联考数学线性规划应用题的解法
- 格式:doc
- 大小:238.00 KB
- 文档页数:5
线性规划是高考数学必考的内容,侧重于考查同学们的数学建模、数学运算、数学分析等能力.线性规划问题的类型有很多,在本文中笔者总结了几类常见的线性规划题型及其解法,以帮助同学们加深对线性规划题型及其解法的了解.类型一:求目标函数的最值求目标函数的最值是线性规划中的一类常见题型,主要有两种形式:(1)求线性目标函数的最值;(2)求非线性目标函数的最值.无论是哪一种,解题的基本思路都是:(1)画出约束条件所确定的平面区域;(2)将目标函数变形为斜截式直线方程、两点间的距离、直线的斜率等;(3)在可行域内寻找取得最优解的对应点的位置;(4)解方程组求出对应点的坐标(即最优解),代入目标函数,即可求出最值.例1.已知x、y满足以下约束条件ìíîïï2x+y-2≥0,x-2y+4≥0,3x-y -3≤0,则z=x2+y2的最大值和最小值分别是_____.解:作出如图1所示的可行域,将z=x2+y2可以看作点()x,y到原点的距离的平方,由图可知,在可行域内点A到原点的距离的平方最大,即||AO2=13,直线2x+y-2=0到原点的距离的平方最小,为d2=æèççöø÷÷||0-222+122=45,所以z=x2+y2的最大值和最小值分别是13和45.在求目标函数的最值时,同学们要注意将目标函数进行适当的变形,深入挖掘其几何意义,将其看作直线的斜率、截距、两点间的距离等,然后在可行域内寻找取得最值的点.类型二:求可行域的面积求可行域的面积的关键在于根据约束条件画出正确的图形,然后将可行域拆分、补充为规则的几何图形,如三角形、平行四边形、矩形等,再利用三角形、平行四边形、矩形等的面积公式进行求解.例2.已知不等式组ìíîïï2x+y-6≥0,x+y-3≤0,y≤2,则该不等式表示的平面区域的面积为_____.解:根据所给的不等式组作出可行域,如图2所示,由图2可知△ABC的面积即为所求.显然S△ABC=S梯形OMBC-S梯形OMAC,S梯形OMBC=12×()2+3×2=5,S梯形OMAC=12×()1+3×2=4,所以S△ABC=S梯形OMBC-S梯形OMAC=5-4=1.本题中的可行域为三角形,而该三角形的面积很难直接求得,于是将其看作梯形OMAB的一部分,将梯形OMAB的面积减去梯形OMAC的面积,便可得到三角形ABC的面积.类型三:求参数的取值或者范围很多线性规划问题中含有参数,要求其参数的取值或范围,首先要确定可行域,然后结合题意寻找符号条件的最优解,建立相对应的关系式,便可求得参数的取值或者范围.例3.已知x、y满足以下约束条件ìíîïïx+y≥5,x-y+5≤0,x≤3,使z=x+ay()a>0取得最小值的最优解有无数个,则a的值为_____.解:根据约束条件作出可行域,如图3所示,作出直线l:x+ay=0,要使目标函数z=x+ay()a>0取得最小值的最优解有无数个,可将直线l向右上方平移,使之与直线x+y=5重合,故a=1.通常含有参数的目标函数图象是不确定的,因此正确绘制出可行域十分关键,只有对问题中的所给条件进行正确的分析,才能快速找到正确的解题思路.通过对上述三类题型的分析,同学们可以发现线性规划问题都比较简单,按照基本的解题步骤:画图—变形目标函数—寻找最优解对应的点—求值便能得到答案.同学们在解答线性规划问题时还需重点关注特殊点、直线,这些特殊的点、位置常常是取得最优解的点或者位置.(作者单位:江苏省江阴市第一中学)承小华图1图2图3方法集锦45。
求线性规划问题的最优解:121212123max 2322124 16.. 5 15,,0z x x x x x s t x x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩ 方法1:图解法。
(P15 图1-3)方法2:求出所有的基可行解,然后比较目标值的大小得到最优解。
(P14表1-1)方法3:单纯形法。
第一步,将模型转化为标准型。
12345123142512345max 2300022 12 (1)4 16 (2).. 5 15 (3),,,,0z x x x x x x x x x x s t x x x x x x x =++++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩ 221004001005001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭秩A=3 第二步,求初始基可行解。
取()345100 010001B P P P ⎛⎫ ⎪== ⎪ ⎪⎝⎭作为初始基矩阵,345, , x x x 为基变量,12, x x 为非基变量,令12=0,x x =得到初始基可行解()(0)0,0,12,16,15X =,目标值(0)0.z =第三步,对初始基可行解()(0)0,0,12,16,15X =进行最优性检验。
基可行解()(0)0,0,12,16,15X =对应的目标值为(0)0z =,因为12023z x x =++,只要1>0x 或者2 0x >,目标值都会比(0)0z =大,即12or x x 之一作为基变量,目标值都会增大,故初始基可行解()(0)0,0,12,16,15X=不是最优解。
第四步,作基变换,求目标值比(0)0z =更大的基可行解。
① 确定换入基变量。
由第三步可知,12, x x 都可作为换入基变量,一般地,{}121122*********, 0,0. max ,z x x x x σσσσσσσ=++=++≥≥=。
2 x 作为换入基变量。
这里12,σσ称为基可行解(0)X 非基变量12, x x 的检验数。
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
高考数学中的线性规划方法与应用随着社会的发展,人们的生活方式发生了改变,竞争压力也越
来越大。
在这样一个背景下,高考成为了每个学生追求的目标。
高考数学中,线性规划是一个重要的知识点,不仅在考试中会涉
及到,而且在现实生活中也有广泛的应用。
一、线性规划的概念与优化目标
线性规划是在一些约束条件下,寻求最大或最小值的一种优化
方法。
其优化目标是一种线性函数,约束条件可以是等式或不等式,且约束条件和目标函数都具有线性关系。
在高考数学中,线
性规划通常会考察如何列出约束条件和目标函数。
二、线性规划的解法
线性规划的解法有图像法、单纯形法和对偶理论法。
其中,单
纯形法是应用最广泛的一种解法,通过不断寻找相邻基的交点,
找出最优解。
三、线性规划在实际生活中的应用
线性规划在实际生活中有着广泛的应用。
比如,在物流领域中,通过线性规划可以优化物流路线和货物分配,从而降低成本和提
高效率。
在工业生产中,线性规划可以优化设备运行状态和员工
分配,实现生产效益的最大化。
在金融投资方面,线性规划可以
帮助投资者优化组合投资方案,最大化投资回报。
在航空运输方面,线性规划可以优化航线安排和机组人员分配,实现航空运输
的安全和效率。
以上仅是线性规划在实际生活中应用的一部分。
结语
高考数学中的线性规划知识点,虽然看起来有些枯燥,但是它
在实际生活中有着广泛的应用。
掌握线性规划的解法和应用场景,可以为学生的未来发展打下坚实的基础。
希望读者可以通过对线
性规划的学习,更好地了解这个领域的发展和应用。
线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。
二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。
线性规划常规解题方式
线性规划问题解题方法,首先画出可行域,也就是阴影部分的区域,怎么画,给出几个约束条件,一个一个直线方程的画,区域呢?x>那就是右侧,y<>
完成了一半了,接下来把那个目标函数就是z=什么什么的那个化成y=kx+b的形式,z前面是正的,那就最小值就是截距最小,如果是负的那就相反,就是和y轴交点。
确定向下移还是向上移,那条线一定要在那个阴影里,在端点取最值,联立然后把直线把交点解出来,最后把交点坐标带入z=什么什么的那个目标函数里就解出来了。
用白话说的,希望基础差些的也会算这个,。
求解线性规划的方法
求解线性规划问题的常用方法有以下几种:
1. 单纯形法(Simplex Method):单纯形法是解线性规划问题的经典方法,通过逐步迭代找到目标函数的最优解。
它适用于小到中等规模的问题。
2. 内点法(Interior Point Method):内点法通过在可行域内的可行点中搜索目标函数最小化的点来解决线性规划问题。
相对于单纯形法,内点法在大规模问题上的计算效率更高。
3. 梯度法(Gradient Method):梯度法是基于目标函数的梯度信息进行搜索的一种方法。
它适用于凸优化问题,其中线性规划问题是一种特殊的凸优化问题。
4. 对偶法(Duality Method):对偶法通过构建原问题和对偶问题之间的关系来求解线性规划问题。
通过求解对偶问题,可以得到原问题的最优解。
5. 分支定界法(Branch and Bound Method):分支定界法通过将原问题划分为更小的子问题,并逐步确定可行域的界限,来搜索目标函数的最优解。
需要根据具体的问题规模、约束条件和问题特点选择合适的方法进行求解。
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。
而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。
本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。
一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。
线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。
在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。
通常情况下,我们可以将线性规划问题表示为标准型或非标准型。
标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。
二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。
其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。
2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。
3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。
4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。
5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。
需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。
线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。
其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。
解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。
本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。
一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。
普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。
具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。
因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。
普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。
然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。
二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。
与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。
首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。
然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。
双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。
尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。
三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。
相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。
具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。
这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。
除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。
数学线性规划解题技巧数学线性规划解题技巧_解数学线性规划技巧分享控制自己的情绪,保持冷静客观。
练习思维跳跃,拓展思维方式。
对已有知识进行组合和重组,寻找新的解决方法。
下面就让小编给大家带来数学线性规划解题技巧,希望大家喜欢!高数学线性规划解题技巧常用的途径有(一)、充分联想回忆基本知识和题型:按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:对于同一道数学题,常常可以不同的侧面、不同的角度去认识。
因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。
因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
数学线性规划解题实战运用所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。
一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
线性规划问题的解法与应用线性规划是一种数学优化方法,用于求解最大化或最小化目标函数的线性约束问题。
线性规划问题的解法涉及到多种算法和技巧,并且具有广泛的应用领域。
本文将介绍线性规划问题的解法以及其在实际应用中的案例。
一、线性规划问题的基本形式线性规划问题的基本形式可以表示为:Max (or Min) Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z为目标函数,c₁, c₂, ..., cₙ为目标函数中各变量的系数;a₁₁, a₁₂, ..., aₙₙ为约束条件中各变量的系数;b₁, b₂, ..., bₙ为约束条件的右侧常数;x₁, x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法通常包括下列步骤:1. 建立模型:根据实际问题和约束条件,确定目标函数和约束条件的形式,并定义决策变量。
2. 简化模型:对模型进行适当的变化和转化,以便于求解。
例如,可以通过引入松弛变量、人工变量或者对偶问题来简化原始问题。
3. 求解模型:根据简化后的模型,通过线性规划算法求解最优解。
常用的线性规划算法包括单纯形法、内点法、分支定界法等。
根据具体情况选择合适的算法。
4. 分析并优化解:分析最优解的意义和解的特点,并进行问题的优化。
如果最优解满足实际需求,则问题得到解决;否则,可以对模型进行进一步优化或者调整。
三、线性规划问题的应用线性规划问题的应用非常广泛,几乎涉及到所有需要进行决策的领域。
以下是一些常见的线性规划应用案例:1. 生产计划问题:生产计划通常需要在有限的资源下最大化产量或者利润。
线性规划可以帮助确定最佳的生产计划,以实现最大化目标。
线性规划问题的解线性规划(Linear Programming, LP)是数学规划的一种重要方法,其应用领域十分广泛。
线性规划的目标是在给定的线性约束条件下,寻找使目标函数最大或最小的变量取值。
本文将介绍线性规划问题的解以及如何求解线性规划问题。
一、线性规划问题的解的基本概念1. 可行解:满足线性约束条件的变量取值被称为可行解。
可行解集合构成了解空间。
2. 最优解:在可行解集合中,使目标函数取得最大或最小值的可行解被称为最优解。
二、线性规划问题的求解方法线性规划问题的求解方法通常有两种:图形法和单纯形法。
1. 图形法:适用于二维或三维线性规划问题,即变量的个数较少,可以通过绘制图形来确定最优解。
图形法的基本思路是绘制等式约束和不等式约束的直线或平面,并通过观察它们的交点或交线来确定可行解和最优解。
2. 单纯形法:适用于多维线性规划问题,即变量的个数较多。
单纯形法通过迭代计算,逐步逼近最优解。
其基本思路是从一个初始可行解开始,通过调整变量的取值来提高目标函数的值,直到找到最优解或确定问题无解。
三、线性规划问题的示例下面以一个简单的线性规划问题为例。
假设有两种产品A和B,它们的生产需要使用以下资源:钢材、机器时数和人工时数。
每单位产品A需要2吨钢材、4机器时数和6人工时数;每单位产品B需要3吨钢材、5机器时数和4人工时数。
公司目前有100吨钢材、120机器时数和150人工时数可用。
已知产品A的利润为1000元/单位,产品B的利润为2000元/单位。
问如何安排生产,使得利润最大化?1. 建立数学模型:令x为产品A的产量,y为产品B的产量。
则目标函数为最大化利润:1000x+2000y。
约束条件为:2x+3y≤100(钢材约束),4x+5y≤120(机器时数约束),6x+4y≤150(人工时数约束),x≥0,y≥0。
2. 通过图形法找到可行解和最优解:先绘制钢材约束的直线2x+3y=100,机器时数约束的直线4x+5y=120,人工时数约束的直线6x+4y=150。
线性规划作业解题技巧线性规划(Linear programming)是一种常见的优化问题求解方法,广泛应用于生产、运输、供应链管理、金融等领域。
它的基本思想是通过构建数学模型,求解最优解来满足各种约束条件。
在解决线性规划问题时,可以采用以下技巧:一、明确问题的目标:首先要明确问题要解决的目标,是最大化还是最小化一些目标函数。
这可以通过解决问题的具体背景和需求来确定。
二、确定变量和约束条件:确定需要进行决策的变量,并给出相应的约束条件。
这些变量和约束条件是构建线性规划模型的基础。
三、构建目标函数:根据问题的目标,构建合适的目标函数。
目标函数一般是一个线性函数,代表了问题要优化的目标。
四、确定约束条件:根据问题的要求,明确约束条件。
约束条件一般包括等式和不等式两种形式,限制了问题的可行解空间。
五、画出可行区域:根据约束条件可以得到问题的可行解区域,一般是在二维或三维坐标系上画出。
六、确定最优解区域:在可行解区域内,确定最优解的区域。
最优解一般位于目标函数的等高线或等高面上。
七、求解最优解:通过一些优化算法,如单纯形法、内点法等,求解出最优解。
这些算法可以使用专业软件进行计算。
八、检验最优解:得到最优解后,需对其进行检验。
检验是否满足目标函数和约束条件的要求。
九、分析灵敏度:通过对目标函数和约束条件的变动,分析最优解的鲁棒性和灵敏度。
十、求解扩展问题:对于一些复杂的线性规划问题,可以根据具体情况进行适当的扩展和拓展,使用相应的求解方法。
除了以上的基本技巧外,还可以采用以下一些方法来简化线性规划问题:一、参数调整:通过调整参数的方式,可以简化问题的复杂度,使得计算更容易进行。
二、变量替换:当问题中的变量过多时,可以通过替换变量的方式来简化问题。
三、松弛变量:通过引入松弛变量,将原问题转化为等价的标准形式,简化计算。
四、对偶性:利用线性规划中的对偶理论,可以将原问题转化为对偶问题,通过对偶问题的求解来简化计算。
线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。
线性规划问题广泛应用于经济、工业、运输、物流等各个领域。
本文将讲述线性规划问题的基本概念和求解方法。
一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。
目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。
二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。
1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。
它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。
对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。
2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。
它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。
单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。
但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。
三、线性规划的应用线性规划在各个领域中都有着广泛的应用。
以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。
这种问题通常涉及到对物流成本、物流时间等多种因素的优化。
2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。
这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。
3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。
线性规划问题的求解方法与实践线性规划是一种常见的优化问题,可以用来研究诸如资源分配、生产优化等问题。
线性规划问题的求解方法也十分重要,常用的方法有单纯形法、内点法、整数规划等。
本文将从理论和实践两个层面讨论线性规划问题的求解方法。
一、单纯形法单纯形法是一种求解线性规划问题的标准算法,在实践中得到广泛应用。
其基本思想是将线性规划问题转化为标准型,并通过不断的迭代来达到最优解。
标准型是指将目标函数和限制条件均转化为等式的形式。
具体来说,假设有线性规划问题:max c1*x1 + c2*x2 + … + cn*xns.t.a11*x1 + a12*x2 + … + a1n*xn ≤ b1a21*x1 + a22*x2 + … + a2n*xn ≤ b2…am1*x1 + am2*x2 + … + amn*xn ≤ bm其中,x1~xn为决策变量,c1~cn为目标函数的系数,a11~amn 为各限制条件的系数,b1~bm为约束条件的右值。
将其转化为标准型:max cxs.t.Ax = bx ≥ 0其中,x = (x1, x2, …, xn)T,c和x为向量,A为mxn的矩阵,b为m维的向量。
线性规划问题的解可以存在于顶点中,而顶点又可以表示为n-m个线性约束的交点。
单纯形法就是借助这一点来求解问题,每次从一个顶点出发,向相邻的顶点移动,最终找到全局最优解。
二、内点法内点法是求解线性规划问题的另一种常见方法,也被称为封闭框架法。
其基本思想是通过构造一个特殊的迭代序列,将问题转化为无约束的非光滑的优化问题,然后使用牛顿迭代等方法求解。
内点法的优点在于可以直接求解非线性约束和整数规划问题,同时有较好的收敛性和鲁棒性。
内点法的基本思路是将约束条件改写为一组等效条件,并考虑在这些等效条件内部寻找最优解。
这些等效条件称为“内点”,表示在这些条件下寻找的最优解都在可行域内部。
例如,在松弛的线性规划问题中,对于每个限制条件,都可以构造一个内点,使得其满足该约束条件,并使用初始可行解来初始化算法。
线性规划的实际应用题解题步骤广东 王远征在近几年的高考试卷中出现了求线性目标函数在线性约束条件下的最大(小)值应用题,本文以高考试题为例,介绍解题的模式和一般步骤.一、线性规划问题的数学模型如下:已知⎪⎪⎩⎪⎪⎨⎧≤++++≤++++≤++++nm nm n n n m m m m b x a x a x a x a b x a x a x a x a b x a x a x a x a ΛΛΛΛΛ3322112232322212111313212111 (I )其中ij a ,i b 都是常数,i x 是非负变量. (n i ,,3,2,1Λ= m j ,,3,2,1Λ=).求m m x c x c x c x c z ++++=Λ332211 的最大(小)值,其中i c 是常数.我们将(I )称为线性约束条件,把m m x c x c x c x c z ++++=Λ332211称为目标函数.二、解题的一般步骤:1. 建模:在读懂题意的前提下,写出反映实际问题的线性约束条件和目标函数表达式;2. 作出可行解、可行域:将线性约束条件中的每个不等式当作等式,在平面直角坐标系中作出相应的直线,并确定原不等式所表示的半平面,然后作出所有半平面的交集;3. 作出目标函数的等值线;4. 求出最优解:在可行域内,平移目标函数的等值线,从图中能判断实际问题的解的情况,有唯一最优解,或无最优解,或有无穷最优解.三、典型试题解析例(07年高考山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解析:设公司在甲电视台和乙电视台做广告的时间分别为元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥目标函数为30002000z x y =+. 二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行域.如图:作直线:300020000l x y +=,即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值. 联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),. max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.注意:根据不等式的基本性质对线性约束条件中的不等式进行化简,使得系数变小。
联考数学线性规划应用题的解法
一、题型说明
联考数学的考试中有一类应用题,所给条件纷繁复杂,定量关系不明确,初学者常常不知所云,要求我们计算所花钱数最少或者时间最少或者果实最多,简而言之,就是要求我们建立模型实现利益最大化,我们把这类应用题叫做线性规划应用题。
线性规划是运筹学中辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料;二是生产组织与计划的改进,即合理安排人力物力资源。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
这种题目的特点与管理类硕士学位对学生基本素养的要求有较高的契合度,因此近三年来受到出题老师的热衷,每年出一道题。
而此类题通常是考生的软肋,这里为大家提出几点建议,希望能助考生一臂之力。
二、历年真题及解析
三、解题方法总结
细心的同学可以观察到上面的四道题目我是用同一个方法解析的,总结起来可以分四步
1、根据题目限定条件列出不等式组
2、将第一个不等式设为等式代入第二个,求出其中一个未知数限定范围
3、写出目标函数并整理
4、根据未知数范围求解目标函数最值
各位考生可以看到,这类线性规划应用题,我并没有使用我们高中阶段学习过的方法,即在平面直角坐标系内绘出可行域,再进一步利用单纯形法求得目标函数在可行域内的最值,或者求得目标函数的取值范围,这样做的原因不外乎为了提高学生在考试中的解题速度,因为大家都知道,我们的考试不是会了知识就能得高分,要同时兼备速度与准确度才能在联考中立于不败之地,同时,大家根据以上四道真题完全可以毫不怀疑的相信,这种方法是可以解决联考中出现的所以线性规划应用题的。
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。
例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。
凯程有自己的学习校区,有
吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。
此外,最好还要看一下他们的营业执照。