理想稀溶液溶剂和溶质的化学势溶剂
- 格式:ppt
- 大小:1.44 MB
- 文档页数:30
第四章多组分系统热力学4.1有溶剂A与溶质B形成一定组成的溶液。
此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。
以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于和之间时,溶液的总体积。
求:(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460 ︒C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50 %,求60 ︒C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为求得甲醇的摩尔分数为根据Raoult定律4.580 ︒C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80 ︒C时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult定律4.6在18 ︒C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。
现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ︒C下的体积及其组成。
设空气为理想气体混合物。
其组成体积分数为:,解:显然问题的关键是求出O2和N2的Henry常数。
18 C,气体压力101.352 kPa下,O2和N2的质量摩尔浓度分别为这里假定了溶有气体的水的密度为(无限稀溶液)。
1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+Q 吸正放负 W外对正 对外负2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能变此式适用于理想气体单纯pVT 变化的一切过程。
第四章多组分系统热力学4.1有溶剂A 与溶质B 形成一定组成的溶液。
此溶液中B 的浓度为cB ,质量摩尔浓度为bB ,此溶液的密度为。
以MA ,MB 分别代表溶剂和溶质的摩尔质量,若溶液的组成用B 的摩尔分数xB 表示时,试导出xB 与cB ,xB 与bB 之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A )中形成的某溶液,质量分数,此溶液在20°C 时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25°C ,1kg 水(A )中溶有醋酸(B ),当醋酸的质量摩w ww .k h d a w .c o m 课后答案网尔浓度bB 介于和之间时,溶液的总体积。
求:(1)把水(A )和醋酸(B )的偏摩尔体积分别表示成bB 的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460°C 时甲醇的饱和蒸气压是84.4kPa ,乙醇的饱和蒸气压是47.0kPa 。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50%,求60°C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为w w w .k h d a w .c o m 课后答案网求得甲醇的摩尔分数为根据Raoult 定律4.580°C 是纯苯的蒸气压为100kPa ,纯甲苯的蒸气压为38.7kPa 。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80°C 时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult 定律4.6在18°C ,气体压力101.352kPa 下,1dm3的水中能溶解O20.045g ,能溶解N20.02g 。
现将1dm3被202.65kPa 空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325kPa ,18°C 下的体积及其组成。
物理化学每章总结 第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。
根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。
2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。
必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。
3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。
以Q 表示,Q>0 表示环境向系统传热。
功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。
以W 表示。
W>0 表示环境对系统做功。
(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p Wd δe -=式中pe 表示环境的压力。
对于等外压过程 )(12e V V p W --=对于可逆过程,因ep p =,p 为系统的压力,则有Vp W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。
4.热力学能热力学能以符号U 表示,是系统的状态函数。
若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即),(V T f U =则其全微分为VV U T T U U TV d d d ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有 0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T )即一定量纯态理想气体的热力学能只是温度的单值函数。
5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变 ② “不供给能量而可连续不断做功的机器称为第一类永动机,第一类永动机是不可能存在的。
(2) 数学表达式对于封闭系统,热力学第一定律的数学表达式为W Q U δδd += 或 W Q U +=∆即封闭系统的热力学能的改变量等于过程中环境传给系统的热和功的总和。
第二章自由能化学势溶液2.1 本章学习要求1.掌握自由能、自由能判据及ΔG的计算;2.了解偏摩尔数量;掌握理想气体、理想溶液的化学势;了解非理想气体、非理想溶液的化学势;3.了解化学势与稀溶液依数性的关系和分配定律。
2.2 内容概要2.2.1 热力学第一、第二定律联合式热力学第一定律δQ = d U + p e d V-δW/(W/为非体积功)热力学第二定律T d S≥δQ一、二定律联合式-d U-p e d V + T d S ≥-δW/2.2.2 Gibbs(吉布斯)自由能及其判据1. Gibbs自由能(Gibbs free energy)定温定压下,从热力学一、二定律得-d(U + p V-TS)≥-δW/定义Gibbs自由能G≡U + p V-TS≡H-TSG是状态函数,广度性质,具有能量的量纲,绝对值不能确定。
2. Gibbs自由能判据(criterion of Gibbs free energy)-d G≥-δW/ 或-ΔG≥-W/(>为不可逆过程,=为可逆过程)定温定压封闭体系的Gibbs自由能在可逆过程中的减少值等于体系做的最大非体积功;在不可逆过程中的减少值大于体系做的非体积功。
体系变化自发性Gibbs自由能判据:定温定压、非体积功为零的封闭体系,d G T,p,W/=0≤0 或ΔG T,p,W/=0≤0 (<:自发过程,=:可逆过程)自由能降低原理(principle of free energy decreacing):定温定压下,不做非体积功的封闭体系,总是自发的向着Gibbs自由能降低的方向变化;当Gibbs自由能降低到最小值时,体系达到平衡态。
Gibbs自由能判据完全等同于孤立体系的熵判据。
它的优点在于Gibbs自由能判据只用体系的热力学变量。
3.Helmholtz(亥姆霍兹)自由能(Helmholtz free energy)定T、V下,由一、二定律联合式得-d(U-TS)≥-δW/ 定义Helmholtz自由能F≡U-TS-d F T,V = -δW/-ΔF T,V = -W/Helmholtz自由能判据(criterion of Helmholtz free energy)ΔF T,V,W/=0≤0 (<:自发过程,=:可逆过程)4.热力学基本公式(只做体积功W/=0的封闭体系的任意过程)d U = T d S-p d V d H = T d S + V d p* d G = -S d T+ V d p d F = -S d T-p d V 以*式最为重要5.Gibbs自由能随温度、压力的变化定压下,Gibbs自由能随温度的变化,,定温下,Gibbs自由能随压力的变化,;2.2.3 ΔG的计算1. 简单的p、V、T变化过程的ΔG对只做体积功的均相封闭体系d G = -S d T+ V d p定温条件下,d T=0,d G = V d p,或(封闭体系气、液、固的定温变化)。
1.E = U+T+V2.H ≡U +pV2.1 理想气体绝热可逆过程有3种等价的形式:(3)常数= T p (2)常数= pV (1)常数= TV -1-1γγγγ 3.单原子分子:CV,m=3/2R Cp,m=5/2R 双原子分子:CV,m=5/2R Cp,m=7/2R 多原子分子:CV,m=3R Cp,m=4R 4.ξ:反应进度BB t B n n νξ)0()(-=5.基尔霍夫定律的定积分式:T1)-m(T2rCp, +rHm(T1)= mdTrCp, +rHm(T1) =rHm(T2)T2T1∆∆∆∆∆⎰6.卡诺热机=-W/Q2=(T2-T1)/T2 =1-(T1/T2) 7.熵的微观意义: S=klnWW:宏观状态拥有的微观运动状态的数量 k :Boltzmann 常数8.纯物质B 在状态(T,p)的规定熵即为下 述过程的熵变:),()0(p T B K B →Kp T B T K p T B S S S S 0,0),(-=∆=9. 等温过程的熵变: (理想气体)(p1/p2)nRln = Sp2/p1=V2/V1∴p2V2=p1V1∵(1)(V2/V1)nRln = S 1)/T nRTln(V2/V =-WR/T =QR/T =QR/T ∫=S ∆∆∆δ10. 绝热过程:绝热可逆过程, 由熵的判别式:0 = S ∆ 绝热可逆 (2)绝热不可逆过程: 对此类过程需设计一条可逆途径, 从相同的始态到相同末态, 再沿可逆途径求算熵变.11. 变温过程: 简单体系 A. 等压变温:)Cpln(T2/T1 =(4)(Cp/T)dT =QR/T ∫=S CpdT=QR ⎰∆δδB. 等容变温:ln(T2/T1)C =/T)dT ∫(C =/T Q ∫=S dTC =Q V V R V R δδ∆12.相变过程:平衡相变:平衡相变是一可逆过程, 在等温等压下进行./T Q =Q/T ∫=S R δ∆平衡相变有: H =Qp ∆ 故平衡相变的熵变为:相变H/T =S ∆∆ (6)即:平衡相变的熵变等于相变潜热除以相变温度 13.理想气体的混合过程:(1).A, B 先各自等温可逆膨胀到各自的末态; (2).可逆混合. 第一步的熵变为:2Rln2= )/V Rln(V +)/V Rln(V =S +S =S1B 1,B 2,A 1,A 2,B A ∆∆∆第二步熵变为零14.赫氏自由能 F ≡U -TS状态函数,广度性质,没有明确的物理意义,具有能量的量纲.15.在等温过程中,一封闭系统所能作的最大功等于系统的亥姆霍兹函数的减少。