浅谈建筑结构抗震设计体系及方法
- 格式:doc
- 大小:28.00 KB
- 文档页数:4
浅谈高层建筑结构抗震作者:程鹏迎来源:《中小企业管理与科技·下旬刊》2013年第08期摘要:随着现代社会越来越商业化、工业化和城市化,高层建筑也随着城市的发展和科学技术的进步而逐步发展着,高层建筑的结构抗震性能也越来越受到人们的关注,结构的抗震性能关系重大,本文重点介绍了建筑结构抗震设计理念,分析了结构抗震设计常见的问题,列举了一些在高层建筑结构方面比较实用的抗震措施和方法。
关键词:高层建筑结构抗震问题分析1 高层建筑的抗震设计理念现代高层建筑是随着城市的发展和科学技术的进步而发展起来的,是商业化、工业化和城市化的结果。
现代高层建筑的发展有利于节约用地、解决住房紧张,减少市政基础设施和美化城市空间环境。
从某种意义上说,现代高层建筑是现代化城市的标志。
因此对高层结构抗震的要求越发严格。
现代高层建筑是现代化城市的标志,我国《建筑抗震规范》(GB50011-2001)要求高层建筑的抗震设防能做到“三水准、两阶段”。
“三水准”就是“小震不坏,中震可修,大震不倒”。
当受到第一设防烈度的地震,也就是人们常说的低于本地区抗震设防烈度的地震时,这也是最常见的地震,高层建筑结构仍然处于正常的弹性变形阶段,此时建筑物处于正常的使用状态。
建筑物一般情况下没有损坏或不需要修理就可以继续正常使用。
这就是俗话说的“小震不坏”。
所以,就要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求高层建筑的弹性变形不能超过规定的弹性变形限值。
当遭遇第二设防烈度的地震,也就是相当于本地区抗震设防烈度的基本烈度地震时,高层建筑结构不堪重压进入非弹性变形阶段,建筑物也许会出现一定程度的破坏。
但经过一些简单的修理或者根本就不需要修理就可以继续正常使用。
所以,就要求结构具有非常高的延性能力,也就是人们常说的变形能力不发生不能修复的脆性破坏。
当遭遇第三设防烈度的地震,也就是高于本地区抗震设防烈度的地震时,这种地震发生的概率比较低,高层建筑结构也许会被破坏的比较严重,但是结构的非弹性变形仍然在可控制的范围内,还没有到结构的倒塌的程度,两者还有一段距离。
浅谈高层建筑抗震及基础隔震技术摘要:高层建筑的基础隔震技术能够在发生较强地震时保障人们的安全,降低地震带来的经济损失,该项施工技术在我国防震减灾中起到了非常重要的作用,值得相关工作者不断的钻研、改进及完善。
关键词:高层建筑;抗震;基础隔震技术1建筑工程抗震技术的发展及现状1.1建筑工程抗震技术的发展日本是首先提出工程抗震防灾技术的国家。
当时的工程抗震技术主要从静力理论开始发展,并逐渐向柔性结构理论体系发展。
而柔性结构理论体系的发展让结构体系本身的刚度得到有效减少。
随后,结构底层刚度减小、上部结构强度增大逐渐成为建筑工程抗震技术的发展方向,这种技术又被成为是柔性底层结构体系。
随着时间的推移以及技术的不断进步,建筑工程抗震技术现阶段主要被广泛采纳的是延性结构抗震体系。
传统的抗震技术在如今的高层建筑中仍然有一定程度的运用。
并且目前抗震防灾技术也相对完善,同时在各个方面发挥着显著的影响。
1.2建筑工程抗震技术现状目前我国的抗震隔震技术以及耗能减震技术的发展已经趋于成熟,并且在很多实际的高层建筑项目中得到推广和运用,取得了较好的效果。
2高层建筑当中基础隔离技术的主要原理在以往的的抗震结构中,主要依靠建筑结构及构件来抵抗甚至是消除掉地震产生的能量,在进行高层建筑的结构设计时,由于地震产生的作用力属于外加荷载,设计师要结合其它荷载带来的影响对建筑物隔震设计进行细致的分析,从而使其满足抗震的要求。
在高层建筑隔震技术中,其主要原理就是将阻尼器以及橡胶隔震支座加入到建筑物的耗能装置内。
其中,橡胶隔震支座主要提供的是较强变形能力等作用,其次,它还会对地震能量进行一定的消耗。
在高层建筑中应用隔震技术,一般会使建筑物上部结构中的地震作用缩小到30%左右,当地震发生时,其上部结构的反应主要以第一振型为主。
相当于一种刚体平动,基本上不会产生反应放大的情况,并通过隔震层中的相对大位移作用有效降低上部结构内所受到的地震荷载。
若在发生地震前采用基础隔震措施,高层建筑上部结构受到的地震反应就会大大降低,同时减轻对建筑构件以及内部设施的破坏程度,还会避免建筑物中的人群受到伤害。
浅析建筑结构隔震与减震原理及技术[提要]:本文介绍了建筑结构地震反应机理与评价,也对减隔振系统模型与分析计算方法进行了论述,对建筑抗震理论研究及设计提供了借鉴的意见。
[关键词]:建筑抗震;结构隔震;减震原理tu352.11、引言建筑结构减振防灾关键技术是利用控制理论的基本思想,通过在建筑结构上附加隔减震装置,通过对地震、强风等动力作用的抑制和利用,实现提高建筑结构综合防灾能力,保障人民生命和财产安全,减轻和避免地震等自然灾害对建筑结构损伤作用的目的。
2、建筑结构地震反应机理与评价2.1、在不同服役期内结构抗震设防水准的简化计算方法(1)我国现行建筑抗震设计规范以50年为设计的基准期,要求结构在此期间满足具备正常的服役性能。
显然这种标准服役期是针对大多数普通建筑物而言的,不同的建筑物所要求的服役期长短可能会有所不同。
(2)关于抗震设防烈度和对应的地震重现期的规定以“中震”烈度为基础来确定“小震”和“大震”对应的烈度。
“小震”和“大震”的概率含义实际是平均意义上的一种人为的约定,对于给定的地区或场地,如果明确规定“小震”和“大震”的重现期分别为50年和1975年,相应的烈度就不能保持比“中震”减小1.55度和“大震”增加1.00度;反之,如果“小震”和“大震”明确为比“中震”减小1.55度和增加1.00度,相应的重现期就不能保持为50年和1975年,这是抗震设计规范中设防水准概率含义中存在的不明确的一方面。
(3)目前抗震设防标准中的“三水准二阶段”设计,名义上以“小震”时的抗震强度验算为主要对象,由于其概率水准并不是“小震”时的实际值,而是发生基本烈度地震的概率水准,因此是在一定延性要求之下对基本烈度地震的验算。
工程界迫切希望有一个简单的抗震设防水准估计方法,以便了解设防烈度随服役期的变化规律,因此本项目假定“小震”和“大震”的概率定义是确定的,与“中震”相比其烈度差异在平均意义上分别为-1.55和+1.00度(对9度区为+0.50度)。
高层建筑结构设计与抗震性能分析高层建筑在现代都市中起到了举足轻重的作用,但由于其复杂的结构以及高度,抗震性能成为设计和建造过程中不可忽视的重要因素。
本文将对高层建筑结构设计与抗震性能进行分析,并探讨相关的优化技术。
一、高层建筑结构设计要点高层建筑的结构设计要点包括以下几个方面:1. 基础设计:高层建筑的基础设计应考虑地质条件、土壤承载力以及建筑的荷载等因素。
采用适当的基础形式和深度可以提高建筑的稳定性和抗震性能。
2. 结构体系:高层建筑的结构体系应选用抗震性能良好的方案,如剪力墙结构、框架-剪力墙结构、框架-筒状墙结构等。
这些结构体系具备较好的抗震性能,能够有效吸收和分散地震作用。
3. 材料选择:高层建筑结构的材料选择对于提高抗震性能至关重要。
采用高强度、高韧性的钢材或混凝土材料,可以提高结构的整体强度和延性,从而提高抗震性能。
二、高层建筑抗震性能分析方法高层建筑的抗震性能可以通过以下几种方法进行分析:1. 静力分析:静力分析是一种简化的抗震性能分析方法,通过计算建筑在地震作用下的静力响应来评估其抗震性能。
该方法适用于低层建筑或对于结构刚度较为均匀的高层建筑。
2. 动力分析:动力分析是一种较为准确的抗震性能分析方法,通过计算建筑在地震作用下的动力响应来评估其抗震性能。
该方法适用于高层建筑或对于结构刚度较为不均匀的情况。
3. 数值模拟:数值模拟是一种基于有限元原理的抗震性能分析方法,通过建立结构的数值模型来模拟地震作用下的动力响应。
该方法能够更加准确地评估结构的抗震性能,并可用于优化结构设计。
三、高层建筑抗震性能的优化技术为了进一步提高高层建筑的抗震性能,可以采用以下优化技术:1. 设计合理的剪力墙布置:剪力墙是高层建筑中一种常用的抗震结构形式,其布置合理与否直接关系到结构的抗震性能。
通过优化剪力墙的位置和布置方式,可以提高结构的整体刚度和延性,增强其抗震性能。
2. 采用抗震支撑系统:抗震支撑系统能够在地震发生时提供额外的支撑和稳定性,对高层建筑的抗震性能具有重要影响。
抗震设计方法综述作者:佚名文章来源:不详抗震设计方法一:基于承载力设计方法基于承载力设计方法又可分为静力法和反应谱法。
静力法产生于二十世纪初期,是最早的结构抗震设计方法。
上世纪初前后日本浓尾、美国旧金山和意大利Messina的几次大地震中,人们注意到地震产生的水平惯性力对结构的破坏作用,提出把地震作用看成作用在建筑物上的一个总水平力,该水平力取为建筑物总重量乘以一个地震系数。
意大利都灵大学应用力学教授M.Panetti建议,1层建筑物取设计地震水平力为上部重量的1/10,2层和3层取上部重量的1/12。
这是最早的将水平地震力定量化的建筑抗震设计方法。
日本关东大地震后,1924年日本都市建筑规范"首次增设的抗震设计规定,取地震系数为0.1。
1927年美国UBC规范第一版也采用静力法,地震系数也是取0.1。
用现在的结构抗震知识来考察,静力法没有考虑结构的动力效应,即认为结构在地震作用下,随地基作整体水平刚体移动,其运动加速度等于地面运动加速度,由此产生的水平惯性力,即建筑物重量与地震系数的乘积,并沿建筑高度均匀分布。
考虑到不同地区地震强度的差别,设计中取用的地面运动加速度按不同地震烈度分区给出。
根据结构动力学的观点,地震作用下结构的动力效应,即结构上质点的地震反应加速度不同于地面运动加速度,而是与结构自振周期和阻尼比有关。
采用动力学的方法可以求得不同周期单自由度弹性体系质点的加速度反应。
以地震加速度反应为竖坐标,以体系的自振周期为横坐标,所得到的关系曲线称为地震加速度反应谱,以此来计算地震作用引起的结构上的水平惯性力更为合理,这即是反应谱法。
对于多自由度体系,可以采用振型分解组合方法来确定地震作用。
反应谱法的发展与地震地面运动的记录直接相关。
1923年,美国研制出第一台强震地震地面运动记录仪,并在随后的几十年间成功地记录到许多强震记录,其中包括1940年的El Centro和1952年的Taft等多条著名的强震地面运动记录。
高层建筑结构抗震设计方法及结构体系创新研究摘要:高层建筑施工当中,需要结合抗震设计强化建筑本身的防震性能,这样才能够有效延长建筑使用寿命,保障人们的生命安全。
本文针对高层建筑结构抗震设计方法及结构体系创新进行研究。
关键词:高层建筑结构;抗震设计;方法引言经济发展促进了建筑的发展,而建筑的发展直接影响着城市的发展。
完善的建筑系统、良好的抗震性能和稳定的建筑结构对于城市的安全与稳定至关重要。
当前,在规划高层建筑物时,不仅要考虑结构的稳定性,还要考虑结构抗震设计的合理性,考虑到建筑物的美观性和经济性。
结构设计应坚持以适当的材料应用、完整的建筑结构体系和设计技术,以确保建筑使用的性能和持久性,以保障建筑工程的安全性。
一、高层建筑结构的抗震设计原则分析1.结构的刚度和柔度要相互协调在高层建筑设计当中,设计人员需要根据实际的工程建设情况思考问题,结合现代化信息技术手段,提前模拟高层建筑设计内容,并通过重复的实验了解该建筑地形的抗震性质。
接下来设计师结合自己专业知识的掌握,从表到里一步一步地设计高层建筑的内部结构。
与此同时,设计人员需要加强对建筑工程中所需要使用的建筑材料开展审核和筛选工作,选择质量较高的建筑材料和钢筋材料,能够有效优化建筑设计的防震效果。
2.重视建筑结构的规则性工程建筑设计需要根据国家相关标准进行,符合地震设计要求。
例如有些建筑并不十分常见,位于市中心的规划区域,那么在设计当中需要把这些建筑物作为防震保护设计的重要对象。
地震在来临之前首先会产生大量的震动,在地震之后还会有余震,在此过程中震动会对建筑结构产生影响,考验了建筑的结构稳定性。
设计工作人员在防震设计中需要注重结构的整体规则性,优化建筑结构细节,尤其是对关键结构进行加固和保护,提升设计效果。
二、高层建筑结构抗震设计方法1.科学合理地选择高层建筑材料高层建筑设计对于建筑材料的选择非常重视,需要采用优质的材料完成建筑的建造。
设计人员需要掌握楼体设计中哪一部分适合什么样的建筑材料,明确材料的承载力和抗变形能力要求。
建筑物结构设计规范要求中的抗震设计参数调整方法在建筑物结构设计中,抗震设计是一项十分重要的内容。
为了确保建筑物在地震发生时能够抵御地震的破坏,设计规范中规定了各种抗震设计参数。
然而,在实际的设计中,有时候需要根据具体情况对这些参数进行调整。
本文将介绍建筑物结构设计规范要求中的抗震设计参数调整方法。
一、地震烈度地震烈度是描述地震能量大小的指标,也是抗震设计的基础参数之一。
在设计过程中,需要根据地震区域的地震烈度等级选择相应的设计参数。
当地的地震烈度等级越高,建筑物需要采取更为严格的抗震设计措施。
调整地震烈度等级时,需要结合地震监测数据和地质勘查结果进行综合评估,并参考相关规范对照表进行调整。
二、设计基准地震加速度设计基准地震加速度是用于计算建筑物地震反应的参数之一。
根据设计规范,设计基准地震加速度与设计地震烈度、设计地震烈度等级以及场地类别等相关。
在实际设计中,可以通过对场地的地质特征进行详细的分析和评估,以确定合适的设计基准地震加速度。
如果场地的地质条件较为特殊,也可以考虑进行地震动响应谱分析来确定设计参数。
三、结构体系结构体系是建筑物抗震设计中的一个重要概念,它指的是建筑物各个组成部分之间的相互联系和相互作用。
在设计规范中,对于不同的建筑形式和高度,有着相应的结构体系要求。
调整结构体系时,需要考虑建筑的用途、高度、地理位置等因素,并参照相关的设计规范进行选择。
四、抗震设防烈度抗震设防烈度是指建筑在抗震设计中需要满足的一系列要求,包括抗震设计水平、抗震设防性能目标等。
在实际设计过程中,根据建筑物的用途和重要程度,可以进行相应的抗震设防烈度调整。
例如,对于重要的公共建筑和大型工业设施,抗震设防烈度需要相应提高,以确保其在地震中的安全性能。
五、结构材料和构件分类不同的结构材料和构件在抗震设计中具有不同的性能和应用条件。
根据设计规范,结构材料和构件需要进行分类,并对其抗震性能进行要求。
在实际设计中,可以根据具体情况对结构材料和构件进行调整,以满足不同建筑物的抗震设计需求。
建筑结构设计中的隔震减震措施浅析摘要:建筑物的内部减振性能对能耗有很大的影响,所以必须充分利用减振减振技术,通过采用室内减振减振和吸收振动,改善建筑物的整体稳定,减少对减震的冲击。
我国的隔震施工技术与中国的传统建筑相比有很大差异,尤其是在高层结构的技术上,可以采取分层隔震的方法来改善结构的地震特性。
采用适当的减振隔振技术,既可以节省工程造价,又可以改善结构的抗震能力,减少结构在地震中的破坏。
关键词:建筑结构设计;隔震减震;措施浅析引言要提高施工体系的科学水平,确保施工构件的正常运行,就需要从结构的设计上进行层层严格的把关,注重隔震减振的设计和优化,并尽量从工程的全局角度进行全面的分析,为合理推进施工的质量、达到预期的施工质量等创造有利的外部条件,同时延长施工周期,防止发生诸如地震等恶劣的自然灾害。
1.建筑结构隔震减震技术概括1.1.减震技术建筑物构件消能减震即是在建筑物的特定部位设计耗能装置,并通过耗能设备产生的碰撞、扭转、弹塑性滞回变形,来充分消耗并吸收在地震过程中对建筑物构件所形成的力量,减少主体构件的抗震反应,从而有效避免构件发生损伤甚至坍塌的问题,最后达到减震的目的。
1.2.隔震技术与减震建筑构造设计比较起来,建筑架构设计中的基础隔震设计方法比较多样化,选用特殊材质的地基隔震、断层间隔地震等是较为普遍的设计办法。
但选用特殊材质的地基隔震时通常会使用豁土、砂浆或沥青等建筑材料。
地基隔震也是一个效果比较好的隔震手法,体形规则的建筑也可采用这一设计方法。
而地基隔震构造则惜助于在建筑的基座及其上构造之间设计隔震层,将整座建筑分割为上部构造、中部结构和底部构造等三种组成部分。
2.建筑结构设计中的隔震减震措施2.1.合理选择建筑场地就建筑工程而言,在抗震工程设计与实施的过程中,国家都制定有相应策略,对工程范围进行了明确规定,在工程规划和初步设计过程中,针对可能发生自然灾害的地段,都必须进行抗震评估,并根据评价结构进行了抗震工作,以保证工程建筑的抗震结构质量。
浅谈建筑结构隔震技术目前各国抗震设计规范均以“大震不倒,中震可修,小震不坏"为抗震设计原则,以保护结构不遭到毁坏和保护生命安全为主要目标。
传统抗震结构通过增强结构强度来抵抗地震,同时容许结构构件在地震时进入非弹性状态,具有一定的延性,以结构本身的损坏为代价消耗地震能量,减轻地震反应。
从近10多年的地震震害损失来看,凡是按照抗震规范设计和建造的房屋,基本可以保证大地震发生时,房屋不倒塌.但按照传统抗震方式建造的房屋,在高烈度区常造成建筑构件尺寸过大,影响实际使用空间与建筑功能;另一方面,在发生超过设防烈度地震时,由于承重构件在地震中的不断损伤,累计到一定程度还会引起房屋倒塌,不能保证房屋在超大地震下的安全;在很多情况下,即使房屋没有倒塌,由于承重构件损伤较重,房屋也很难修复.尽管人员的伤亡大幅减少,但是经济损失较大。
因此,单纯强调工程结构在地震下不严重破坏和不倒塌,已不是一种完善的抗震思想,不能适应现代工程结构抗震需求。
为了更有效地保障建筑物安全,国内外学者经过大量研究,提出了建筑隔震技术。
建筑隔震技术是在建筑物基础或下部与上部结构之间设置由隔震器(橡胶隔震支座、滑移支座、FPS摩擦摆滑动支座)、阻尼装置等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,同时延长上部结构的自振周期,降低上部结构的地震反应,达到预期的抗震防震要求,使建筑物的安全得到更可靠的保证。
国内外大量试验和工程经验表明:隔震技术能有效降低结构的水平地震作用,特别是在罕遇地震作用下隔震效果更好,上部结构的地震反应一般仅相当于不隔震时的20%—50%。
隔震体系能实现建筑结构自身、非结构构件和建筑物内部设施“三保护”,确保震后建筑物无需修复,即可继续使用.常用的隔震装置有天然橡胶支座、铅芯橡胶支座和高阻尼橡胶支座。
橡胶支座隔震系统装置简单、施工方便,被认为是隔震技术迈向实用化最卓有成效的体系。
一、建筑隔震技术的发展1.国外隔震技术发展概述建筑隔震技术的快速发展始于20世纪60年代。
房屋建筑结构体系选型及抗震设计探讨摘要:随着我国经济在快速发展,社会在不断进步,社会对建筑工程提出了更高的要求,多功能、高楼层的建筑得到广泛应用,作为城市规划建设的一部分,建筑工程施工也受到了关注,与人们的利益息息相关。
但受到自然灾害的影响,尤其是近年来地震发生频率高,造成了房屋建筑结构的损坏,威胁到住户的生命财产安全。
为了降低地震造成的损失,必须对房屋建筑建构体系进行优化和改进,提高结构的抗震性能,使得在遭受外力时,房屋建筑能够借助强大的稳固性保持原状。
本文主要讨论了房屋建筑结构体系选型,立足于建筑结构的抗震功能,提出优化结构设计的方案,希望能给同行提供借鉴。
关键词:房屋建筑;结构体系;选型;抗震设计;结构设计引言建筑工程在城市的建设中属于非常重要的施工项目,因此需要保证工程的结构稳定与施工质量。
在进行工程前期设计时,需要重视结构设计质量。
尤其是混凝土抗震结构的设计应用,因为建筑结构非常复杂,在设计时会出现很多问题,因此提高结构设计的稳定性与抗震性能会有一定难度。
在混凝土建筑抗震结构设计时,还要以设计为出发点,如果抗震性得不到保证就会影响到整个建筑施工质量。
因此,需要提高设计单位混凝土建筑结构的抗震设计质量,确保建筑的使用功能与应用效果。
1抗震设计意义地震是一种难以精准预测的灾害,目前技术方法不能更准确地预测强震自然灾害,但根据实际情况,提前做好防护措施也是一种有效的应对方法。
对于大地震等非选择性,危害性大的灾害,地震重建工程界对如何运用其完善的防震思想和技术减少小地震造成的巨大损失进行了深刻的思考。
目前,世界上至少有90%的政府对建筑物进行了独特的抗震设计。
建筑物的结构小震不破坏建筑结构、中震建筑可加固、大震建筑不倒,这种抗震原理得到了广泛的推广和应用,大大提高了建筑物结构的整体抗震性能。
尽管在发生中小型强地震等各种自然灾害时,由于建筑物组中的技术设备,建筑物整体结构的一些基本功能将难以有效运行,并且出现问题之后,维修装修成本和成本比新建设还要高,成本角度来看是十分不合适的,因此由经济造成的经济损失也无法估量,这是增强建筑结构抗震设计的重中之重。
浅谈高层建筑抗震结构设计作者:冯俊张大圣钱俊来源:《城市建设理论研究》2013年第28期摘要: 对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。
工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。
针对高层建筑在抗震研究方面的薄弱点,本文主要对高层建筑抗震结构设计的结构体系、结构类型、结构布置与关系以及结构的抗震性能几个问题进行了探讨,对于进一步提高我国高层建筑的结构抗震设计水平及其应用水平具有一定的借鉴意义。
关键词: 高层建筑; 框架结构; 剪力墙; 抗震设计中图分类号:TU97 文献标识码:A0 引言地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。
1 正确选择合理的结构体系由于高层建筑中抗水平力成为设计的主要矛盾,因此采用何种抗侧力结构是结构设计的关键性问题。
根据抗侧力结构的不同,钢筋混凝土结构主要可分为框架结构、框架—剪力墙结构、剪力墙结构和筒体结构等几种结构体系,这些体系的受力特点、抵抗水平力的能力,特别是抗震性能等有所不同,因此具有不同的适用范围。
( 1) 框架结构。
由梁、柱构件通过节点连接构成,框架梁和柱既承受垂直荷载,又承受水平荷载,并可为建筑提供灵活布置的室内空间。
当建筑物层数较少时,水平荷载对结构的影响较小,采用框架结构体系比较合理,当层数较多时,由于框架结构在水平力的作用下,内力分布很不均匀,并存在着层间屈服强度特别弱的楼层,且由于框架结构的构件截面惯性矩相对较小,导致侧向刚度较小,侧向变形较大,在强烈地震作用下,结构的薄弱层率先屈服,发生弹塑性变形,并形成弹塑性变形集中的现象,震害一般是梁轻柱重,柱顶重于柱底,尤其是角柱和边柱更容易发生破坏,除剪跨比较小的短柱易发生柱中剪切破坏外,一般柱是柱端的弯曲破坏。
浅谈高层住宅结构抗震设计随着城市化进程的加速,高层住宅在城市中如雨后春笋般涌现。
然而,地震作为一种不可预测的自然灾害,给人们的生命和财产安全带来了巨大的威胁。
因此,高层住宅的结构抗震设计显得尤为重要。
高层住宅结构抗震设计的重要性不言而喻。
地震发生时,地面运动产生的惯性力会作用在建筑物上,如果结构的抗震能力不足,就可能导致建筑物的破坏甚至倒塌,造成严重的人员伤亡和财产损失。
因此,通过合理的抗震设计,使高层住宅在地震中能够保持结构的稳定性和完整性,为居民提供安全的庇护场所,是建筑设计人员的首要任务。
在高层住宅结构抗震设计中,首先要考虑的是场地的选择。
场地的地质条件和地形地貌对地震的影响很大。
应选择坚硬、均匀的场地,避开软弱土层、断层、滑坡等不良地质区域。
同时,还要考虑场地的地震动参数,包括地震烈度、加速度等,为后续的结构设计提供依据。
结构体系的选择也是关键。
常见的高层住宅结构体系有框架结构、剪力墙结构、框架剪力墙结构等。
框架结构具有布置灵活的优点,但抗震性能相对较弱;剪力墙结构的抗震性能较好,但空间布置不够灵活;框架剪力墙结构则结合了两者的优点,既能提供较大的空间,又具有较好的抗震能力。
在实际设计中,应根据建筑的功能要求、高度、地质条件等因素综合考虑,选择合适的结构体系。
在构件设计方面,要保证构件具有足够的强度、刚度和延性。
强度是指构件抵抗外力的能力,刚度是指构件抵抗变形的能力,延性则是指构件在破坏前能够产生较大变形而不丧失承载能力的性能。
例如,在设计柱子和梁时,要合理确定截面尺寸和配筋,使它们在地震作用下能够承受较大的内力,同时又具有良好的变形能力。
对于剪力墙,要保证其厚度和配筋满足抗震要求,提高墙体的抗剪能力。
另外,抗震构造措施也是不可或缺的一部分。
比如,在梁柱节点处设置箍筋加密区,以提高节点的抗震性能;在墙体中设置水平和竖向分布钢筋,增强墙体的整体性;设置防震缝,将建筑物分成若干个独立的结构单元,减少地震作用下结构之间的相互影响。
建筑结构设计中的抗震设计方法抗震设计是建筑结构设计中十分重要的一部分。
在设计过程中,抗震设计的目标是通过合理的结构布置、灵活的结构形式和强度设计的措施,提高建筑物的抗震性能,减少地震对建筑物的破坏。
以下是常见的抗震设计方法:1.地基改良:对于软弱地基,可以采用土体加固等方法,提高地基的承载力和稳定性,减轻地震时地基产生的变形。
2.结构布置:合理的结构布置可以均匀地将地震力传递到地基,减小地震对建筑物的影响。
通常采用梁柱体系或框架结构,以及适当的剪力墙来提高建筑物的稳定性。
3.结构形式:通过选择合适的结构形式,如剪力墙、框架结构和筒结构等,强化建筑物的刚度和稳定性,增加其抗震能力。
此外,在结构设计中还应考虑柱子和墙体的抗倾覆能力。
4.低刚度层:设计中可以在建筑物的上部或中部设置一个低刚度层,如悬挂层或刚性梁层等,以分担地震力,减轻结构的震动响应。
5.支撑体系:合理的支撑体系可以增加建筑物的稳定性和刚度,减轻地震时的变形。
常用的支撑形式包括剪力墙、筒状结构和钢结构等。
6.材料选择:使用高强度、高韧性、抗蠕变和耐地震的材料,如钢筋混凝土、钢结构和加固砌体等,提高建筑物的抗震性能。
7.钢筋混凝土柱的加固:在既有建筑物中,对柱子的加固可以提高其抗震性能。
常见的加固方法包括在现有柱子外包钢筋混凝土或钢壳,并通过加固梁或剪力墙来提高柱子的抗震能力。
8.剪力墙设计:剪力墙是常用的抗震结构体系之一,通过布置在建筑结构中的垂直墙体,提高建筑物的抗震性能。
剪力墙的高度、厚度和布置要满足设计要求,以保证其在地震荷载下可以充分发挥作用。
9. 结构的抗震性能评估:通过抗震性能评估方法,如弹性反应谱、时程分析和Pushover分析等,可以对建筑物的抗震能力进行定量化分析和评估,为结构设计提供依据。
总之,在建筑结构设计中,抗震设计是保证建筑物抵御地震破坏的重要手段。
通过合理的结构布置、灵活的结构形式和强度设计的措施,可以提高建筑物的抗震性能,确保人员和财产的安全。
浅谈建筑结构抗震设计体系及方法摘要;2008年汶川地震,这一场巨大的灾难带给我们悲痛的同时也引发我们对现代建筑结构抗震性能的反思。
地震具有突发性,且可预见性低,因此应以贯彻预防为主要方针,而其最根本的就是要搞好抗震设防和提高现代高层建筑抗震能力。
本文从多个角度的建筑抗震设计方法,以工作经验为基础,对高层建筑结构分析与设计的基本特点。
关键词:高层建筑结构分析设计水平载荷抗震设计方法基于位移基于性能abstract:in 2008, wenchuan earthquake, this a great disaster bring us sad also cause our modern structural seismic performance of reflection. earthquake has sudden, and predictability low, so should carry out as the main policy to prevent, and the most fundamental is to improve aseismatic fortify and improve the modern high-rise building aseismic capacity. this paper, from the angle of the multiple buildings aseismic design method, in order to work experience as the foundation, of a high-rise building structure analysis and design of the basic characteristics.keywords: high building structure analysis and design the horizontal load seismic design method based on displacement based on performance中图分类号:[tu208.3] 文献标识码:a文章编号:前言根据我国多次大型地震中房屋的损坏位置与程度分析中得出:科学合理的建筑结构设计方法是房屋抗震能力提高的制胜法宝。
浅谈建筑结构抗震设计体系及方法
摘要;2008年汶川地震,这一场巨大的灾难带给我们悲痛的同时也引发我们对现代建筑结构抗震性能的反思。
地震具有突发性,且可预见性低,因此应以贯彻预防为主要方针,而其最根本的就是要搞好抗震设防和提高现代高层建筑抗震能力。
本文从多个角度的建筑抗震设计方法,以工作经验为基础,对高层建筑结构分析与设计的基本特点。
关键词:高层建筑结构分析设计水平载荷抗震设计方法基于位移基于性能
Abstract:In 2008, wenchuan earthquake, this a great disaster bring us sad also cause our modern structural seismic performance of reflection. Earthquake has sudden, and predictability low, so should carry out as the main policy to prevent, and the most fundamental is to improve aseismatic fortify and improve the modern high-rise building aseismic capacity. This paper, from the Angle of the multiple buildings aseismic design method, in order to work experience as the foundation, of a high-rise building structure analysis and design of the basic characteristics.
Keywords: high building structure analysis and design the horizontal load seismic design method based on displacement based on performance
前言
根据我国多次大型地震中房屋的损坏位置与程度分析中得出:科学合理的建筑结构设计方法是房屋抗震能力提高的制胜法宝。
然而完整的建筑结构抗震设计方法不仅包括建筑结构抗震分析计算法,还应有抗震概念设计。
一高层建筑结构的体系类型
1框架——剪力墙体系
当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架——剪力墙体系。
在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。
在体系中,框架体系主要承受垂直荷载,剪力墙主要承受水平荷载。
框架——剪力墙体系的位移曲线呈弯剪型。
剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架——剪力墙体系的能建高度要大于框架体系。
2 剪力墙体系
当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。
在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。
剪力墙体系属刚性
结构,其位移曲线呈弯曲型。
剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架——剪力墙体系。
3筒体体系
凡采用简体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体——框架、筒中筒、多束筒等多种型式。
简体是一种空间受力构件,分实腹筒和空腹筒两种类型。
实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。
筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑
二抗震结构设计方法
1基于位移的抗震设计方法
基于位移的抗震设计方法是以位移为前提的设计方法。
它是在不同强度地震作用下,以位移响应为主要目标进行结构设计,从而使结构达到预期设定的性能和功能。
它应包括构件截面承载力计算,构件截面变形能力设计等。
基于位移的抗震设计具有以下优点
(1)首先能够满足多层次抗震要求。
它通过不同的功能要求,设计出不同位移情况下的结构的强度和刚度
(2)基于位移的结构的设计是以目标位移为基准的,所以对破坏时结构的破坏状态有着确定的认识。
(3)不必考虑结构的非线性性质。
弹性结构下的设计方法可以直接引用,可用线性系统代替原有结构。
(4)位移法同传统的设计过程相比可直接获得结构抗震要求所需要的截面参数。
集于众多优点于一身的位移法得到了越来越多的青睐,也广泛地应用于抗震设计理念。
基于位移的抗震设计方法大致包括三个方法:能力谱方法控制延性的抗震设计方法直接基于位移的抗震设计方法。
2控制延性的抗震设计方法
控制延性的抗震设计方法就是通过考察结构屈服以后的整个反应过程进而研究构件和结构的延性问题。
控制延性抗震设计方法主要包涵以下几个方面:
(1)分析计算出在小震下结构的承载力,并且运算出截面内力和配筋。
(2)依据大地震和经验度计算选定的截面和配筋,得到结构的实际强度,求出结构整体所需要的位移延性系数。
(3)通过研究结构位移延性系数与结构体系的塑形变化机制来确立构件的延性需求,进而运算出临界截面所需的曲率延性系数。
(4) 最后的截面的延性设计依据箍筋的确立进行。
三基于性能的抗震结构设计
1地震设防水准的确立
传统的设防水准为小震中震大震三级抗震设防依据,它们是依据全国基本裂度设防区划图同时采用概率的方法得出的。
而基于性能的抗震设计为了掌控不同强度地震下结构的破坏状态,在传统的抗震设计水准基础上深度细化抗震设防水平,同时采用地震动参数,从而实现多级设防标准。
2确定结构性能参数
基于性能抗震设计要求在不同水平地震作用下得到结构的反应性能指标,因此需要运用合理的结构模型,科学的分析方法进行结构的受力分析。
在低强度的地震下一般采用弹性动力分析手段进行结构的弹性分析,高强度地震下时常采用弹塑性静力分析法进行非线性受力分析。
3确定结构的性能水准和性能目标。
性能水准即对建筑结构的性能进行划分不同的等级和不同的层次。
而明确的结构性能目标则是基于性能抗震设计的核心内容。
二者是确定合理的设计方法不可或缺的重要环节。
四结构分析中常用的基本假定
高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。
要完全精确地按照三维空间结构进行分析是十分困难的。
各种实用的分析方法都需要对计算模型引入不同程度的简化。
下面是常见的一些基本假定。
1 弹性假定
目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。
在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构
的实际工作状况。
但是在遭受罕遇害地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,结构进入到弹塑性工作阶段。
此时仍按弹性方法计算内力和位移时不能反映结构的真实的工作状态,应按弹塑性动力分析方法进行设计。
2 小变形假定
小变形假定也是各种方法普遍采用的基本假定。
但有不少学者与研究人员对几何非线性问题(JP——△效应)进行了一些研究。
一般认为,当顶点水平位移△与建筑物高度H的比值△/H>1/500时,P——△效应的影响就不能忽视了。
3 刚性楼板假定
许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。
这一假定大大减少了结构的自由度,简化了计算方法。
并为采用空间薄壁杆件理论计算简体结构提供了条件。
一般来说。
对框架体系和剪力墙体系采用这一假定是完全可以的。
但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。
4 计算图形的假定
高层建筑结构体系整体分析采用的计算图形有三种:①一维协同分析;②二维协同分析;③三维空间分析。
五结束语
总之,在科学技术发展,各种计算分析软件日益完善的今天,提倡建筑结构设计采用新的思想来促进设计人员的创造性。
推动建筑结构设计的发展;寻求有效的手段,确立崭新的建设观念,从而创造良好的生活环境,这是我们对建筑结构设计进行研究与实践的最终目标。
我国是一个地震多发的国家,唐山大地震汶川地震的发生再一次提醒我们应不断地提高建筑的抗震能力,实现高的安全防护水平,最大限度减少人民的生命财损失,而建筑结构的抗震设计方法与之息息相关。
参考文献
(1)建筑地基基础设计规范(Gb500007-2002)
建工出版社,2002年
(2)华南工学院等编,地基及基础建工出版社,1987年。