小学数学《中国剩余定理》ppt
- 格式:ppt
- 大小:754.50 KB
- 文档页数:10
汉语余数定理,也称为汉语余数定理,是一个数论中关于一个变量的线性同余方程的定理,它解释了一个变量的线性同余方程的判据和解。
又称“孙子定理”,有“韩新兵”,“孙子定理”,“求术”(宋申国),“鬼谷计算”(宋周密),“隔墙”等古代名称。
计算”(宋周密),“切管”(宋阳辉),“秦王暗中战士”和“无数事物”。
一个变量的线性一致等式的问题最早可以在中国南北朝(公元5世纪)数学书《孙子书经》第26期中找到,这被称为“物是物”。
未知”。
原文如下:未知的事物,三到三个剩下两个,五到五个剩下三个,七到七个剩下两个。
问事物的几何形状?也就是说,将一个整数除以三分之二,五分之三和七分之二以找到该整数。
孙子的《佛经》首次提到了全等式问题和上述特定问题的解决方案。
因此,中国余数定理在中国数学文献中也将称为“孙子定理”。
1247年,宋代数学家秦久绍对“物不知数”问题给出了完整而系统的回答。
明代数学家程大为将解决方案汇编成《孙子的歌》,很容易赶上:三个人一起走了七十次,五棵树有二十一朵梅花,七个儿子团聚了半个半月。
除了一百零五,我们知道这首歌给出了秦绍的全同方程的模3、5和7的解。
意思是:将3除以70得到的余数,再乘以5除以得到的余数。
在图21中,将7除以15得到的余数相乘,将它们全部加起来并减去105或105的整数倍,得到的数字就是答案(除以105
得到的余数就是最小答案)。
例如,在上述事物数量未知的问题中,使用上述方法进行计算,根据民谣计算出的结果为23。
中国剩余定理又名「孙子定理」或称「鬼谷算」、「隔墙算」、「剪管术」、「秦王暗点兵」或「韩信点兵」,但当今数学界则称之为「中国剩余定理」(Chinese Remainder Theorem)。
「今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?」(摘自《孙子算经》卷下,第26题),意思是:现在一个未知数,除3时,余数是2;除5时,余数是3;除7时,余数是2,问这个未知数的最小值?中国著名数学家华罗庚教授,对这道题目有以下的说法:「求一个数,3除余2,5除余3,7除余2。
这个问题太容易回答了,因为3除余2,5除余3,7除余2,则21除余2。
而23是3、7余2最小的数,刚好又是5除余3的数。
所以心算快的人都算出!」(摘自《华罗庚科普著作选集》第84页)正如华罗庚教授所说,重点并不是计算出23这个结果,数学便是不仅于此。
数学的研究便是希望找到这道题的特质,作出普遍化的解法。
你又可知道这道名题的普遍解吗?很多中国的名事迹或名题,在民间都有歌谣,有的唱出一个故事,有的唱出这些名题的解法。
而这「鬼谷算」也不例外,而且还有几个不同版本,以下是其中之一:三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知。
摘自《算法统宗》卷四这些解的意思是说,用70乘3除所得的余数,用21乘5除所得的余数,用15乘7除所得的余数,然后再加起来。
如果其和大于105,则减去105,直至小于105为止,最后这个数便是答案。
以「鬼谷算」中的余数为例: 2×70+3×21+2×15-105-105 =23那么,(一)如何推出这个结果?(二)如果除数改变了,或有更多的余数时又如何?简而言之,可以把这个方法推广吗?讨论中国剩余定理,同余(congruence)的概念是必须的理论基础。
给定一个正整数n,我们说两个数a、b是对模n同余,如果a-b是n的倍数。
用符号a≡b(mod n)来代表。
中国剩余定理的内容
嘿,今天咱来聊聊中国剩余定理哈。
你知道不,这可是个超厉害的东西呢!
就说有一次啊,我去帮朋友数他收集的那些宝贝卡片。
他有一堆卡片,分成了好几种类型。
他跟我说,一种类型的卡片如果 3 张 3 张地数,会剩下 1 张;另一种类型的 5 张 5 张地数,会剩下 2 张;还有一种类型 7 张 7 张地数,会剩下 3 张。
哎呀,这可把我给难住了,我这脑袋瓜怎么能一下子算出每种类型各有多少张卡片呢。
这时候我就突然想到了中国剩余定理呀。
它就像是个神奇的魔法棒,能帮我解决这个难题呢。
它大概的意思就是,通过一些巧妙的计算和分析,能在这种看似混乱的剩余情况中找到答案。
有了它,我就开始捣鼓起来啦。
我按照定理的方法,一步一步地去分析那些条件,嘿,还真让我算出了大概的数量范围呢。
虽然具体的数字还需要再仔细琢磨,但至少我有了个方向呀。
你看,中国剩余定理多有用啊,在我们遇到这种让人头疼的分组剩余问题时,它就能大显身手啦。
就像我帮朋友数卡片这件事,要是没有它,我还不知道得在那纠结多久呢。
所以啊,可别小瞧了这个定理,它真的能给我们解决不少实际问题呢。
以后要是再碰到类似的情况,我就知道该怎么轻松搞定啦,哈哈。
这就是中国剩余定理啦,一个超棒的数学知识!。
中国剩余定理孙子定理是中国古代求解一次同余式组(见同余)的方法。
是数论中一个重要定理。
又称中国余数定理。
一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。
《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
中文名孙子定理外文名Chinese remainder theorem(CRT)分类数学提出孙子问题一元线性同余方程组又名余数定理目录.1公式.2文献.3交换环上推广.主理想整环.一般的交换环.4数论相关.5例题解析公式用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组:有解的判定条件,并用构造法给出了在有解情况下解的具体形式。
中国剩余定理说明:假设整数m1,m2, ... ,m n两两互质,则对任意的整数:a1,a2, ... ,a n,方程组有解,并且通解可以用如下方式构造得到:设是整数m1,m2, ... ,m n的乘积,并设是除了m i以外的n- 1个整数的乘积。
设为模的数论倒数(为模意义下的逆元)方程组的通解形式为在模的意义下,方程组只有一个解:证明 [1]:从假设可知,对任何,由于,所以这说明存在整数使得这样的叫做模的数论倒数。
考察乘积可知:所以满足:这说明就是方程组的一个解。
另外,假设和都是方程组的解,那么:而两两互质,这说明整除. 所以方程组的任何两个解之间必然相差的整数倍。
而另一方面,是一个解,同时所有形式为:的整数也是方程组的解。
所以方程组所有的解的集合就是:文献一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
中国剩余定理一般指孙子定理。
孙子定理是中国古代求解一次同余式组(见同余)的方法。
是数论中一个重要定理。
又称中国余数定理。
一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。
《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?
即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。
《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。
明朝数学家程大位将解法编成易于上口的《孙子歌诀》:
三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知
这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。
意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后除以105(或者105的倍数),得到的余数就是答案。
比如说在以上的物不知数问题里面,按歌诀求出的结果就是23。
中国剩余定理一般指孙子定理
孙子定理是中国古代求解一次同余式组(见同余)的方法。
是数论中一个重要定理。
又称中国余数定理。
一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。
《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。