《光镊原理及应用》课程教学大纲
- 格式:pdf
- 大小:157.08 KB
- 文档页数:3
精品文档1.1光镊技术简介光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。
1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。
此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。
在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。
1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。
也因此,光镊的正式名称为“单光束梯度力势阱”(single-beam optical gradient force trap)。
由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。
这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。
目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。
1.2光镊的原理与特点众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。
究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。
而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。
1.2.1光压与单光束梯度力光阱光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。
1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。
光镊的技术原理及应用1. 引言光镊是一种利用激光束产生光压力,对微小粒子进行操控和固定的技术。
其原理基于光子的动量,通过调节激光的光束参数,可以实现对微粒子的捕捉、移动、旋转等精确控制。
光镊技术在生物医学、纳米科学、光学通信等领域具有广泛应用。
2. 原理光镊技术的原理基于光子的动量和光压效应。
光子是光的最小单位,具有一定的动量。
当光子射到物体上时,其动量将被传递给物体,使其受到压力。
利用激光束产生的高强度、高聚焦的光场,可以对微小粒子施加足够的光压力,实现对其进行操控。
光镊技术主要基于两种光压效应:反射光压和偏折光压。
反射光压是指激光束射到微粒子表面后,被微粒子反射回去,产生反向的光压力。
偏折光压是指激光束通过微粒子时,由于微粒子对光的折射率不同于周围介质,产生折射现象,使光束偏折,从而产生光压力。
这两种光压效应可以结合使用,实现对微粒子的精确控制。
3. 技术应用3.1 生物医学领域光镊技术在生物医学领域有广泛的应用。
例如,可以利用光镊技术对单个细胞进行操控和研究,包括单细胞分离、单细胞操控、单细胞解析等。
此外,光镊技术还可以用于显微手术,如利用激光束进行准确切割或光凝固,实现微创手术。
光镊技术在生物医学领域的应用有望进一步推动微创手术的发展,并为生物医学研究带来突破。
3.2 纳米科学领域光镊技术在纳米科学领域也有重要应用。
通过调节激光的光束参数,可以对纳米颗粒进行精确的操控和排列,实现纳米技术的发展。
例如,可以利用光镊技术将纳米颗粒按照一定的规则排列,制备纳米材料的光学器件或纳米电路。
此外,光镊技术还可以用于纳米机器人的控制和操纵,推动纳米科学的进一步研究和应用。
3.3 光学通信领域光镊技术在光学通信领域有着重要的应用。
利用光镊技术,可以对光纤中的光信号进行精确的调控和处理,实现光信号的控制和传输。
例如,可以利用光镊技术对光纤中的光信号进行调制,实现光信号的放大或滤波。
此外,光镊技术还可以用于光纤通信系统中的光路选择和光纤连接的调整,提高光通信的可靠性和性能。
光學鑷子(optical tweezers)清華大學物理系近代物理實驗室初稿2003/10/31一、 目的使用雷射光捕捉微米粒子。
二、 原理粒子被拉向焦點來自物鏡的光 粒子受到向上的力 粒子受到向下的力 粒子受到向左的力 =粒子中心 =光焦點 F三、儀器二極體雷射(658nm,23mW),修改過的鹵素桌燈20W,平凸透鏡,三軸式移動平台,100倍油物鏡(NA=1.25),高黏滯性物鏡油,網路攝影機。
實驗裝置如圖一所示。
四、裝置實驗裝置如圖一所示。
本實驗裝置分成兩部分:光學顯微鏡系統和雷射光源系統。
實驗者可透過光學顯微鏡(先架設),看到微米粒子的運動情況。
用來捕捉微米粒子的雷射光束由雷射光源系統產生。
架設實驗裝置時,保持光束(雷射和顯微鏡)在同一平面,可簡化稍後光束的校直(aligment)工作。
利用名片卡將全部的光學元件調整到接近參考高度,但與雷射光路徑成90度垂直的顯微鏡光路徑較難調整。
1.光學顯微鏡系統顯微鏡光源是修改過的20W鹵素桌燈,並使用兩片平凸透鏡將光聚在樣本上。
樣本是垂直的固定在三軸式移動平台,用於側向移動樣本與聚焦。
我們選擇100倍顯微物鏡,因為物境的透鏡與樣品均鉛垂放置,所以須使用高黏滯性物鏡油。
微米粒子將在距物鏡背面約160mm的位置成像,直接將影像投射到網路攝影機(Web camera)的CMOS探針上(須先將攝影機前端的透鏡移除) ,最後再將數位影像訊號傳至電腦。
2.雷射光源系統從二極體雷射出來的雷射光先後經過平面鏡與雙色面鏡(dichroicmirror) ; 需使用兩面鏡子調整雷射光束,使光束與顯微鏡光軸(物鏡光軸)重合。
雙色面鏡的主要特性是將雷射光反射至物鏡內,同時讓影像光束通過。
在兩面鏡間放入一個凸透鏡,使光束聚焦於物鏡背面160mm處,是為了得到強度分布較尖銳的雷射光束。
五、步驟1.先利用雷射光束進行粗調,將兩面平面鏡與鹵素燈座調整至適當位置(雷射光束經兩面平面鏡反射後仍在同一高度)。
光镊的技术原理及应用光镊是一种利用光学力对微小粒子进行操作和操纵的技术设备。
它的技术原理主要基于激光束的光学力和光动力学效应。
通过调控激光束的参数,如光强、波长和光束的横截面形状等,可以对微小粒子产生吸引力或推力,实现对其位置和运动的控制,从而实现对微小粒子的操作。
光镊的技术原理主要包括光学效应、散射效应和吸收效应。
其中光学效应是最基本的原理,它通过光场对粒子施加的力来操纵粒子的运动。
当激光入射到粒子上时,激光光子与粒子之间会发生散射作用或吸收作用。
激光束的光强和波长的选择会影响光学效应的大小和类型。
当光学效应与光学力平衡时,粒子会被束缚在光学力场中,形成光镊效应,这样就可以对粒子进行操作。
光镊技术有着广泛的应用领域。
首先,光镊技术可以用于微生物学研究。
通过光镊技术,可以操纵微生物细胞、病毒等微小生物粒子,进行单个细胞的操作和研究。
例如,可以通过光镊技术捕获和操作单个细胞,研究其生长、分裂和运动等过程。
此外,还可以通过光镊技术将不同种类的微生物分离,实现对微生物的定点操作。
其次,光镊技术在生物医学领域也有很多应用。
例如,可以利用光镊技术对单个细胞进行操作,并对细胞内部进行精细的观察和测量。
这对于了解细胞的功能、结构和代谢等过程具有重要意义。
此外,光镊技术还可以结合显微技术,实现对活体组织和器官进行非侵入性操作和观察。
例如,可以通过光镊技术对活体细胞进行切割、焊接、注射等操作,用于研究和治疗癌细胞、神经退行性疾病等疾病。
再次,光镊技术也可以应用于纳米技术和纳米制造领域。
通过光镊技术,可以操纵和组装纳米颗粒,构建纳米结构和纳米器件。
例如,可以通过控制光镊的位置和力度,操纵纳米颗粒进行排列和组装,构建具有特定功能和性能的纳米结构。
此外,还可以利用光镊技术对纳米材料进行加工和处理,实现对纳米材料的精确控制和调节。
总之,光镊技术通过利用光学力对微小粒子进行操作和操纵,具有广泛的应用前景。
它在微生物学研究、生物医学领域和纳米技术等领域都有重要应用。
光镊的原理和应用1. 引言光镊是一种利用光的特性实现微小物体操控的技术。
它在生物医学、纳米材料学和微机电系统等领域有着广泛的应用。
本文将介绍光镊的原理和应用,并说明其在不同领域中的重要性。
2. 光镊的原理光镊的原理基于光与物质的相互作用以及光场的调控。
通过合理设计光场分布,可以产生光势阱或光力场,从而实现对微小物体的操控。
2.1 光强梯度力当物体遇到光强梯度时,会受到光强梯度力的作用。
此力使物体沿着光束方向移动,类似于光的推动力。
通过调整光场的分布,可以形成光强梯度力,从而实现对微小物体的移动。
2.2 光兽手术光兽手术是利用光镊进行微创手术的一种技术。
通过调控光场,可以使光束在物体中产生高能量焦点,实现对微生物的精确灭活或组织切割。
此技术在眼科手术、癌症治疗等领域有着重要的应用。
3. 光镊的应用光镊在多个领域中有着广泛的应用。
下面将介绍光镊在生物医学、纳米材料学和微机电系统等领域的具体应用场景。
3.1 生物医学领域•单细胞操作:通过光镊可以对单个细胞进行操控,实现细胞的分离、聚合和操作。
这在细胞实验、组织工程和基因研究中具有重要意义。
•药物递送:光镊可以用于精确控制药物的递送。
通过光场调控,可以实现药物的定点释放,提高治疗效果并减少副作用。
•组织修复:光镊在组织修复和再生领域有着重要的应用。
通过光镊可以激活和引导干细胞的分化,促进组织的修复和再生。
3.2 纳米材料学领域•纳米粒子操控:光镊可以用于操控纳米粒子的位置和运动。
通过调控光场,可以实现对纳米粒子的定点聚集和操纵,有助于纳米材料的组装和制备。
•纳米光刻:光镊在纳米制造中的应用也非常重要。
通过调控光场,可以实现纳米尺度的加工和剖析,为纳米器件的制造提供了有效的手段。
3.3 微机电系统领域•微机械操控:光镊可以用于微机械系统中的微小物体操控。
通过调控光场,可以实现对微小机械结构的精确操控和定位,有助于微型传感器和微机械器件的研究和应用。
•光学传感:利用光镊可以实现高灵敏度和高分辨率的微小物体测量。
基于光镊技术的细胞操作及其应用光镊技术是一种利用激光束束焦点对物体进行操作的技术,它可以在亚微米尺度上操作物体,因此在生命科学领域得到了广泛的应用。
其中,基于光镊技术的细胞操作是一种非常重要的应用,可以帮助科学家们更深入地研究生命体系的各个方面。
一、光镊技术的基本原理光镊技术的基本原理是利用激光束的聚焦效应,将激光束在一个非常小的区域内集中,形成光学镊。
通过控制激光束的强度和位置,可以在这个区域内对物体进行吸附、推动、切割、粘连等各种操作。
二、基于光镊技术的细胞操作在生命科学领域,细胞是一个非常重要的研究对象。
而基于光镊技术的细胞操作可以为研究者们提供一个非常好的手段,使他们能够对细胞内部结构和活动进行更加精细的控制和观察。
1. 细胞位置精确定位利用光镊技术,可以对细胞进行非常精确的定位和移动。
科学家们可以利用激光束将细胞吸附到设置的位置上,或者将细胞推动到指定的位置,进而研究细胞的形态变化和结构。
2. 细胞内部结构操作利用光镊技术,可以对细胞内部的结构进行操作。
例如,可以将某些细胞器或分子从细胞内部移动到指定的位置上,或者将某些细胞器或分子从细胞内部移除,进而了解其在细胞活动中的作用。
3. 细胞活动控制通过光镊技术,可以对细胞的活动进行控制。
例如可以利用激光束激励细胞内部某些分子的活动,或者抑制某些分子的活动,从而研究细胞活动中的机制和过程。
三、基于光镊技术的细胞操作的应用基于光镊技术的细胞操作已经被应用在许多领域,包括细胞生物学、生物医学、生物化学等。
其主要应用包括:1. 细胞研究基于光镊技术的细胞操作可以帮助科学家们更深入地研究细胞的结构和功能,如细胞内部运作机制,细胞间相互作用机制等。
2. 细胞治疗通过使用光镊技术,可以对细胞进行某种形式的治疗。
例如,利用激光束对细胞进行定位或移动,可以帮助细胞在某些治疗中达到最佳状态。
3. 内窥镜手术利用内窥镜手术可以帮助医生们更加精准地进行手术操作,减小手术创伤。
集成光镊的原理及应用1. 简介集成光镊是一种利用光学原理实现精确操控微小物体的技术。
它集成了光学器件和微操控系统,能够对微尺度物体进行非接触式、高精度的操控。
本文将介绍集成光镊的工作原理以及在不同领域的应用。
2. 工作原理集成光镊的工作原理基于光学力的作用。
当定向的光束照射到微尺度物体上时,光的动量和光束的光场分布会对物体施加力,从而实现对物体的操控。
2.1 光学力与物体操控在光学力作用下,物体会受到光束的压力。
这种压力可以使物体向光束的中心移动,或者沿着光束的方向旋转。
对于微小物体而言,光学力的作用非常显著,可以实现微米或纳米级别的精确操控。
2.2 光学器件集成光镊采用了多种光学器件来实现对光束的控制和调节。
常见的光学器件包括:•透镜:用于调节光束的聚焦程度和光斑的大小。
•光栅:用于调节光束的相位和方向。
•偏振器:用于调节光束的偏振状态。
通过合理组合和控制这些光学器件,可以实现对光束的精确控制,从而实现对微小物体的操控。
2.3 微操控系统除了光学器件,集成光镊还包括了微操控系统,用于控制光学器件和物体的相对运动。
微操控系统可以控制光学器件的位置、角度和光强等参数,从而实现对光束的精确调节。
通过微操控系统,可以实现对微小物体的平移、旋转、捕获等操作。
3. 应用领域集成光镊在多个领域具有广泛的应用。
下面将介绍几个重要的应用领域。
3.1 生物医学在生物医学领域,集成光镊被用于细胞操作、光学显微成像和微流体控制等方面。
通过集成光镊,可以精确操控细胞的位置和形态,用于研究细胞的功能和相互作用。
此外,集成光镊还可以实现对微流体的控制,如调节液体的流速和混合效果。
3.2 纳米制造在纳米制造领域,集成光镊被用于纳米材料的操控和组装。
通过集成光镊,可以实现对纳米颗粒的精确操控,如将纳米颗粒放置到指定的位置,实现纳米材料的组装和排列。
3.3 光子学在光子学领域,集成光镊被用于光学元件的定位和对齐。
通过集成光镊,可以实现对光纤、光栅等光学元件的精确操控,提高光学器件的性能和稳定性。
光镊技术在生物实验中的应用研究光镊技术是一种利用激光成像技术和激光光束束缚单个或少量微小物体的技术。
它具有快速、准确、精细等特点,并且在生物实验中有着广泛的应用。
一、光镊技术的原理光镊技术是利用激光产生作用力的原理,当激光束照射到微观颗粒上时,由于光学力的作用,颗粒受到的作用力使其在光束的光学势场中处于平衡状态。
这种作用力可以将微观颗粒固定在一个空间位置上,这就是所谓的光学“镊子”。
二、光镊技术在生物实验中的应用1.细胞操纵细胞操纵是光镊技术在生物实验中最常见的应用之一。
通过控制激光束的移动和强度,可以实现对细胞的定向移动、操控、切割等操作,从而实现对细胞的形态、生理和功能进行研究。
2. DNA修复光镊技术还可以应用于DNA修复研究中。
在DNA分子中,由于损伤、烷基化、辐射等因素会导致DNA链断裂或广泛损伤。
利用光镊技术,可以将损伤的DNA链修复还原,从而防止疾病发生。
3. 分子机器的组装与操作分子机器是在生物学和生物医学中起着重要作用的纳米机器。
光镊技术可以应用于分子机器的组装和操作上,通过镊子的作用力将多个分子连接在一起组成复杂纳米结构,实现更为精确的操作和控制。
三、光镊技术的发展前景随着技术的发展和应用场景的拓展,光镊技术在生物实验中的应用前景非常广阔。
未来,光镊技术将在细胞病毒的治疗方面、基因编辑技术中、药物研究和测定中等发挥重要作用。
同时,光镊技术在生物实验中的研究也将不断深入,为人类健康和医学研究提供更为精确的技术支持。
总的来说,光镊技术是一种十分有前途的技术,它在生物实验中的应用已经开始展现出其身手,未来光镊技术的应用前景将会异常广阔。
因此,未来的研究方向也将会越来越多,我们也将会看到更加令人惊喜的高科技的涌现。
雷阵雨作文(通用10篇)今天,天气闷热,老天爷好似心情不好,板着脸儿。
天,阴沉沉的,在外面玩得正欢的我,发现乌云滚滚,知道一定要下雨了,马上跑回家,关上窗子。
果然不出我所料,过了一会儿,一道闪电以迅雷不及掩耳之速划过天空,把乌黑的天幕撕成两半,紧接着雷公大发雷霆,消沉的轰隆声让人毛骨悚然。
这时,飘下几滴雨点,紧接着豆粒般大小的雨滴向地面俯冲而去,在地上、伞上不时溅起一朵朵“水花〞。
道路上车水马龙,堵得水泄劲不通。
人们都想快点回家,却一直寸足难行。
两旁的大树被吹得摇摇摆摆,像个喝醉的汉子。
绿带上的小花很纤弱,补冲倒了几片花瓣,无力地低着头。
人们打着伞,顶着风走,非常吃力,有的伞突然倒了过来了,成了“蒲公英〞,立即招来一阵哄堂大笑。
雷阵雨雷阵雨,只下一阵的雨。
这不,停了,天上挂着一条美丽的彩虹,天空仿佛在向我微笑……困难只有一阵,撑过去就可以看见美好的世界。
“轰隆隆〞雷公公拿出珍藏很久的鼓,重重地敲了几下,鼓声震耳欲聋,把教室里的小朋友都吓了一跳。
一道道闪电如巨龙飞腾,好似为大自然这个舞台亮起炫目的灯光。
“哗哗哗〞豆大的雨点奏起了欢快的乐曲,音乐会开始了。
俏皮的雨点从云朵里蹦到地上,渐渐地湿漉漉的地上结起薄薄地水层,转眼间又变成一个个小小的湖。
雨点落在湖中溅起一朵朵水花,仿佛是美丽的花儿在开放,又像是雨点在跳舞。
“轰隆隆〞雷公公又为在跳舞的雨点伴奏。
过了一会儿,雨停了,云散了,太阳公公又发出了灿烂的光辉。
今天,下了一场特大阵雨。
我午睡起来,发现天空一片黑暗,乌云在空中翻滚着,被风吹起的尘土和树叶到处飞扬。
预示着暴风雨就要来临了。
一个个闪电像带电的火龙在空中不断闪现,照亮着大地。
雷声,紧随着闪电的.影子在远处滚动着,发出一连串强大的声音,豆大的雨点开始漂落,路上的行人都缩着脖子弯着腰飞快地往家跑去。
哗,哗,雨越下越大,渐渐地,就像有人在空中用盆往下泼一般,看,雨落到地上溅起一朵朵漂亮的水花。
雨水落到房顶上,从房檐滑落下来连成一根根银丝像一副水帘。
光镊原理及其应用摘要:激光的发明使得光的力学效应走向了实际应用。
本文介绍了光镊技术的基本原理及其在生物科学方面的一些应用。
关键词:光镊;光的力学效应;生物科学;应用1 引言光镊是A. Ashkin[1]在关于光与微粒子相互作用实验的基础上于1986年发明的。
光镊在问世之初被看作是微小宏观粒子的操控手段,并渐渐成了光的力学效应的研究和应用最活跃的领域之一。
近20年来光镊技术的研究和应用得到了迅速的发展,特别是在生命科学领域,光镊已成为研究单个细胞和生物大分子行为不可或缺的有效工具。
2 基本原理光镊的基本原理在于光与物质微粒之间的动量传递的力学效应。
对于直径大于波长的米氏散射粒子来说,光镊的势阱原理可以用几何光学来解释[1~3]。
如图1(a)所示。
入射光线A将光子的动量以辐射压的形式作用于粒子小球,力的作用方向与光线入射方向相同。
A经过若干反射、折射后,以光线A’出射。
入射光线的辐射压减去出射光线的辐射压为粒子小球所受的净剩力F A。
图1(b)为作用力简图,实际力的作用过程较此复杂,A’应为所有(包括反射光透射光)出射光线辐射压的合力,但结果与此相似,小球受轴向指向焦点的力。
对于直径小于激光波长的瑞利散射颗粒,适用于波动光学理论[1]和电磁模型。
波动光学理论(也是光镊的基本理论)认为,在光轴方向有一对作用力:与入射光同向正比于光强的散射力和与光强梯度同向正比与强度梯度的梯度力。
在折射率为n m的介质中,折射率为n p 的瑞利粒子所受的背离焦点的散射力为[1]F scat =n m P scat/ c (1)这里P scat为被散射的光功率。
或用光强I0和有效折射率m = n p / n m表示为(2)对于极化率为α的球形瑞利粒子所受的指向焦点的梯度力为(3)这样,在焦点处形成势阱的标准为指向焦点的梯度力与背离焦点的散射力之比大于1,即两者的合力指向焦点,即有(4)若粒子小球在横向(垂直于光轴方向)偏离中心位置,也会受到一个指向光束中心的作用力使小球锁在焦点处。
《光镊原理及应用》课程教学大纲
一、课程基本信息
课程中文名称:光镊原理及应用
课程英文名称:Optical tweezers theory and application
开课学期:2
学时:16
学分:1
二、课程目的和任务
激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。
是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。
通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。
三、教学内容与基本要求
教学主要内容及对学生的要求:
教学主要内容
第一章 光镊技术的产生与发展
光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状
第二章 光镊技术及其基本原理
光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱
第三章 光镊的理论分析与计算方法
光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能
传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术
远场光纤光镊、近场光镊
第5章 光镊技术的发展应用
光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用
对学生的要求:
1、 对光镊原理方法有明确认识。
2、 对光镊系统的性能、参数能深入了解,并能自由运用。
3、 能够了解光阱力的计算方法。
4、 有查阅外文资料的能力。
五、教学设计及方法
教学方式
1) 教学与科研结合,激发学生的求知欲
2)专家讲授与教师专题讲座相结合,拓展学生知识面
3)理论与实践结合,加强学生实验技能的训练
4)中、英双语教学相结合,提高学生国际交流能力
5)撰写专题调研报告,培养学生的自主创新能力
教学手段
将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。
1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾
2)课件与电视录像片相结合,以提高学生的自学能力
3)丰富的网络资源为学生学习提供良好的软环境
六、调查、参观、实践、实验内容
七、主要参考资料
[1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996
[2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年
[3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年
[4] Ashkin A. Optical trapping and manipulation of single
cells using infrared laser beams. Nature, 1987, 33: 256-
267P
[5] Ashkin A, Dziedzic J M. Optical trapping and manipulation
of viruses and bacteria. Science, 1987, 235(4795): 1517-
1520P
[6] Sasaki M, Kurosawa T, Hane K. Micro-objective manipulated
with optical tweezers. Appl. Phys. Lett, 1997, 70: 785-787P 撰写人签字:院(系)教学院长(主任)签字:。