药物合成反应规则总结
- 格式:doc
- 大小:1015.00 KB
- 文档页数:110
第四章氧化反应概述一、氧化反应二、氧化反应类型化学氧化反应、催化氧化反应和生物氧化反应。
第一节烃基的氧化反应一、苄位烃基的氧化1生成醛a、三氧化铬—醋酐氧化苄位甲基成醛基。
甲基先被转化成醛的二醋酸酯再水解得醛。
b、氯化铬酰Cr02C12Etard反应c、硝酸铈铵CeNH42NO36CAN 反应在酸性介质中进行。
可得苯甲醛。
在正常条件下多甲基芳烃仅一个甲基被氧化。
2形成羧酸、酮常用的氧化剂有KMnO4Na2Cr2O7Cr2O3和稀硝酸等。
在碱或钴盐存在下空气氧化可使苄位甲基氧化成羧基。
硝酸铈铵作氧化剂苄位亚甲基被氧化可形成相应的酮。
二、羰基α位活性烃基的氧化1形成α—羟酮四醋酸铅或醋酸汞羰基α位的活性烃基可氧化成α羟酮然后水解成α—羟酮。
羰基α位活性甲基、亚甲基和次甲基均可发生类似反应。
当这些活性烃基共存于同一分子时产物将是混合物若在反应中加入三氟化硼对甲基的乙酰氧基化有利。
2形成12—二羰基化合物SeO2 它主要用于活性亚甲基或甲基成相应的羰基化合物。
位于共轭体系中的活性亚甲基也可被二氧化硒氧化成相应的羰基化合物。
三、烯丙位烃基的氧化1、二氧化硒某些烯丙位的碳-氢键可被二氧化硒氧化成相应的醇类化合物。
反应需在醋酸溶液中进行产物以醋酸酯形式分离然后再水解得到醇。
当被氧化物分子中有多个烯丙位存在时1双键碳原子所连取代基多的烯丙位优先发生氧化2活性次序为3环内双键的氧化反应发生在双键碳原子较多的取代基且位于环内的烯丙位上。
4若双键位于末端则氧化的同时双键可发生位移。
2、用CrO3—吡啶复合体Collins试剂氧化Collins试剂是CrO3·2Py 的结晶在二氯甲烷中的溶液。
它是一个对双键、硫醚等不作用的选择性氧化剂。
有时氧化的同时发生烯丙双键移位。
CrO3的其它试剂如铬酸叔丁醇酯三氧化铬本身等都可用于烯丙位氧化但后者常伴有双键断裂的副产物故不适宜于合成。
3、用过酸酯氧化过酸酯在亚铜盐催化下可在烯丙位烃基上引入酰氧基经水解可得烯丙醇类。
名词解释傅克烷基化反应:指在无水三氯化铝等路易斯酸存在下,芳烃与卤烷作用,在芳环上发生亲电取代反应,其氢原子被烷基取代,生成烷基芳烃的反应。
亲电加成反应:简称亲电加成,是亲电试剂(带正电的基团)进攻不饱和键引起的加成反应。
反应中,不饱和键(双键或三键)打开,并与另一个底物形成两个新的σ键。
亲电加成中最常见的不饱和化合物是烯烃和炔烃。
sn2反应:如果新化学键的形成在先,而旧化学键的断裂在后,那就要求两个分子先结合,即化学键的形成必然与两种反应物(浓度)都有关系,这类亲核取代反应为SN2反应;sn1反应:如果旧化学键的断裂在先,则化学反应速率只与断键的反应物(浓度)有关,与进入的另一反应物(浓度)无关,这类亲核取代反应称为SN1反应.ac2o:乙酸酐易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。
与强氧化剂接触可发生化学反应。
能使醇、酚、氨和胺等分别形成乙酸酯和乙酰胺类化合物。
在路易斯酸存在下,乙酐还可使芳烃或烯烃发生乙酰化反应。
在乙酸钠存在下,乙酐与苯甲醛发生缩合反应,生成肉桂酸。
缓慢溶于水变成乙酸。
与醇类作用生成乙酸酯。
Claisen酯缩合反应:含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
DMF:N,N-二甲基甲酰胺是一种有机化合物,分子式为C3H7NO,为无色透明液体。
既是一种用途极广的化工原料,也是一种用途很广的优良的溶剂。
除卤化烃以外能与水及多数有机溶剂任意混合,对多种有机化合物和无机化合物均有良好的溶解能力和化学稳定性。
亲电取代反应:是指化合物分子中的原子或原子团被亲电试剂取代的反应。
ncs:N-氯代丁二酰亚胺,是一种比较方便的亲电加成和亲电取代试剂,常用于硫化物、砜和酮的氯化,也可用来合成N-氯化胺。
羟醛缩合反应:具有α氢原子的醛或酮在一定条件下形成烯醇负离子,再与另一分子羰基化合物发生加成反应,并形成β-羟基羰基化合物。
反应:羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。
反应:用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。
反应:将上面改为铜粉和氢卤酸。
反应:将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或芳胺直接用亚硝酸纳和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。
合成:醇在碱(钠,氢氧化钠,氢氧化钾)存在下与卤代烃反应生成醚。
合成:将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾生成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,肼解或酸水解即可得纯伯胺。
反应:用卤代烃与环六亚甲基四胺(乌洛托品)反应得季铵盐,然后水解可得伯胺。
反应:用甲酸及其铵盐可以对醛酮进行还原烃化,得各类胺。
反应:卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。
反应:在三氯化铝催化下,卤代烃及酰卤与芳香族化合物反应,再环上引入烃基及酰基。
芳基化反应:芳基自由基可与烯反应,引致烯键的碳原子上。
反应:芳香自由基与过量存在的另一芳香族化合物发生取代反应,得到联苯。
方向自由基的来源主要有三种:最常用重氮离子的分解;其次为N-亚硝基乙酰苯胺类及芳酰过氧化物的分解反应:腈类化合物与氯化氢在Lewis酸催化剂ZnCl2的存在下与具有烃基或烷氧基的芳烃进行反应可生成相应的酮亚胺,在经水解则得具有羟基或烷氧基的芳香酮。
反应:将具有羟基或烷氧基的芳烃在三氯化铝或氯化锌催化下与氰化氢及氯化氢作用生成相应芳香醛的反应。
反应:以N-取代的甲酰胺化试剂在氧氯化磷作用下,在芳核或杂环上引入甲酰基。
反应:将酚及某些杂环化合物与碱金属的氢氧化物溶液和过量的氯仿一起加热形成芳醛的反应。
反应和Dieckmann反应:羧酸酯与另一分子具有α-活泼氢的酯进行缩合的反映称为Claisen缩合。
若两个酯在同一分子之内,在上述条件下可发生分子内缩合,得环状β-酮酸酯,此反应称为Dieckmann反应。
期末药物合成总结一、药物合成的基本原理和方法药物合成的基本原理是根据目标药物的结构和活性,合理设计合成路线和反应条件,从而实现目标化合物的合成。
合成路线通常包括若干个中间体,以及一系列反应步骤。
药物合成的方法多种多样,常见的包括有机合成、糖化学合成、无机合成等。
1. 有机合成:有机合成是药物合成中最常见的方法之一。
它利用有机化学反应,通过建立碳-碳、碳-氧、碳-氮等键进行分子的合成。
常用的有机合成反应包括酯化、酰化、醚化、烯烃加成等。
2. 糖化学合成:糖化学合成是合成天然产物和药物中不可或缺的一部分。
它通过利用糖的化学性质和反应特点,合成具有生物活性的化合物。
糖化学合成常用的反应有保护基的加入与脱除、糖苷键的形成与断裂等。
3. 无机合成:无机合成主要利用无机化学原理,在药物合成中也有一定的应用。
例如,无机合成可以用于合成金属配合物药物,通过改变配体结构和金属中心的性质,调控药物的活性和稳定性。
二、药物合成的新技术与挑战随着科学技术的不断进步,药物合成领域也出现了一些新的技术和挑战。
1. 绿色合成:绿色合成是近年来的研究热点之一。
它通过减少或消除有毒、有害的反应物和副产物的生成,减少对环境的污染,实现药物的可持续合成。
常见的绿色合成方法包括微波辐射、超声波辐射、催化反应等。
2. 生物合成:生物合成是利用生物体自身的代谢途径合成目标化合物。
它通过工程化生物体的基因组和代谢途径,调控药物合成中的关键酶和途径,实现高效、可控的合成。
生物合成可以利用真菌、细菌、植物等各种生物体,也可以利用合成生物学的方法构建新的微生物生产系统。
3. 多步合成:多步合成是合成复杂化合物和天然产物的一种常用方法。
它需要经过多个反应步骤,对反应条件和中间体的控制要求较高。
由于步骤较多,不同反应的耐受性和选择性可能产生问题,因此需要合理设计合成路线和优化条件。
三、总结药物合成是药学研究的重要内容之一,通过合理设计合成路线和反应条件,人工合成目标药物,并不断改进合成方法和开发新的技术,是实现药物研发和临床应用的关键。
四.缩合反应定义:两个及两个以上有机化合物通过反应形成一个新的较大分子或同一分子内部发生分子内的反应形成新分子的反应称为缩合反应。
Aldol:定义:在稀酸或稀碱催化下(通常为稀碱),一分子醛(或酮)的 氢原子加到另一分子醛(或酮)的羰基氧原子上,其余部分加到羰基碳上,生成 -羟基醛(或酮),这个增长碳链的反应称为α-羟烷基化反应。
但该类化合物不稳定,易消除脱水生成α,β-不饱和醛酮,又称Aldol缩合反应。
Aldol特点:酮:活性小于醛,反应速度慢。
1. 对称酮产物较单纯。
2. 不对称酮的自身缩合,在碱性或酸性催化下,反应都发生在取代较少的羰基碳原子上。
羟醛缩合催化剂碱:弱碱(如Na3PO4、NaOAc、Na2CO3、K2CO3、NaHCO3),强碱(如NaOH、KOH、NaOEt、NaH、NaNH2)酸:盐酸、硫酸、对甲苯磺酸、三氟化硼以及阳离子交换树脂等Cannizzaro反应(歧化反应)定义:凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇。
甲醛的羟甲基化反应和交叉Cannizzaro反应能同时发生,是制备多羟基化合物的有效方法。
定向醇醛(酮)缩合方法:A.烯醇盐法:醛或酮与具位阻的碱如LDA(二异丙胺锂)作用,形成烯醇盐再与另一分子醛或酮作用,B.烯醇硅醚法:醛、酮转变成烯醇硅醚,在TiCl4催化下与另一分子醛、酮分子作用。
C. 醛、酮与胺形成亚胺,与LDA形成亚胺锂盐,再与另一分子醛、酮作用。
Diels-Alder反应含有一个活泼的双键或叁键的烯或炔类和二烯或多烯共轭体系发生1,4-加成,形成六员环状化合物的反应称为Diels-Alder反应。
该反应易进行且反应速度快,应用范围广,是合成环状化合物的一个非常重要的方法。
《药物合成反应(闻韧主编第三版)》人名反应整理一、卤化反应1、Hunsdriecke反应(汉斯狄克反应):羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。
☆☆☆☆☆2、Sandmeyer反应(桑德迈尔反应):用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。
☆☆3、Gattermann反应(加特曼反应):将Sandmeyer反应条件改为铜粉和氢卤酸。
☆☆4、Schiemann反应(席曼反应):将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或直接将芳胺用亚硝酸钠和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。
☆二、烃化反应5、Willamson合成(威廉姆森合成):醇在碱(钠、氢氧化钠、氢氧化钾等)存在下与卤代烃反应生成醚的反应。
☆☆☆☆6、Gabriel合成(盖布瑞尔合成):将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾形成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,再经过肼解或酸水解即可得纯伯胺。
☆☆☆☆☆7、Delepine反应(德勒频反应):用卤代烃与环六亚甲基四胺(乌洛托品Methenamine)反应得季铵盐,然后水解即可得伯胺。
8、Leuckart-Wallach反应(鲁卡特-瓦拉赫反应):用甲酸及其铵盐可对醛酮进行还原烃化,得各类胺。
☆9、Ullmann反应(沃尔曼反应):卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。
三、酰化反应10、Friedel-Crafts反应(傅列德尔-克拉夫茨反应,也称傅-克酰基化反应):羧酸及羧酸衍生物在质子酸或Lewis酸的催化下,对芳烃进行亲电取代生成芳酮的反应。
☆☆☆☆☆11、Hoesch反应(赫施反应):腈类化合物与氯化氢在Lewis酸催化剂ZnCl2等的存在下与烃基或烷氧基取代的芳烃进行反应可生成相应的酮亚胺,再经水解则得到羟基或烷氧基取代的芳香酮。
药物合成反应规则总结为了使大家能更快了解与掌握药物合成反应规律,我将其总结如下,希望大家探讨提议。
共同进步!互相交流!1 Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例2 Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例3 Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
药物合成反应规则总结为了使大家能更快了解与掌握药物合成反应规律,我将其总结如下,希望大家探讨提议。
共同进步!互相交流!1 Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2 和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按SN2 进行的分子内重排反应:反应实例2 Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例3 Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
药物有机合成知识点总结一、化学反应1. 反应种类:药物有机合成的化学反应主要包括加成反应、消除反应、重排反应、取代反应、氧化反应和还原反应等。
2. 加成反应:通过添加两个或多个原子或原子团,使得双键或三键饱和的反应称为加成反应,例如氢化反应。
3. 消除反应:通过去除两个或多个原子或原子团,使得分子内双键或三键形成,反应称为消除反应,例如脱氢反应。
4. 重排反应:通过原子或原子团的重排,形成结构不同的产物,反应称为重排反应。
5. 取代反应:通过原子或原子团的替换,进行化学反应,形成新的化合物,反应称为取代反应。
6. 氧化反应:有机物氧化反应是指有机物中的含氢原子转移到氧中,使氧化物中的氢原子转移到有机物中,并且有机物的氢原子与氧结合,氧化成羟基,这样的反应叫做氧化反应。
7. 还原反应:还原反应是指化合物中的氧原子减少,或者氢原子增加,或者两者兼有的化学反应。
二、有机反应1. 羟基化反应:羟基化反应是一类经醛或酮为中间体的羰基化合物化学反应,也即一种有机物中的某一碳原子上的氢原子替换为羟基作用,相应的C-O键相形成的反应。
2. 脱羧反应:脱羧反应是指有机酸中的羧基脱除而得到与之相应的碳链低一级的化合物。
3. 缩合反应:缩合反应是指两个或多个分子相互作用生成较大的分子或有机化合物。
4. 还原反应:还原反应是指化合物中的氧原子减少,或者氢原子增加,或者两者兼有的化学反应。
5. 氧化反应:有机物氧化反应是指有机物中的含氢原子转移到氧中,使氧化物中的氢原子转移到有机物中,并且有机物的氢原子与氧结合,氧化成羟基,这样的反应叫做氧化反应。
三、有机合成1. 重要合成反应:有机合成中一些重要的反应有:氢化反应、酯化反应、醚化反应、醋酸酯化和酚醚化等。
2. 合成方法:药物的有机合成方法主要包括通过酸碱中和、氧化还原、消除反应、加成反应、取代反应、重排反应等方法。
3. 合成条件:有机合成的条件包括温度、压力、反应时间、反应物浓度、反应溶剂、酸碱性等。
药物合成反应知识点总结药物合成是一门综合化学、生物学、医学等学科知识的交叉学科,在药物研发、制备方面有着重要的地位。
掌握合成反应知识对于开发新药物、改进药物生产工艺以及合成新型医用化合物有着重要的意义。
下面将对药物合成反应知识点进行总结。
一、酯化反应酯化反应是一种醇和酸酐进行酯键形成的反应,常用于制备药物中的酯类化合物。
酯化反应通常需要酸性催化剂,如硫酸、氯化锌等。
常见的酯化反应包括醋酸乙酯和苯酚反应,以及异丁酸和异丁醇反应等。
酯化反应在药物合成中具有重要的应用价值,可以制备许多重要的药物原料和药物分子。
二、取代反应取代反应是指一种功能团被另一种功能团取代的化学反应。
在药物合成中,取代反应可用于引入新的官能团或者进行位置选择性修饰。
常见的取代反应包括亲电取代反应、芳香核烷基取代反应、核烷基取代反应等。
取代反应技术在药物合成中的应用广泛,可以实现对目标分子的精准调控。
三、溴化反应溴化反应是一种以溴化试剂为催化剂,将氢原子直接溴化的反应。
在药物合成中,溴化反应通常用于芳香环的溴化,在合成多种药物原料和中间体中具有重要应用价值。
溴化反应可以通过光化学、热化学等多种途径进行,是药物合成中不可或缺的反应类型。
四、氢化反应氢化反应是指将双键或者芳香环上的芳香核加氢生成饱和化合物的化学反应。
在药物合成中,氢化反应通常用于去除分子中的双键或者芳香环,改变化合物的性质和活性。
常见的氢化反应包括氢气加压氢化反应、催化氢化反应等。
氢化反应在药物合成中应用广泛,可以制备众多的药物原料和合成中间体。
五、缩合反应缩合反应是指将两个或者更多的分子通过断裂键和形成新键,生成较大的分子的化学反应。
在药物合成中,缩合反应可以用于合成多种多样的药物原料和药物分子。
常见的缩合反应包括醛缩合、酮缩合、酰胺缩合等。
缩合反应技术在药物合成中的应用非常广泛,是药物研发和制备的重要手段之一。
六、水解反应水解反应是指利用水分子将化合物中的官能团断裂,生成新的化合物的化学反应。
药物合成反应规则总结为了使大家能更快了解与掌握药物合成反应规律,我将其总结如下,希望大家探讨提议。
共同进步!互相交流!1 Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例2 Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例3 Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
4 Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例5 Birch 还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
(Ⅰ)不稳定而被质子化,随即从乙醇中夺取一个质子生成环己二烯自由基(Ⅱ)。
(Ⅱ)在取得一个溶剂化电子转变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中夺取一个电子生成1,4-环己二烯。
环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚。
反应实例取代的苯也能发生还原,并且通过得到单一的还原产物。
例如6 Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中夺取一个质子转变为自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化得到相应的醇。
反应实例醛酮也可以用本法还原,得到相应的醇:7 Bucherer 反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的。
反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺。
如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得。
反应机理本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反应实例8 Bamberger,E.重排苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排。
例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例9 Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物。
反应机理反应机理不详反应实例10 Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
反应实例11 Chichibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。
本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应。
喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。
氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
12 Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。
反应机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等。
反应实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。
如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混合酯缩合,在制备上没有太大意义。
如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产物。
如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等。
与其它含α-氢原子的酯反应时,都只生成一种缩合产物。
实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式表示:13 Claisen—Schmidt 反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例14 Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。
反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
15 Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
反应机理本反应的反应机理较复杂,目前尚不很清楚。
反应实例16 Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先得到高产率的β-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉。