自控原理习题解答(第六章) ppt
- 格式:ppt
- 大小:8.97 MB
- 文档页数:75
5-25 对于典型二阶系统,已知参数3=n ω,7.0=ξ,试确定截止频率c ω和相角裕度γ。
解 依题意,可设系统的开环传递函数为)12.4(143.2)37.02(3)2()(22+=⨯⨯+=+=s s s s s s s G n n ξωω绘制开环对数幅频特性曲线)(ωL 如图解5-25所示,得143.2=c ω︒=+︒=63)(180c ωϕγ5-26 对于典型二阶系统,已知σ%=15%,s 3=s t ,试计算相角裕度γ。
解 依题意,可设系统的开环传递函数为)2()(2n ns s s G ξωω+=依题 ⎪⎩⎪⎨⎧====--n s o o o o t e σξξπ5.331521联立求解 ⎩⎨⎧==257.2517.0nωξ有 )1333.2(1824.2)257.2517.02(257.2)(2+=⨯⨯+=s s s s s G绘制开环对数幅频特性曲线)(ωL 如图解5-26所示,得1824.2=c ω︒=+︒=9.46)(180c ωϕγ5-27 某单位反馈系统,其开环传递函数 G s ss s s ().(.)(.)(.)=+++1670810251006251试应用尼柯尔斯图线,绘制闭环系统对数幅频特性和相频特性曲线。
解 由G(s)知:20lg16.7=24.5db 交接频率:ω1108125==.. , ω210254==. , ω310062516==.图解5-27 Bode 图 Nyquist 图5-28 某控制系统,其结构图如图5-83所示,图中 )201(8.4)(,81)1(10)(21s s s G ss s G +=++=试按以下数据估算系统时域指标σ%和t s 。
(1)γ和ωc(2)M r 和ωc(3)闭环幅频特性曲线形状 解 (1) )201)(81()1(48)()()(21ss s s s G s G s G +++==db 6.3348lg 20= 20,1,125.081321====ωωω065,6≈=∴γωc查图5-56 得 13.16.6,%21%===CS t ωσ秒(2) 根据M r ,ωC 估算性能指标 当 ω=5 时: L(ω)=0, ϕ(ω)=-111°找出: )65(,103.1sin 1===r rM r , ωC =6 查图5-62 得 13.18.6,%21%===CS t ωσ秒(3) 根据闭环幅频特性的形状ω 0.3 1 2 3 4 5 6 7 8 9 10 L(db) 36 18 9.5 5 3 0 -2 -4 -5 -7 -20 ϕ(°) -142.5 -130 -118.5 -114 -111 -111 -112.5 -115.5 -118.5 -124 -148 M(db) 0 0.68 1 1.05 0 1.1 -2.1 -3.3 -4 -5.5 -19.3令 M M r 01113==. 或)(05.1dB M r = f f f f b a a====721023241196πππ,,,. N M f M a ===()..411911190 79.0113.110706=⋅=⋅=M M f f F r aσ%[()]%%=+=411710Ln NFt F f S a=-=2160406...秒5-29 已知控制系统结构图如图5-84所示。
自动控制原理第六章课后习题答案(免费)线性定常系统的综合6-1 已知系统状态方程为:()100102301010100x x u y x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3.解: 由()100102301010100x x u y x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=可得:(1) 加入状态反馈阵()012K k k k =,闭环系统特征多项式为:32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+-(2) 根据给定的极点值,得期望特征多项式:*32()(1)(2)(3)6116f λλλλλλλ=+++=+++(3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k ===即:()408K =6-2 有系统:()2100111,0x x u y x•-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭= (1) 画出模拟结构图。
(2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。
解(1) 模拟结构图如下:(2) 判断系统的能控性;0111c U ⎡⎤=⎢⎥-⎣⎦满秩,系统完全能控,可以任意配置极点。
(3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为:()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式:*2()(3)(3)69f λλλλλ=++=++比较()f λ与*()f λ各对应项系数,可解得:011,3k k ==即:[1,3]K =6-3 设系统的传递函数为:(1)(2)(1)(2)(3)s s s s s -++-+试问可否用状态反馈将其传递函数变成:1(2)(3)s s s -++若能,试求状态反馈阵,并画出系统结构图。
119第六章习题及解答6-1 试求下列函数的z 变换T ta t e =)()1(()()223e t t e t=- 21)()3(ss s E +=)2)(1(3)()4(+++=s s s s s E解 (1)∑∞=---=-==0111)(n nnaz z azza z E(2)[]322)1()1(-+=z z z T t Z由移位定理:[]333323333232)()()1()1(TTTTTTte z ez zeT ze ze zeT et Z -----+=-+=(3)22111)(ssss s E +=+=2)1(1)(-+-=z Tz z z z E (4)21)(210++++=s c s c sc s E21)1(3lim212)2(3lim23)2)(1(3lim221100=++=-=-=++==+++=-→-→→s s s c s s s c s s s c s s s2211223+++-=s s s)(22)1(23)(2TT e z ze z z z z z E ---+---=6-2 试分别用部分分式法、幂级数法和反演积分法求下列函数的z 反变换。
120()()()()11012E z z z z =-- 211213)()2(---+-+-=z zz z E 解 (1))2)(1(10)(--=z z zz E① 部分分式法)12(10210110)()2(10)1(10)(210110)2)(1(10)(-=⨯+⨯-=-+--=-+--=---=nnnT e z zz z z E z z z z zz E② 幂级数法:用长除法可得+-+-+-=+++=+-=--=---)3(70)2(30)(10)(7030102310)2)(1(10)(*3212T t T t T t t e z z z z z z z z z z E δδδ③ 反演积分法[][])()12(10)()12(10210110)(210110lim)(Re 10210lim)(Re 0*221111nT t t e nT e z zzz E s z z z z E s n nnnnnz z n nz z n --=-=⨯+⨯-=⨯=-=⋅-=-=⋅∑∞=→→-→→-δ(2) 2221)1()13(12)13(213)(-+-=+-+-=+-+-=--z z z z z z z zz zz E① 部分分式法∑∑∞=∞=---=-⎥⎦⎤⎢⎣⎡--=⨯--=----=----=--=0*222)()32()(32)()(132)(13)1(2)(13)1(2)1(31)(n n nT t n nT t nT Tt e t t Tt e z z z z z E z z z z zz E δδ121② 幂级数法:用长除法可得--------=-----=+-+-=---)3(9)2(7)(5)(3)(9753123)(*32122T t T t T t t t e zzzz z z z z E δδδδ③ 反演积分法[][]12111)3(lim!11)(Re )(-→→-⋅+-=⋅=n s z n zz zdzd z z E s nT e[]32)1(3lim 11--=++-=-→n nzz n n ns∑∞=---=*)()32()(n nT t n t e δ6-3 试确定下列函数的终值()()()11112E z Tzz =--- )208.0416.0)(1(792.0)()2(22+--=z z z zz E解 (1)∞=--=---→21111)1()1(lim zTz z e z ss(2)1208.0416.01792.0208.0416.0792.0lim)()1(lim 2211=+-=+-=-=→→z z zz E z e z z ss6-4 已知差分方程为c k c k c k ()()()-+++=4120初始条件:c(0)=0,c(1)=1。
第一章1. 1图1・18是液位自动控制系统原理示意图。
在任意情况下,希望液而髙度c维持不变, 试说明系统工作原理并画出系统方块图。
解:系统的控制任务是保持液而髙度不变。
水箱是被控对彖,水箱液位是被控变量。
电位器用来设置期望液位髙度c•(通常点位器的上下位移来实现)。
当电位器电刷位于中点位置时,电动机不动,控制阀门有一左的开度,使水箱的流入水屋与流岀水量相等,从而使液面保持在希望高度C•上。
一旦流出水量发生变化(相当于扰动),例如当流岀水量减小时,液面升髙,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位宜下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的液体流量减少。
这时,水箱液位下降.浮子位巻相应下降,直到电位器电刷回到中点位置为止,系统重新处于平衡状态,液位恢复给定髙度。
反之,当流出水量在平衡状态基础上增大时,水箱液位下降,系统会自动增大阀门开度,加大流入水量,使液位升到给左髙度cl 系统方框图如图解1・4・1所示。
图解1.4.1液位自动控制系统方框图1. 2恒温箱的温度自动控制系统如图1. 19所示。
(1) 画出系统的方框图:(2) 简述保持恒温箱温度恒左的工作原理;(3) 指出该控制系统的被控对象和被控变疑分别是什么。
「调压器220〜图1.19恒温箱的温度自动控制系统解:恒温箱采用电加热的方式运行,电阻丝产生的热量与调压器电压平方成正比,电压增 高,炉温就上升。
调压器电压由其滑动触点位苣所控制,滑臂则由伺服电动机驱动.炉子的 实际温度用热电偶测量,输出电压作为反馈电压与给左电圧进行比较,得岀的偏差电压经放 大器放大后,驱动电动机经减速器调宵调压器的电压。
在正常情况下,炉温等于期望温度T,热电偶的输岀电压等于给泄电压。
此时偏差为零, 电动机不动,调压器的滑动触点停留在某个合适的位置上。
这时,炉子散失的热量正好等于 从电阻丝获取的热量,形成稳定的热平衡状态,温度保持恒定。