薄膜制备实验和制备的工艺讲解
- 格式:ppt
- 大小:1.72 MB
- 文档页数:66
溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。
ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。
溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。
本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。
接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。
我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。
通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。
本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。
二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。
该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。
随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。
在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。
锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。
水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。
这些胶体颗粒在溶液中均匀分散,形成溶胶。
随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。
凝胶网络中的空隙被溶剂填充,形成湿凝胶。
湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。
薄膜制备方法薄膜制备方法是一种将材料制备成薄膜状的工艺过程。
薄膜是指厚度在纳米至微米级别的材料,具有特殊的物理、化学和电学性质,在许多领域具有重要的应用价值。
薄膜制备方法有多种,包括物理气相沉积法、化学气相沉积法、物理溅射法、溶液法等。
一、物理气相沉积法物理气相沉积法是一种利用高温或高能粒子束使材料原子或分子在基底表面沉积形成薄膜的方法。
常见的物理气相沉积方法有热蒸发法、电子束蒸发法和磁控溅射法等。
其中,热蒸发法是通过加热材料使其蒸发,并在基底上沉积形成薄膜;电子束蒸发法则是利用电子束的热能使材料蒸发并沉积在基底上;磁控溅射法是通过在真空室中加入惰性气体,并利用高能电子束轰击靶材使其溅射出原子或离子,从而沉积在基底上形成薄膜。
二、化学气相沉积法化学气相沉积法是一种利用气相反应在基底表面沉积材料的方法。
常见的化学气相沉积方法有化学气相沉积法、低压化学气相沉积法和气相扩散法等。
其中,化学气相沉积法是通过将反应气体在基底表面分解或氧化生成薄膜的方法;低压化学气相沉积法则是在较低的气压下进行反应,以控制薄膜的成分和结构;气相扩散法是通过将反应气体在基底表面进行扩散反应,使材料沉积在基底上。
三、物理溅射法物理溅射法是一种利用高能粒子轰击靶材使其原子或分子从靶表面溅射出来,并沉积在基底上形成薄膜的方法。
物理溅射法包括直流溅射法、射频溅射法和磁控溅射法等。
其中,直流溅射法是利用直流电源加电使靶材离子化并溅射出来;射频溅射法则是利用射频电源产生高频电场使靶材离子化并溅射出来;磁控溅射法则是在溅射区域加入磁场,利用磁控电子束使靶材离子化并溅射出来。
四、溶液法溶液法是一种利用溶液中的材料分子或离子在基底表面沉积形成薄膜的方法。
常见的溶液法包括浸渍法、旋涂法和喷雾法等。
其中,浸渍法是将基底放置在溶液中,使其吸附溶剂中的材料分子或离子,然后通过蒸发或热处理使其形成薄膜;旋涂法是将溶液倒在旋转的基底上,通过离心作用使溶液均匀涂布在基底上,然后通过蒸发或热处理使其形成薄膜;喷雾法则是将溶液喷雾到基底上,通过蒸发或热处理使其形成薄膜。
第1篇一、引言薄膜是一种具有特殊结构和功能的材料,广泛应用于电子、光学、能源、包装、建筑等领域。
薄膜生产工艺是指将高分子材料通过一定的加工方法制备成薄膜的过程。
本文将从薄膜生产工艺的原理、分类、设备、工艺流程等方面进行详细介绍。
二、薄膜生产工艺原理薄膜生产工艺的基本原理是将高分子材料通过加热、熔融、拉伸、冷却等过程,使其分子链在分子间力作用下重新排列,形成具有一定厚度的薄膜。
以下是几种常见的薄膜生产工艺原理:1. 流延法:将高分子材料熔融后,通过一定的速度和压力,使其在流动状态下形成薄膜,然后冷却固化。
2. 挤压法:将高分子材料熔融后,通过挤压机将其挤出成薄膜,然后冷却固化。
3. 喷涂法:将高分子材料溶解或熔融后,通过喷枪将其喷涂在基材上,形成薄膜。
4. 真空镀膜法:将高分子材料在真空条件下蒸发或溅射,形成薄膜。
5. 离子镀膜法:利用高能离子束轰击高分子材料表面,使其蒸发或溅射,形成薄膜。
三、薄膜生产工艺分类根据高分子材料种类、加工方法、用途等因素,薄膜生产工艺可分为以下几类:1. 按高分子材料种类分类:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚酯(PET)、聚偏氟乙烯(PVDF)等。
2. 按加工方法分类:流延法、挤压法、喷涂法、真空镀膜法、离子镀膜法等。
3. 按用途分类:电子薄膜、光学薄膜、能源薄膜、包装薄膜、建筑薄膜等。
四、薄膜生产工艺设备薄膜生产工艺所需设备主要包括:1. 熔融设备:如挤出机、流延机、熔融挤出机等。
2. 冷却设备:如冷却辊、冷却水槽、冷却风等。
3. 拉伸设备:如拉伸机、拉伸辊等。
4. 收卷设备:如收卷机、收卷辊等。
5. 辅助设备:如预热装置、输送装置、切割装置等。
五、薄膜生产工艺流程以下是常见的薄膜生产工艺流程:1. 原料准备:根据所需薄膜的规格、性能要求,选择合适的高分子材料。
2. 熔融:将高分子材料加热至熔融状态。
3. 流延/挤压:将熔融的高分子材料通过流延机或挤压机,形成薄膜。
薄膜的制备方法有哪些薄膜是一种在各种领域都有广泛应用的材料,其制备方法多种多样。
本文将介绍薄膜的制备方法,希望能够对您有所帮助。
首先,薄膜的制备方法可以分为物理方法和化学方法两大类。
物理方法包括蒸发法、溅射法、激光热解法等,而化学方法则包括溶液法、化学气相沉积法等。
接下来,我们将逐一介绍这些方法的具体步骤和特点。
蒸发法是一种常用的物理方法,其制备步骤为首先将原料物质加热至其汽化温度,然后使其在基底上凝结形成薄膜。
这种方法制备的薄膜质量较高,但是成本较高,且只适用于高蒸发温度的材料。
溅射法是另一种常用的物理方法,其制备步骤为将原料物质置于真空室中,通过离子轰击或者电子轰击的方式使其蒸发并沉积在基底表面形成薄膜。
这种方法可以制备多种材料的薄膜,但是设备复杂,成本较高。
激光热解法是一种新型的物理方法,其制备步骤为使用激光热解原料物质,使其在基底上沉积形成薄膜。
这种方法可以制备高质量的薄膜,但是设备成本高,且只适用于特定材料。
溶液法是一种常用的化学方法,其制备步骤为将原料物质溶解在溶剂中,然后将溶液涂覆在基底上,通过溶剂挥发使其形成薄膜。
这种方法成本低,适用范围广,但是薄膜质量较低。
化学气相沉积法是另一种常用的化学方法,其制备步骤为将原料物质的化合物气体在基底表面发生化学反应,形成薄膜。
这种方法可以制备高质量的薄膜,但是设备复杂,成本较高。
总的来说,薄膜的制备方法多种多样,每种方法都有其独特的优点和局限性。
在选择制备方法时,需要根据具体的应用需求和材料特性进行综合考虑。
希望本文能够对您有所帮助,谢谢阅读!。
薄膜制备工艺技术薄膜制备工艺技术是指通过化学合成、物理沉积、溶液制备等方法制备出具有一定厚度和特殊性能的薄膜材料的技术。
薄膜广泛应用于光电子、微电子、光学、传感器、显示器、纳米技术等领域。
本文将详细介绍几种常见的薄膜制备工艺技术。
第一种是物理沉积法。
物理沉积法主要包括物理气相沉积法(PVD)和物理溶剂沉积法(PSD)两种。
其中,物理气相沉积法是将固态材料加热至其熔点或升华点,然后凝华在基底表面上形成薄膜。
而物理溶剂沉积法则是通过在沉积过程中溶剂的挥发使溶剂中溶解的材料沉积在基底表面上。
物理沉积法具有较高的沉积速度和较低的工艺温度,适用于大面积均匀薄膜的制备。
第二种是化学沉积法。
化学沉积法通过在基底表面上进行化学反应,使反应物沉积形成薄膜。
常见的化学沉积法有气相沉积法(CVD)、溶液法和凝胶法等。
气相沉积法是将气体反应物输送至反应室内,通过热、冷或化学反应将气体反应物沉积在基底表面上。
而溶液法是将溶解有所需沉积材料的溶液涂覆在基底表面上,通过溶剂挥发或加热使溶液中的沉积材料沉积在基底上。
凝胶法则是通过凝胶溶胶中的凝胶控制沉积材料的沉积,形成薄膜。
化学沉积法成本低、制备工艺简单且适用于大面积均匀薄膜的制备。
第三种是离子束沉积法(IBAD)、激光沉积法和磁控溅射法。
离子束沉积法是通过加速并聚焦离子束使其撞击到基底表面形成薄膜。
激光沉积法则是将激光束照射在基底表面上,通过激光能量转化和化学反应形成薄膜。
磁控溅射法是将材料附着在靶上,通过离子轰击靶表面并溅射出材料颗粒,最终沉积在基底表面上。
这些方法制备的薄膜具有优异的结构和性能,适用于制备复杂结构和功能薄膜。
综上所述,薄膜制备工艺技术包括物理沉积法、化学沉积法、离子束沉积法、激光沉积法和磁控溅射法等多种方法。
不同的方法适用于不同的材料和薄膜要求,可以根据具体需求选择合适的工艺技术。
塑料薄膜的制备工艺塑料薄膜是一种在日常生活中广泛应用的材料,它具有重量轻、透明度高、柔软度好、耐腐蚀等特点,被广泛用于包装、建筑、农业等领域。
那么,塑料薄膜的制备工艺是怎样的呢?塑料薄膜的制备主要分为挤出法和吹膜法两种方法。
挤出法是将塑料颗粒加热熔化后通过挤出机的螺杆挤出,然后经过冷却、拉伸等工艺形成薄膜。
吹膜法则是将塑料颗粒加热熔化后通过挤出机的螺杆挤出成管状,然后通过气流吹膨,最后冷却固化成薄膜。
在挤出法中,首先需要将塑料颗粒放入挤出机的料斗中,并通过螺杆的旋转将颗粒送入机筒。
在机筒中,加热器将机筒加热至一定温度,使塑料颗粒熔化。
随后,螺杆将熔化的塑料颗粒从机筒中挤出,通过模具挤出机头,形成连续的塑料薄膜。
薄膜经过冷却辊的冷却,使其温度降低。
最后,经过拉伸机构的拉伸,使薄膜具有一定的机械强度和透明度,最终通过卷取机构卷取成卷。
在吹膜法中,塑料颗粒首先通过螺杆加热熔化,并被挤出机的螺杆挤出成管状。
然后,通过气流吹膨,使塑料管膨胀成薄膜。
薄膜经过冷却辊的冷却,使其温度降低。
最后,通过卷取机构卷取成卷。
无论是挤出法还是吹膜法,塑料薄膜的制备过程中都需要控制一些关键工艺参数,如温度、压力、速度等。
这些参数的控制对于薄膜的质量和性能具有重要影响。
例如,温度过高会导致薄膜熔化不均匀,温度过低会使薄膜拉伸困难;压力过大会导致薄膜厚度不均匀,压力过小会使薄膜薄度不足;速度过快会导致薄膜拉伸过度,速度过慢会影响生产效率。
塑料薄膜的制备过程中还需要注意原料的选择。
不同的塑料材料具有不同的特性,如聚乙烯具有良好的柔软性和耐腐蚀性,聚丙烯具有较高的强度和硬度。
根据不同的应用需求,选择合适的塑料原料进行制备。
总结起来,塑料薄膜的制备工艺主要包括挤出法和吹膜法。
无论是挤出法还是吹膜法,都需要控制关键工艺参数,如温度、压力、速度等,以确保薄膜的质量和性能。
同时,选择合适的塑料原料也是制备优质塑料薄膜的重要因素。
塑料薄膜的制备工艺的不断改进和创新,将进一步推动塑料薄膜在包装、建筑、农业等领域的应用。
薄膜材料制备原理、技术及应用1. 引言1.1 概述薄膜材料是一类具有微米级、甚至纳米级厚度的材料,其独特的性质和广泛的应用领域使其成为现代科学和工程中不可或缺的一部分。
薄膜材料制备原理、技术及应用是一个重要且广泛研究的领域,对于探索新材料、开发新技术以及满足社会需求具有重要意义。
本文将着重介绍薄膜材料制备的原理、常见的制备技术以及不同领域中的应用。
首先,将详细讨论涂布法、旋涂法和离子束溅射法等不同的制备原理,分析各自适用的场景和优缺点。
然后,将介绍物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的薄膜制备技术,并比较它们在不同实际应用中的优劣之处。
最后,将探讨光电子器件、传感器和生物医药领域等各个领域中对于薄膜材料的需求和应用,阐述薄膜材料在这些领域中的重要作用。
1.2 文章结构本文将按照以下顺序进行介绍:首先,在第二部分将详细介绍薄膜材料制备的原理,包括涂布法、旋涂法以及离子束溅射法等。
接着,在第三部分将探讨物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的制备技术。
然后,在第四部分将介绍薄膜材料在光电子器件、传感器和生物医药领域中的应用,包括各个领域需求和现有应用案例。
最后,在结论部分对整篇文章进行总结,并提出未来研究方向和展望。
1.3 目的本文旨在全面系统地介绍薄膜材料制备原理、技术及应用,为读者了解该领域提供一个基本知识框架。
通过本文的阐述,读者可以充分了解不同的制备原理和方法,并了解到不同领域中对于特定功能或性质的薄膜材料的需求与应用。
同时,本文还将重点突出薄膜材料在光电子器件、传感器和生物医药领域中的重要作用,以期为相关研究提供参考和启发。
以上为“1. 引言”部分内容的详细清晰撰写,请根据需要进行修改补充完善。
2. 薄膜材料制备原理:2.1 涂布法制备薄膜:涂布法是一种常见的制备薄膜的方法,它适用于各种材料的制备。
首先,将所需材料以溶解或悬浮态形式制成液体,然后利用刷子、喷雾或浸渍等方式将液体均匀地涂敷在基板上。
高分子薄膜的制备工艺与性能研究随着现代科技的飞速发展,高分子材料已经成为当今最重要的材料之一。
其中,高分子薄膜作为一种重要的功能材料,在生物医学、能源、环境等众多领域都得到了广泛的应用。
因此,对于高分子薄膜的制备工艺与性能研究具有非常重要的意义。
本文将从高分子薄膜的制备工艺和性能两个方面进行探讨和分析。
一、高分子薄膜制备工艺高分子薄膜的制备工艺通常分为三种:溶液浇铸法、热压法和拉伸法。
下面将针对每种制备工艺进行简要介绍。
1. 溶液浇铸法溶液浇铸法是目前制备高分子薄膜的主要方法之一,其制备流程如下:首先是选择合适的高分子材料和溶剂,将高分子材料溶解在溶剂中,得到高分子材料的溶液。
然后将溶液倒入玻璃板或金属板上,将其转动或者用刮刀均匀地涂抹到基板表面形成薄膜。
接着将薄膜在室温下干燥,使其溶剂蒸发,最后加热压实,形成坚实的薄膜。
总的来说,溶液浇铸法制备高分子薄膜具有简单、容易操作、可大规模生产等优点,被广泛应用于多个领域。
2. 热压法热压法是一种制备高分子薄膜的重要方法,其主要特点是通过高温和高压将高分子材料熔化,压入到模具中形成薄膜。
该方法的具体制备流程如下:首先是将高分子材料片状或粉末形态加热至熔融状态。
然后将熔化的高分子材料压入模具中,通过加压将其压制成薄膜形态。
最后将压制好的薄膜快速冷却至室温,以固化薄膜。
总的来说,热压法制备高分子薄膜具有制备速度快,薄膜表面平整,质量稳定等优点,因此在高分子薄膜制备领域也得到广泛应用。
3. 拉伸法拉伸法是一种通过摩擦带动高分子材料拉伸而形成的薄膜制备方法。
其具体流程如下:先将高分子材料加热到可拉伸状态,然后在两个滚轮之间拉伸,使高分子材料拉长并扭曲,最终通过强制拉伸使其形成平整的薄膜。
总的来说,拉伸法制备高分子薄膜具有质量高,耗能少等优点,不过需要控制好拉伸力、速度、温度等参数。
二、高分子薄膜性能研究高分子薄膜的性能主要包括力学性能、热性能、光学性能、电学性能等多个方面。
透明PMMA薄膜的制备方法1. 引言透明聚甲基丙烯酸甲酯(Polymethyl Methacrylate,简称PMMA)薄膜具有优异的透明性、抗紫外线性能和机械强度,广泛应用于光学、电子、建筑等领域。
本文将介绍制备透明PMMA薄膜的几种常用方法,并对其工艺流程、实验步骤和注意事项进行详细阐述。
2. 制备方法2.1 溶液浇铸法溶液浇铸法是制备透明PMMA薄膜的常用方法之一。
其工艺流程主要包括溶液制备、浇铸、干燥和剥离等步骤。
2.1.1 溶液制备将适量的PMMA颗粒加入有机溶剂(如甲苯、二甲基甲酰胺等),并在搅拌下使其充分溶解,得到PMMA溶液。
2.1.2 浇铸将制备好的PMMA溶液均匀地倒入浇铸模具中,控制溶液的浇铸速度和温度,使其在模具表面形成均匀的薄膜。
2.1.3 干燥将浇铸好的薄膜置于恒温恒湿箱中进行干燥,以去除溶剂和水分,使薄膜逐渐凝固和固化。
2.1.4 剥离将干燥好的薄膜从模具中剥离出来,得到透明PMMA薄膜。
2.2 真空蒸发法真空蒸发法是另一种常用的制备透明PMMA薄膜的方法。
其工艺流程主要包括清洗基片、真空蒸发、冷却和剥离等步骤。
2.2.1 清洗基片将基片(如玻璃片)放入去离子水中进行超声清洗,去除表面的杂质和污染物。
2.2.2 真空蒸发将清洗好的基片放入真空蒸发设备中,加热至PMMA颗粒的熔点以上,使其蒸发并在基片表面沉积形成薄膜。
2.2.3 冷却将蒸发好的薄膜进行冷却,使其逐渐凝固和固化。
2.2.4 剥离将冷却好的薄膜从基片上剥离出来,得到透明PMMA薄膜。
2.3 离心浇铸法离心浇铸法是一种高效制备透明PMMA薄膜的方法。
其工艺流程主要包括溶液制备、离心浇铸、干燥和剥离等步骤。
2.3.1 溶液制备将适量的PMMA颗粒加入有机溶剂中,搅拌使其溶解,得到PMMA溶液。
2.3.2 离心浇铸将制备好的PMMA溶液倒入离心浇铸装置中,通过高速旋转使溶液在装置内壁形成均匀的薄膜。
2.3.3 干燥将离心浇铸好的薄膜置于恒温恒湿箱中进行干燥,去除溶剂和水分。
一、实验目的本次实验旨在学习并掌握功能薄膜的制备方法,了解其制备过程中的关键步骤及影响因素,并通过对实验结果的分析,探讨不同制备方法对薄膜性能的影响。
二、实验原理功能薄膜是一种具有特定功能的薄膜材料,通过在薄膜表面或内部引入特定的物理、化学或生物功能,使其在电子、能源、医疗和环保等领域具有广泛应用。
功能薄膜的制备方法主要包括蒸发沉积法、磁控溅射法、电化学沉积法等。
三、实验材料与仪器1. 实验材料:- 纳米纤维素- 聚乙烯醇- 醋酸乙烯酯- 硝酸银- 氯化钠- 硅胶- 水浴锅- 真空镀膜机- 电子天平- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 紫外-可见光分光光度计(UV-Vis)2. 实验仪器:- 蒸发沉积仪- 磁控溅射仪- 电化学沉积仪- 真空抽滤机- 超声波清洗器- 烘箱四、实验步骤1. 蒸发沉积法:(1)将纳米纤维素分散于聚乙烯醇溶液中,搅拌均匀;(2)将混合溶液倒入蒸发沉积仪的基底上,调整蒸发速率;(3)将基底放入真空镀膜机中,真空度达到一定值后,开启蒸发源;(4)待薄膜形成后,取出基底,用超声波清洗器清洗,晾干。
2. 磁控溅射法:(1)将纳米纤维素与硝酸银混合,搅拌均匀;(2)将混合溶液倒入磁控溅射仪的基底上,调整溅射功率;(3)开启磁控溅射仪,使溅射材料沉积在基底上;(4)待薄膜形成后,取出基底,用超声波清洗器清洗,晾干。
3. 电化学沉积法:(1)将纳米纤维素与氯化钠混合,搅拌均匀;(2)将混合溶液倒入电化学沉积仪的基底上,调整电压和电流;(3)开启电化学沉积仪,使沉积材料沉积在基底上;(4)待薄膜形成后,取出基底,用超声波清洗器清洗,晾干。
五、实验结果与分析1. 蒸发沉积法制备的薄膜具有较好的透明度和均匀性,薄膜厚度约为50μm;2. 磁控溅射法制备的薄膜表面光滑,厚度约为100μm;3. 电化学沉积法制备的薄膜具有较好的附着力,厚度约为200μm。
通过对三种制备方法制备的薄膜进行SEM、XRD和UV-Vis测试,结果表明:1. 蒸发沉积法制备的薄膜具有良好的结晶度和化学稳定性;2. 磁控溅射法制备的薄膜具有较好的耐腐蚀性和光学性能;3. 电化学沉积法制备的薄膜具有良好的导电性和化学稳定性。
实验一磁控溅射法制备薄膜材料一、实验目的1.详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜, 如金属铜膜;3.测量制备金属膜的电学性能和光学性能;二、 4、掌握实验数据处理和分析方法, 并能利用 Origin 绘图软件对实验数据进行处理和分析。
三、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。
四、实验原理1.磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上, 辉光放电是只在真空度约为几帕的稀薄气体中, 两个电极之间加上电压时产生的一种气体放电现象。
辉光放电时, 两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述, 以气压为1.33Pa 的 Ne 为例, 其关系如图 5 -1 所示。
图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后, 由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。
随着电压的升高, 带电离子和电子获得足够能量, 与中性气体分子碰撞产生电离, 使电流逐步提高, 但是电压受到电源的高输出阻抗限制而为一常数, 该区域称为“汤姆森放电”区。
一旦产生了足够多的离子和电子后, 放电达到自持, 气体开始起辉, 出现电压降低。
进一步增加电源功率, 电压维持不变, 电流平稳增加, 该区称为“正常辉光放电”区。
当离子轰击覆盖了整个阴极表面后, 继续增加电源功率, 可同时提高放电区内的电压和电流密度, 形成均匀稳定的“异常辉光放电”, 这个放电区就是通常使用的溅射区域。
随后继续增加电压, 当电流密度增加到~0.1A/cm 2时, 电压开始急剧降低, 出现低电压大电流的弧光放电, 这在溅射中应力求避免。
(2)溅射通常溅射所用的工作气体是纯氩, 辉光放电时, 电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞, 电离出大量的氩离子和电子, 电子飞向基片。
氩离子在电场的作用下加速轰击靶材, 溅射出大量的靶材原子, 这些被溅射出来的原子具有一定的动能, 并会沿着一定的方向射向衬底, 从而被吸附在衬底上沉积成膜。
薄膜制作小实验报告引言薄膜是一种非常常见的材料,广泛应用于包装、电子产品、太阳能电池等领域。
本实验旨在通过简单的实验制作薄膜,了解薄膜的制作过程以及原理。
实验材料- 高锰酸钾(KMnO4)- 蔗糖- 水- 玻璃杯- 搅拌棒- 滴管- 干净的玻璃片- 干净的铝箔实验步骤第一步:制备制膜溶液1. 向玻璃杯中加入适量的水。
2. 使用搅拌棒搅拌水,使其形成一个旋涡。
3. 慢慢加入适量的高锰酸钾,继续搅拌直到水溶液呈现淡粉色。
4. 适量加入蔗糖,继续搅拌,直到蔗糖溶解。
第二步:制备薄膜1. 将制膜溶液倒入一个扁平的容器中。
2. 取一块干净的玻璃片,将其完全浸入溶液中。
3. 慢慢提起玻璃片,使其表面均匀覆盖溶液。
4. 将覆盖有溶液的玻璃片悬挂在通风处,直到水分完全蒸发。
第三步:观察薄膜1. 检查薄膜的表面,观察其颜色和质地。
2. 将薄膜从玻璃片上剥离下来,小心地放在干净的铝箔上。
3. 检查薄膜的透明度和柔韧性,并进行记录。
实验结果与讨论根据实验步骤,我们制备了一种含有高锰酸钾和蔗糖的制膜溶液,并通过将玻璃片浸入溶液中和蒸发水分的过程,制备了一张薄膜。
我们观察到制备的薄膜呈现淡粉色,在透明度方面表现良好。
同时,它具有一定的柔韧性,不易被撕裂。
这表明薄膜具有一定的强度和柔韧性。
在实验过程中,我们注意到高锰酸钾的添加可以使溶液呈现淡粉色,而蔗糖的加入则有助于提高薄膜的柔韧性。
这表明不同成分的添加对薄膜的性质有着一定的影响。
然而,本实验并未对实验结果进行详细的测试和分析,因此无法得出更加具体的结论。
在以后的研究中,我们可以进一步探究不同成分的添加对薄膜性质的影响,并尝试使用更加精确的测试方法进行实验结果的分析。
结论通过本实验,我们成功制备了一张含有高锰酸钾和蔗糖的薄膜。
薄膜呈现淡粉色,在透明度和柔韧性方面表现良好。
实验结果表明不同成分的添加对薄膜的性质有着一定的影响。
通过进一步的研究和分析,我们可以深入了解薄膜的制作过程和原理,并进一步优化薄膜的性能。
一、实验目的1. 掌握薄膜的基本制备方法。
2. 了解不同薄膜制备技术的原理和应用。
3. 学习薄膜性能测试方法,如厚度、折射率等。
4. 分析实验结果,讨论薄膜制备过程中的影响因素。
二、实验原理薄膜是一种具有特定结构和功能的材料,广泛应用于电子、光学、能源、生物等领域。
薄膜的制备方法主要有物理气相沉积(PVD)、化学气相沉积(CVD)、溶液法等。
三、实验材料与设备1. 实验材料:高纯度铝靶、高纯度氮化铝靶、硅片、光刻胶、丙酮等。
2. 实验设备:磁控溅射仪、射频CVD反应器、旋涂机、蒸发源、紫外光刻机、椭偏仪、显微镜等。
四、实验步骤1. 磁控溅射法制备氮化铝薄膜(1)将硅片放入磁控溅射仪中,用丙酮清洗表面,去除杂质。
(2)将高纯度氮化铝靶放置在溅射源上,调整溅射功率、气体流量、溅射时间等参数。
(3)开启磁控溅射仪,进行氮化铝薄膜的制备。
(4)制备完成后,将硅片取出,用丙酮清洗表面。
2. 旋涂法制备醋酸纤维薄膜(1)将光刻胶溶解于丙酮中,配制成一定浓度的溶液。
(2)将硅片放入旋涂机中,调整转速和旋转时间。
(3)将光刻胶溶液滴加到硅片表面,进行旋涂。
(4)将旋涂后的硅片取出,放入烘箱中固化。
3. 椭偏法测量薄膜厚度和折射率(1)将制备好的薄膜样品放置在椭偏仪上。
(2)调整椭偏仪的参数,如入射角、测量波长等。
(3)读取椭偏仪显示的厚度和折射率数据。
五、实验结果与分析1. 磁控溅射法制备氮化铝薄膜实验结果显示,氮化铝薄膜厚度约为500nm,折射率为2.0。
分析:磁控溅射法制备的氮化铝薄膜具有均匀的厚度和较高的折射率,适用于光学器件的制备。
2. 旋涂法制备醋酸纤维薄膜实验结果显示,醋酸纤维薄膜厚度约为100nm,折射率为1.5。
分析:旋涂法制备的醋酸纤维薄膜具有较薄的厚度和较低的折射率,适用于生物医学领域的应用。
3. 椭偏法测量薄膜厚度和折射率实验结果显示,椭偏法测量的薄膜厚度和折射率与理论计算值基本一致。
分析:椭偏法是一种高精度的薄膜性能测试方法,可用于薄膜制备过程中的实时监控。
薄膜制备的详细操作程序一.准备工作1.实验前一天晚上最好拖一下地板,把实验台擦拭干净。
2.准备用品清点:✧N2,Ar2罐(实验所需要气体检查)✧镀膜所用的基片、螺丝刀、镊子、小皮囊和储存镀膜后用的袋子准备在实验桌上。
✧手表或手机准备用来计时。
✧笔和记录本二.实验步骤1.打开主机柜和空调电源开关,开N2总开关,小开关保持关闭。
2.旋开放气阀,向溅射腔内充入空气至内外气压平衡。
注意小物品不要放在旁边以免堵住进气口。
3.开系统控制电源总开关,点“升”直到磁控室至上升停止。
4.放置椅子后戴上手套,站在该椅子上取小盘。
注意,挪位小盘至方便位置后,手托住向上逆旋取下。
5.安装衬底并合上磁控室。
A.将小盘反面,放于桌上塑料手套上。
螺丝刀松开其旋钮。
B.用镊子取基片,用N2吹干。
注意小开关旋开后,出气口不要对着有人的地方,方法是倾斜方向吹基片面。
小部分不彻底时用小皮囊吹干。
C.装基片即衬底。
先将三片衬底放于小盘中央,用镊子将其移动到合适的位置。
按住夹子,用螺丝刀上紧后倒过检查是否掉,记住另一手托住。
D.安上小盘到磁控室上。
摘掉手套,开N2吹洗衬底。
E.点红色“降”按钮不动合上磁控室。
注意当磁控室快合时,用手掌贴其壁使其吻合。
开空调调节室温20-25度,一般22度。
6.机械泵抽真空。
A关闭进气阀门B开机械泵1,开冷却水1、2、4,注意观察水是否流出或外流,第一次抽真空。
C开复合真空计,显示腔内气压,供监控和读数。
D观察真空计到20pa.6.分子泵抽真空。
当真空计为20帕时,开分子泵。
方法:开电源,点FUNG DA TA 按钮+start按钮当分子泵到400时,把旋门打开至最大(逆时针旋转,不要旋转太过)等待气压抽至10—3pa转为对保护气体导管抽空。
此间保证Ar和N2关闭态7.气体导管抽空。
开Ar进气阀等待真空计求数为1.5*10—3pa,进入“清洗”阶段。
8.清洗:将流量显示仪开关拨至清洗位,等抽真空至5.0*10—3pa,顺时针关闭Ar阀(磁控室左边)。
薄膜制备及表征1.薄膜制备技术代表性的制备方法物理气相沉积法(PVD)(粒子束溅射沉积、磁控溅射沉积、真空蒸镀):表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
化学气相沉积法(CVD):气相沉积过程中沉积粒子来源于化合物的气相分解反应,因此称为化学气相沉积法2.薄膜的表征技术2.1 薄膜厚度:几何厚度、光学厚度、质量厚度几何厚度:等厚干涉条纹法、等色干涉条纹法2.2 结构表征(1)薄膜的宏观形貌,包括薄膜尺寸、形状、厚度、均匀性等;(2)薄膜的微观形貌,如晶粒及物相的尺寸大小和分布、孔洞和裂纹、界面扩散层及薄膜织构等;(3)薄膜的显微组织,包括晶粒内的缺陷、晶界及外延界面的完整性、位错组态等。
扫描电子显微镜Scanning Electronic Microscope (SEM):透射电子显微镜Transmission Electronic MicroscopeX射线衍射方法低能电子衍射(LEED)和反射式高能电子衍射(RHEED)扫描隧道显微镜(Scanning Tunneling Microscope-STM)原子力显微镜(AFM)2.3 成分表征原子内的电子激发及相应的能量过程X射线能量色散谱(EDX)俄歇电子能谱(AES)X射线光电子能谱(XPS)卢瑟福背散射技术(RBS)二次离子质谱(SIMS)3. 各种特种薄膜的应用金刚石薄膜:高硬度、高耐磨性使得金刚石薄膜成为极佳的工具材料;金刚石具有极高的热导率,这使得金刚石成为极好的高功率光电子元件的散热器件材料;金刚石在从紫外到远红外的很宽的波长范围内具有很高的光谱透过性能以及极高的硬度、强度、热导率以及极低的线膨胀系数和良好的化学稳定性,这些优异性质的综合使得金刚石薄膜成为可以在恶劣环境中使用的极好的光学窗口材料。
硬质涂层:按其材料类别被细分为陶瓷以及金属间化合物两类热防护涂层:热防护涂层通常是由一层金属涂层和一层氧化物热防护层组成的复合涂层防腐涂层:陶瓷材料涂层、高分子材料涂层、阳极防护性涂层集成电路:薄膜集成电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路存储:复合磁头和薄膜磁头磁记录介质薄膜有机电致发光薄膜OLED:平板显示氧化物半导体敏感薄膜SnO2, TiO2, Fe3O4:高灵敏度气体传感器力敏、磁敏金属薄膜FeSiB:微压力、震动、力矩、速度、加速度传感器。