速度函数,通过对速度函数再次求导得到加速度函数。
这种将导数应用于运动学问题的方法使得我们能够研究物体的速度和加速度变化。
这在物理学和工程学中对于研究物体的运动非常有用。
4. 统计学在统计学中,导数被用于估计和分析数据。
例如,在回归分析中,我们可以通过对观测数据进行拟合来得到一个最佳的函数。
导数的几何意义课件导数是微积分中的重要概念,它在解决实际问题中起着至关重要的作用。
导数的几何意义是我们在学习导数的过程中必须理解和掌握的内容之一。
本文将从几何的角度来解释导数的意义,并探讨导数在几何中的应用。
首先,我们来回顾一下导数的定义。
在微积分中,导数表示函数在某一点的变化率。
具体来说,对于函数f(x),如果它在点x处的导数存在,那么导数可以用极限的概念来表示,即:f'(x) = lim(h->0) [f(x+h) - f(x)] / h这个定义告诉我们,导数是函数在某一点的瞬时变化率。
换句话说,导数告诉我们函数在某一点的斜率,也就是函数曲线在该点的切线的斜率。
那么,导数的几何意义是什么呢?我们可以通过一些几何图形来理解。
考虑一个函数f(x)在点x处的导数f'(x)。
我们可以将这个导数理解为函数曲线在该点处的切线的斜率。
切线是曲线上与该点非常接近的一条直线,它与曲线在该点处相切。
通过计算切线的斜率,我们可以得到曲线在该点的导数。
导数的几何意义还可以从另一个角度来理解。
我们可以将导数理解为函数曲线在某一点处的局部线性逼近。
也就是说,当我们在某一点处计算导数时,我们实际上是在用一条直线来近似曲线在该点的行为。
导数的几何意义对于理解函数的变化趋势和性质非常重要。
通过计算导数,我们可以了解函数在不同点的变化率,从而揭示函数曲线的特征。
例如,如果导数始终为正,那么函数在该区间上是递增的;如果导数始终为负,那么函数在该区间上是递减的。
而导数为零的点,则对应函数曲线的极值点。
除了以上的几何意义,导数在几何中还有一些重要的应用。
其中之一是求曲线的切线和法线。
通过计算导数,我们可以得到曲线在某一点处的切线的斜率,从而确定切线方程。
而切线的垂直线就是曲线在该点处的法线,通过计算切线斜率的倒数,我们可以得到法线的斜率。
导数还可以用来求曲线的凹凸性。
通过计算导数的导数,即二阶导数,我们可以判断曲线在某一点处的凹凸性。
导数的几何意义解析与归纳导数是微积分中的重要概念,它描述了函数在某一点的变化率。
导数不仅在数学领域有着广泛的应用,而且在几何学中也有着重要的几何意义。
本文将对导数的几何意义进行解析与归纳,以帮助读者更好地理解这一概念。
1. 导数的定义与几何意义首先,我们来回顾一下导数的定义。
对于函数f(x),在点x处的导数可以通过以下极限来定义:f'(x) = lim(h->0) [f(x+h)-f(x)]/h直观上,这个定义可以理解为函数f(x)在点x处的切线的斜率。
这意味着导数可以描述函数在某一点的变化趋势。
2. 导数与函数的递增与递减性根据导数的定义,我们可以得出以下结论:如果函数f(x)在某个区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,那么函数是递减的。
这是因为导数描述了函数的变化率,正值表示函数在该点上升,负值表示函数在该点下降。
3. 导数与函数的极值点导数还可以帮助我们找到函数的极值点。
如果函数f(x)在某一点x处的导数为零,那么这个点可能是一个极值点。
具体而言,如果导数由正变负,那么这个点是极大值点;如果导数由负变正,那么这个点是极小值点。
这是因为导数为零表示函数的变化率为零,也就是函数在该点存在水平切线,可能对应着极值点。
4. 导数与函数的拐点除了极值点,导数还能帮助我们找到函数的拐点。
拐点是函数曲线由凸变凹或由凹变凸的点。
我们可以通过导数的变化来判断函数的拐点。
如果函数f(x)在某一点x处的导数由正变负或由负变正,那么这个点可能是一个拐点。
5. 导数与函数的图像在坐标平面上,函数的导数可以帮助我们画出函数的图像。
我们可以通过导数的正负性来确定函数曲线的大致形状。
例如,如果导数在某一区间内始终为正,则函数在该区间上是递增的,曲线会向上凸起;如果导数在某一区间内始终为负,则函数在该区间上是递减的,曲线会向下凸起。
同样地,我们还可以根据导数为零或无定义的点来确定函数图像的特殊点,如极值点、拐点等。
定积分和微积分要点讲解一、定积分的概念教材上从求曲边梯形的面积和变速运动的路程出发引入了定积分的概念:如果函数()f x 在区间[],a b 上是连续的,用分点011i i n a x x x x x b -=<<<<<<=将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,,i n =),作和式()()11nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰,即()()1li m nbi an i b af x dx f n ξ→∞=-=∑⎰. 对这个概念我们应从如下几个方面进行理解1.对区间[],a b 分割的绝对任意性:在定义中我们将区间[],a b 进行等分是为了计算上的方便,实际上对区间[],a b 的分割是任意的,这时只要这些区间中长度最大的区间的长度趋向于零即可.2.在每个小区间[]1,i i x x -上取点的绝对任意性:在教材上的两个例题是为了计算的方便将点取小区间[]1,i i x x -的端点,实际上我们可以在区间[]1,i i x x -上任意取点,如取中点等.3.当n →∞时,和式()()11nni i i i b af x f nξξ==-∆=∑∑无限接近某个常数的唯一确定性.它不依赖于对区间[],a b 的分割方法,也不依赖于在每个小区间[]1,i i x x -上取点的方式.即()baf x dx ⎰是一个客观上存在的仅仅依赖于积分上下限和被积函数的唯一确定的常数.同时它也与积分变量无关,即()()b baaf x dx f t dt =⎰⎰.4.数学思想上的划时代意义.产生定积分概念的"以直代曲""以匀速代变速"和"无限逼近"的数学思想,使人类在认识数学世界的观念上有了重大突破,在数学的发展史上具有重大意义.我们要仔细理解体会这种思想,可以说这才是我们在高中阶段学习定积分的真正目的.例如在求曲边梯形的面积的课本例1中,我们把区间[]0,1等分成n 个小区间,在每个小区间上"以直代曲"就将曲边问题转化为直边问题,随着n 的增大这些小区间的宽度越来越小,这时在每个小区间上直边形的面积已经和曲边形的面积非常接近,我们就可以以这些小直边形的面积之和近似代替曲边形的面积,而当n →∞时这些小直边形就几乎变成了线段,这时小直边形的面积几乎就等于小曲边形的面积,这无穷个几乎变成了线段的直边形的面积之和就是所求的曲边形的面积了.我们常说"线动成面",对课本例1,我们也可以这样形象的理解:就将小直边形的宽度变成零,使其成为线段,这时小直边形和小曲边形的就完全重合了,而将这些线段从0到1运动就形成了()2f x x =,1x =, x 轴所围成的曲边形,将这些线段的"面积"积累起来就是所求的曲边形的面积. 二、微积分基本定理的应用作变速直线运动的物体如果其运动方程是()S t ,那么该物体在时间区间[],a b 内通过的路程是()()S b S a -,另一方面由导数的物理意义,该物体在任意时刻的瞬时速度为()()'S t s t =,我们把该物体运动的时间区间[],a b 无限细分,在每个小时间段上,将其速度看作匀速,就能求出该物体在每个小时间段上通过的路程,将这无限个小时间段上的路程加起来,就是该物体在时间区间[],a b 上通过的路程,由定积分的定义可知,这个数值是()bas t dt ⎰.由此可知()()()()'b baaS t dt s t dt S b S a ==-⎰⎰.一般地有如下结论:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则()()()baf x dx F b F a =-⎰.这就是微积分基本定理,是微积分学最为辉煌的定理,是数学发展史的一个重要里程碑,利用这个定理可以很方便的计算定积分,其关键是找到一个函数使其导数等于被积函数,下面举例说明它在计算定积分上的应用.例1 计算定积分()1xx ee dx --⎰分析:()'x x e e =,()'x x e e --=-,故()'x x x x e e e e --+=-.解:()()11'112xxxx xx eedx eedx ee e e---⎡⎤-=+=+=+-⎣⎦⎰⎰.点评:关键是找()F x ,使()'x xF x e e -=-,可以通过求导运算求探求.例2 计算定积分220cos sin 22x x dx π⎛⎫- ⎪⎝⎭⎰.分析:被积函数比较复杂,我们可以先化简,再探求.由于222cos sin cos 2cos sin sin 1sin 222222x x x x x x x ⎛⎫-=-+=- ⎪⎝⎭,而'1x =,()cos 'sin x x =-,故()2cos '1sin cos sin 22x x x x x ⎛⎫+=-=- ⎪⎝⎭.解:()()[]2'2222000cos sin 1sin cos cos 2212x x dx x dx x x dx x x πππππ⎛⎫-=-=+=+ ⎪⎝⎭=-⎰⎰⎰点评:被积函数较为复杂时要先化简在求解. 掌握如下的定积分计算公式对解题是有帮助的.①111bm m ab x dx xa m +=+⎰(,1m Q m ∈≠-),②1ln bab dx x a x =⎰,③b x x a b e dx e a =⎰,④ln x n xm n a a dx ma =⎰,⑤cos sin bab xdx xa=⎰,⑥()sin cos babxdx x a=-⎰.例如 例3 计算定积分()1223x x dx -⎰.分析:先展开再利用上面的定积分公式. 解:()1223xx dx -⎰=()104269xxxdx -⋅+⎰=146920ln 4ln 6ln 9x x x ⎛⎫-⋅+ ⎪⎝⎭ 3108ln 4ln 6ln 9=-+. 点评:根据定积分公式结合定积分的运算性质是计算定积分的根本.从上面不难看出利用微积分基本定理计算定积分比用定义计算要方便的多,在实际解题中要注意对被积函数的化简展开以及有意识的利用定积分的三条运算性质,以起到化难为易的作用.三、定积分的三条性质根据定积分的定义不难得到定积分的三条性质 性质1.常数因子可提到积分号前,即:()()bbaakf x dx k f x dx =⎰⎰(k 为常数);性质2.代数和的积分等于积分的代数和: 即:()()()()bb bx aa a f x g x dx f x d g x dx ±=±⎡⎤⎣⎦⎰⎰⎰;性质3.(定积分的可加性)如果积分区间[],a b 被点c 分成两个小区间[],a c 与[],c b , 则:()()()bc daacf x dx f x dx f x dx =+⎰⎰⎰。
高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析【考点梳理】1.定积分的概念与几何意义(1)定积分的定义如果函数f(x)在区间[a ,b]上连续,用分点将区间[a ,b]等分成n 个小区间,在每个小区间上任取一点ξi(i =1,2,…,n),作和式f(ξi)Δx =f(ξi),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a ,b]上的定积分,记作f(x)dx ,即f(x)dx =f(ξi).1n i =∑1n i =∑lim n →∞1n i =∑在f(x)dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.(2)定积分的几何意义(1)kf(x)dx=kf(x)dx(k为常数).(2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx.(3)f(x)dx=f(x)dx+f(x)dx(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么f(x)dx=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F(b)-F(a)记为F(x) ,即f(x)dx=F(x))=F(b)-F(a).【考点突破】考点一、定积分的计算【例1】(1)(cos x+1)dx=________.(2)|x2-2x|dx=________.(3)(2x+)dx=________.[答案] (1) π(2) 8 (3) 1+π4[解析] (1)(cos x+1)dx=(sin x+x)=π.(2)|x2-2x|dx=(x2-2x)dx+(2x-x2)dx=+=+4+4-=8.(3)dx表示以原点为圆心,以1为半径的圆的面积的,∴dx=.又∵ 2xdx=x2=1,∴(2x+)dx=2xdx+dx=1+.。
专题03 导数及其应用第六讲 导数的几何意义、定积分与微积分基本定理答案部分2019年1.【解析】因为23e x y x x =+(),所以2'3e 31xy x x =++(),所以当0x =时,'3y =,所以23e x y x x =+()在点00(,)处的切线斜率3k =, 又()00y =所以切线方程为()030y x -=-,即3y x =. 2.【解析】e ln x y a x x =+的导数为'e ln 1x y a x =++, 又函数e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+, 可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-.故选D .2015-2018年1.D 【解析】通解 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以()()-=-f x f x ,所以3232()(1)()()[(1)]-+--+-=-+-+x a x a x x a x ax ,所以22(1)0-=a x ,因为∈R x ,所以1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解一 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以(1)(1)0-+=f f ,所以11(11)0-+--++-+=a a a a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解二 易知322()(1)[(1)]=+-+=+-+f x x a x ax x x a x a ,因为()f x 为奇函数,所以函数2()(1)=+-+g x x a x a 为偶函数,所以10-=a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .2.A 【解析】不妨设111(,ln )P x x ,222(,ln )Px x ,由于12l l ⊥,所以1211()1x x ⨯-=-, 则121x x =.又切线1l :1111ln ()y x x x x -=-,22221:ln ()l y x x x x +=--, 于是1(0,ln 1)A x -,1(0,1ln )B x +,所以||2AB =,联立1112221ln ()1ln ()y x x x x y x x x x ⎧-=-⎪⎪⎨⎪+=--⎪⎩,解得1121P x x x =+,所以1112212PAB P S x x x ∆=⨯⨯=+,因为11x >,所以1112x x +>,所以PAB S ∆的取值范围是(0,1),故选A .3.A 【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然 12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0, 显然12k k ⋅=12xxe e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .4.C 【解析】 取满足题意得函数()21f x x ,若取32k,则121()()33f f k 213k ,所以排除A .若取1110k , 则111110()()(10)1911111111111010k f f f k k ,所以排除D ;取满足题意的函数()101f x x ,若取2k ,则1111()()412211f f k k ,所以排除B , 故结论一定错误的是C .5.2=y x 【解析】∵2ln(1)=+y x ,∴21y x '=+.当0x =时,2y '=, ∴曲线2ln(1)=+y x 在点(0,0)处的切线方程为02(0)y x -=-,即2=y x . 6.3-【解析】(1)xy ax a e '=++,由曲线在点(0,1)处的切线的斜率为2-,得0(1)12xx x y ax a e a =='=++=+=-,所以3a =-.7.1ln2-【解析】设y kx b =+与ln 2y x =+和ln(1)y x =+的切点分别为11(,ln 2)x x + 和22(,ln(1))x x +. 则切线分别为1111ln 2()y x x x x --=-,2221ln(1)()1y x x x x -+=-+, 化简得111ln 1y x x x =⋅++,()22221ln 111xy x x x x =++-++, 依题意,()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,从而1ln 11ln 2b x =+=-.8.21y x =--【解析】由题意可得当0x >时,()ln 3f x x x =-,则1()3f x x'=-,(1)2f '=-,则在点(1,3)-处的切线方程为32(1)y x +=--,即21y x =--.9.0【解析】2221(1)()002x dx x x -=-=⎰. 10.(1,1)【解析】因为xy e =,所以xy e '=,所以曲线xy e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,因为1y x=,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以2011x -=-,即21x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1. 11.512【解析】由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.12.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =. (Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 13.【解析】(I )()e a x f x x bx -=+,∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+ ①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴()g x 的最小值是(2)(12)e 1g =-=- ∴()f x '的最小值为(2)(2)e e 10f g '=+=->. 即()0f x '>对x ∀∈R 恒成立.∴()f x 在(),-∞+∞上单调递增,无减区间.14.【解析】(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x x x x x f x e e -+=故33(1),'(1),f f e e==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30x ey -=. (Ⅱ)由(Ⅰ)知23(6)'()xx a x af x e-+-+=. 令2()3(6)g x x a x a =-+-+,由()0g x =解得1x =,2x =当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数; 当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知23,x =≤解得9,2a ≥- 故a 的取值范围为9,2⎡⎫-+∞⎪⎢⎣⎭. 15.【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-.因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤, ∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调, 而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.。
导数的几何意义定积分与微积分基本定理导数是微积分中一个重要的概念,它描述了函数在其中一点的变化率。
在几何上,导数可以理解为函数图像上一点处的切线斜率。
考虑函数y=f(x),如果在其中一点x=a处导数存在,则导数f'(a)表示该点处函数的变化率。
具体而言,对于非常小的增量Δx,函数在x=a处的导数f'(a)表示了函数在x=a处的切线的斜率,即切线与x轴正方向的夹角。
换句话说,导数可以理解为函数在其中一点的瞬时变化率。
例如,对于一条直线函数y=ax+b,其导数恒等于a,表示了该直线斜率的恒定性。
导数的几何意义不仅仅局限于切线的斜率,它还可以用来描述函数的凸凹性质。
当函数在其中一点的导数为正时,说明函数图像在该点处上升;当导数为负时,说明函数图像在该点处下降。
通过导数,我们可以了解到函数的变化趋势以及临界点的存在与性质。
定积分与微积分基本定理:定积分是微积分中的另一个重要概念,它表示了函数在一个区间上的累积变化量。
几何上,定积分可以理解为函数图像下方面积的计算。
考虑函数y=f(x),如果在区间[a,b]上存在一个函数F(x),使得F'(x)=f(x),则称函数F(x)为函数f(x)在区间[a,b]上的一个原函数。
根据微积分基本定理,函数f(x)在区间[a,b]上的定积分可以表示为:∫[a, b] f(x)dx = F(b) - F(a)简单来说,定积分就是原函数在区间上的差值。
通过定积分,我们可以计算函数在其中一区间上的变化量,并得到一个具体的数值结果。
几何上,定积分表示了函数图像在区间[a,b]上的下方面积。
当函数f(x)表示为正值时,定积分计算的是图像在区间上的面积;当函数f(x)表示为负值时,定积分计算的是图像下方的面积。
通过定积分,我们可以计算复杂函数图像的面积,并应用于曲线的长度、体积以及其他几何问题的求解。
综上所述,导数和定积分是微积分学中两个核心概念。
导数描述了函数在其中一点的变化率,可以理解为函数图像在该点的切线斜率;定积分表示了函数在一个区间上的累积变化量,可以理解为函数图像在该区间上的下方面积。
导数的几何意义与应用导数是微积分中的重要概念,它有着广泛的几何意义和应用。
在本文中,我们将探讨导数的几何意义,并介绍一些导数在几何中和实际应用中的具体应用。
导数的几何意义可以通过对函数图像的观察得到。
对于一个函数f(x),它的导数可以表示为f'(x),代表了函数曲线在某一点处的斜率。
具体来说,导数可以解释为函数图像在某一点上的瞬时变化率。
这意味着我们可以通过导数来描述函数图像的“陡峭程度”。
如果导数的值比较大,表示函数图像在该点的变化比较快,曲线比较陡峭;相反,如果导数的值比较小,表示函数图像在该点的变化比较慢,曲线比较平缓。
举个例子来说明导数的几何意义。
考虑一个简单的函数f(x) = x^2,它的导数可以表示为f'(x) = 2x。
我们可以观察到,在函数图像上,导数f'(x)的值代表了曲线在不同点上的斜率。
当x的值较小时,导数f'(x)的值也较小,表示函数图像变化较慢,曲线较平缓;而当x的值较大时,导数f'(x)的值也较大,表示函数图像变化较快,曲线较陡峭。
导数不仅在几何中有着重要意义,而且在实际生活中也有广泛的应用。
其中一个常见的应用是在物理学中的位置-时间关系中。
根据经典物理学的定义,速度可以看作是位置关于时间的导数。
具体来说,如果我们有一个物体在某一时刻的位置函数x(t),那么它的导数dx/dt就表示了该物体在该时刻的瞬时速度。
同样地,加速度可以看作是速度关于时间的导数,即dv/dt。
这种通过导数来描述位置、速度和加速度之间的关系,能够帮助我们更好地理解物体在空间中的运动规律。
在经济学和金融学领域中,导数也有着广泛的应用。
例如,利润函数关于产量的导数可以告诉我们,当产量变化时,利润的瞬时变化率是多少。
这有助于公司和企业在制定生产策略和销售计划时进行决策。
此外,在金融学中,导数可以帮助我们理解和分析股票和债券价格的波动趋势,以及利率和汇率的变化对经济的影响。
专题03 导数及其应用第六讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-2015-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.(2016年四川)设直线1l ,2l 分别是函数()f x = ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是A .sin y x =B .ln y x =C .x y e =D .3y x = 4.(2015福建)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>> ,则下列结论中一定错误的是A .11()f k k <B .11()1f k k >- C .11()11f k k <-- D .1()11k f k k >-- 二、填空题5.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________.6.(2018全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2-,则a =____.7.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .8.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线 ()y f x =,在点(1,3)-处的切线方程是_________.9.(2015湖南)20(1)x dx -⎰= .10.(2015陕西)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 . 11.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .(第15题) (第17题)三、解答题12.(2017北京)已知函数()cos x f x e x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.13.(2016年北京)设函数()a xf x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(I )求a ,b 的值;(II )求()f x 的单调区间.14.(2015重庆)设函数23()()ex x ax f x a R +=∈. (Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围.15.(2015新课标Ⅰ)已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()h x f x g x =(0)x >,讨论()h x 零点的个数.。
导数的几何意义与应用导数是微积分中的重要概念之一,它不仅有着深刻的几何意义,还在数学和实际问题的求解中有着广泛的应用。
本文将深入探讨导数的几何意义以及其在实际问题中的应用。
导数的几何意义导数的几何意义可以从两个方面来理解,即斜率和切线。
首先,导数可以被解释为函数图像上某一点的切线斜率。
具体而言,对于函数y=f(x),如果在某一点x=a处的导数存在,则导数f’(a)即为函数图像在该点的切线的斜率。
这意味着,通过求导,我们能够得到函数图像上每一点处的切线斜率,从而更加准确地描述函数的变化趋势。
其次,导数还可以被解释为函数的变化率。
导数可以帮助我们理解函数在不同点上的变化速率,进而揭示函数的增减性和凸凹性质。
具体而言,如果导数f’(a)在某一点x=a处为正,那么函数在该点上是递增的;如果导数f’(a)在某一点x=a处为负,那么函数在该点上是递减的;如果导数f’(a)在某一点x=a处等于零,那么函数在该点上可能存在极值点。
导数的应用导数作为微积分的基本工具,在数学和实际问题的求解中有着广泛的应用。
以下将介绍导数在不同领域的具体应用。
1. 极值问题导数在求解函数的极值问题中起着重要作用。
对于一个可导函数,可以通过求导将极值问题转化为寻找导数为零的点或者导数不存在的点。
通过求解导数为零或导数不存在的方程,可以找到函数的可能极值点,进而得到函数的最大值或最小值。
2. 凸凹性分析凸凹性分析是导数在物理学、经济学等领域中的重要应用之一。
通过函数的二阶导数信息,可以判断函数的凸凹性质。
具体而言,如果函数的二阶导数大于零,那么函数是凸函数;如果函数的二阶导数小于零,那么函数是凹函数。
3. 曲线绘制与图像分析导数在曲线绘制与图像分析中也扮演着关键的角色。
通过求导,可以得到函数图像上每一点处的切线斜率,从而帮助我们绘制更加准确的曲线。
同时,导数还可以帮助我们分析函数的拐点、极值点和最值点,进而对函数的整体形态进行深入理解。
专题03 导数及其应用第六讲 导数的几何意义、定积分与微积分基本定理答案部分2019年1.【解析】因为23e x y x x =+(),所以2'3e 31xy x x =++(),所以当0x =时,'3y =,所以23e x y x x =+()在点00(,)处的切线斜率3k =, 又()00y =所以切线方程为()030y x -=-,即3y x =. 2.【解析】e ln x y a x x =+的导数为'e ln 1x y a x =++, 又函数e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+, 可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-.故选D .2015-2018年1.D 【解析】通解 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以()()-=-f x f x ,所以3232()(1)()()[(1)]-+--+-=-+-+x a x a x x a x ax ,所以22(1)0-=a x ,因为∈R x ,所以1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解一 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以(1)(1)0-+=f f ,所以11(11)0-+--++-+=a a a a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解二 易知322()(1)[(1)]=+-+=+-+f x x a x ax x x a x a ,因为()f x 为奇函数,所以函数2()(1)=+-+g x x a x a 为偶函数,所以10-=a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .2.A 【解析】不妨设111(,ln )P x x ,222(,ln )Px x ,由于12l l ⊥,所以1211()1x x ⨯-=-, 则121x x =.又切线1l :1111ln ()y x x x x -=-,22221:ln ()l y x x x x +=--, 于是1(0,ln 1)A x -,1(0,1ln )B x +,所以||2AB =,联立1112221ln ()1ln ()y x x x x y x x x x ⎧-=-⎪⎪⎨⎪+=--⎪⎩,解得1121P x x x =+,所以1112212PAB P S x x x ∆=⨯⨯=+,因为11x >,所以1112x x +>,所以PAB S ∆的取值范围是(0,1),故选A .3.A 【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然 12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0, 显然12k k ⋅=12xxe e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .4.C 【解析】 取满足题意得函数()21f x x =-,若取32k =,则121()()33f f k == 213k <=,所以排除A .若取1110k =, 则111110()()(10)1911111111111010k f f f k k ===>==----,所以排除D ;取满足题意的函数()101f x x =-,若取2k =,则1111()()412211f f k k ==>==--,所以排除B , 故结论一定错误的是C .5.2=y x 【解析】∵2ln(1)=+y x ,∴21y x '=+.当0x =时,2y '=, ∴曲线2ln(1)=+y x 在点(0,0)处的切线方程为02(0)y x -=-,即2=y x . 6.3-【解析】(1)xy ax a e '=++,由曲线在点(0,1)处的切线的斜率为2-,得0(1)12xx x y ax a e a =='=++=+=-,所以3a =-.7.1ln2-【解析】设y kx b =+与ln 2y x =+和ln(1)y x =+的切点分别为11(,ln 2)x x + 和22(,ln(1))x x +. 则切线分别为1111ln 2()y x x x x --=-,2221ln(1)()1y x x x x -+=-+, 化简得111ln 1y x x x =⋅++,()22221ln 111xy x x x x =++-++, 依题意,()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,从而1ln 11ln 2b x =+=-.8.21y x =--【解析】由题意可得当0x >时,()ln 3f x x x =-,则1()3f x x'=-,(1)2f '=-,则在点(1,3)-处的切线方程为32(1)y x +=--,即21y x =--.9.0【解析】2221(1)()002x dx x x -=-=⎰. 10.(1,1)【解析】因为xy e =,所以xy e '=,所以曲线xy e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,因为1y x=,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以2011x -=-,即21x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1. 11.512【解析】由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.12.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =. (Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 13.【解析】(I )()e a x f x x bx -=+Q ,∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+ ①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴()g x 的最小值是(2)(12)e 1g =-=- ∴()f x '的最小值为(2)(2)e e 10f g '=+=->. 即()0f x '>对x ∀∈R 恒成立.∴()f x 在(),-∞+∞上单调递增,无减区间.14.【解析】(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x x x x x f x e e -+=故33(1),'(1),f f e e==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30x ey -=. (Ⅱ)由(Ⅰ)知23(6)'()xx a x af x e-+-+=. 令2()3(6)g x x a x a =-+-+,由()0g x =解得1x =,2x =当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数; 当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知23,x =≤解得9,2a ≥- 故a 的取值范围为9,2⎡⎫-+∞⎪⎢⎣⎭. 15.【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-.因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤, ∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调, 而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.。