山东省菏泽市东明县2017-2018学年八年级(下)期末数学试卷
- 格式:docx
- 大小:140.66 KB
- 文档页数:5
2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。
山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2017·嘉祥模拟) 函数的自变量x的取值范围是()A . x≤3B . x≠4C . x≥3且x≠4D . x≤3或x≠42. (2分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④3. (2分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A . 30°B . 40°C . 80°D . 108°4. (2分) (2016八上·灵石期中) 设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A . a>bB . a<bC . a=bD . 无法确定5. (2分)从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A .B .C .D .6. (2分) (2017七下·江阴期中) 若一个多边形每一个内角都是135°,则这个多边形的边数是()A . 6B . 8C . 10D . 127. (2分) (2018九下·福田模拟) 我市某小区开展了“节约用水为环保做贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A . 方差是4B . 极差2C . 平均数是9D . 众数是98. (2分)已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A . 1B . 2C . 3D . 49. (2分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A . a<bB . a<3C . b<3D . c<﹣210. (2分)(2013·来宾) 如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A . 张强在体育场锻炼45分钟B . 张强家距离体育场是4千米C . 张强从离家到回到家一共用了200分钟D . 张强从家到体育场的平均速度是10千米/小时11. (2分)如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,则BD的长为()A . 20B . 19C . 18D . 1612. (2分)如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形面积=9,则AB的长为()A . 3B . 6C . 9D . 1813. (2分) (2018八上·海曙期末) 如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于 F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的横坐标是()A . 2-B . -1C . 2-D .14. (2分) (2017八下·仙游期中) 如图,菱形ABCD的面积为120 ,正方形AECF的面积为50 ,则菱形的边长为()A . 12cmB . 13cmC . 14cmD . 15cm二、填空题 (共4题;共4分)15. (1分) (2015九下·黑龙江期中) 已知一个正比例函数的图像经过点(﹣1,3),则这个正比例函数的表达式是________.16. (1分)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为________17. (1分)(2014·淮安) 如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1 ,然后顺次连接四边形A1B1C1D1四边的中点,得到四边形A2B2C2D2 ,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3 ,…,按此方法得到的四边形A8B8C8D8的周长为________.18. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x 轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.三、解答题 (共8题;共95分)19. (5分) (2019八上·亳州月考) 求经过A(-2 ,-3)和B(-3,9)两点的直线解析式。
山东省菏泽市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列二次根式中,与是同类二次根式的是().A .B .C .D .2. (2分)(2017·中山模拟) 计算3 ﹣4 的结果是()A .B . ﹣C . 7D . ﹣13. (2分) (2019八下·武安期末) 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A . 6B . 8C . 16D . 554. (2分) (2015八下·金乡期中) 若一直角三角形的两边为5和12,则它第三边的长为()A . 13B .C . 13或D . 13或5. (2分)给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形.②对角线相等的四边形是矩形.③对角形互相垂直且相等的四边形是正方形.④有一条对角线平分一个内角的平行四边形为菱形。
其中不正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2015九上·罗湖期末) 如图,点A在双曲线y= 上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为()A . 8﹣2B . 8+2C . 3D . 67. (2分) (2018八上·深圳期末) 已知一次函数y=kx+b的图象经过点(-2,3),且y的值随x值的增大而增大,则下列判断正确的是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<08. (2分)如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是()A . y=-2x-3B . y=-2x-6C . y=-2x+3D . y=-2x+6二、填空题 (共6题;共6分)9. (1分) (2016九下·农安期中) 在一次植树活动中,某班共有a名男生每人植树3棵,共有b名女生每人植树2棵,则该班同学一共植树________棵.(用含a,b的代数式表示)10. (1分)(2017·雅安模拟) 如图,在△ABC中,AB=10,∠B=60°,点D,E分别在AB,BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.11. (1分)(2017·香坊模拟) 如图,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一点,连接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,则AC长为________.12. (1分) (2019八下·深圳期末) 如图,在Rt△ABC中,∠B=90°,AB= ,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF= BC,连接DF、EF,则EF的长为________.13. (1分) (2020八下·原州期末) 利用函数图象回答下列问题:(1)函数与函数的交点坐标为________;(2)函数值的解集为________;(3)函数值的解集为________;14. (1分) (2020八上·太原期末) 如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择()题.A.的面积是________,B.图2中的值是________.三、解答题 (共7题;共50分)15. (5分) (2017八上·阿荣旗期末) 计算:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 .16. (5分)已知:a= -2,b= +2,分别求下列代数式的值:(1) a2b-ab2(2) a2+ab+b217. (5分) (2019八下·瑞安期中) 在平面直角坐标系中,□ABCD的对称中心在原点,点A,B的坐标分别为A(-1,3),B(-2,-1)(1)在如图直角坐标系中,画出这个平行四边形.(2)写出点C、D的坐标,则C________,D________.(3)□ABCD的周长为________.18. (10分)(2020·吉林模拟) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟,乙的速度为________米/分钟;(2)图中点A的坐标为________;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?19. (5分)已知:如图,平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,交BC于点F,求证:四边形AFCE是菱形.20. (5分) (2019八下·兰州期中) 某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10-25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.请你帮忙设计一下,该单位选择哪家费用较少?21. (15分)(2017·新野模拟) 如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、答案:13-2、答案:13-3、考点:解析:答案:14-1、考点:解析:三、解答题 (共7题;共50分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:。
2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。
5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。
其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。
6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。
二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。
9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。
山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,在□ABCD中,AB=4,AD=7,∠ABC平分线交AD于点E,交CD的延长线于点F,则DF的长是()A . 2B . 3C . 4D . 52. (2分) (2019八上·宝鸡月考) 如图,Rt△ABC中,∠B=90°,AB=9,BC=6,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于()A . 3B . 4C . 5D . 63. (2分) (2019八下·卢龙期末) 小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=B C,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中不正确的是()A . ①②B . ②③C . ①③D . ②④4. (2分)(2017·天水) 如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ 的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .5. (2分)点A(﹣3,2)关于x轴对称的点是B,点B关于y轴对称的点是C,则点C的坐标是()A . (﹣3,2)B . (3,2)C . (﹣3,﹣2)D . (3,﹣2)6. (2分) (2019八上·天台月考) 如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D = ,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为().A .B .C .D .7. (2分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则的值为()A .B . 1C .D .8. (2分) (2020七下·张家港期末) 如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的两边长(x>y),观察图案及以下关系式:① ;② ;③ ;④ .其中正确的关系式有()A . ①②B . ①③C . ①③④D . ①②③④9. (2分)若关于x的一元二次方程(k-1)x2+x+2=0有实数根,则k应满足()A . k≤B . k≤且k≠1C . k≤且k≥0D . 0≤k≤且k≠110. (2分)下列命题中,是真命题的是()A . 有理数都是有限小数B . 同旁内角互补C . 函数y= 自变量x的取值范围是x≥3D . 若甲、乙两组数据中各有20个数据,平均数 = ,方差S甲2=1.25,S乙2=0.96,则说明乙组数据比甲组数据稳定11. (2分)(2017·泰安) 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB 于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A . 1B . 2C . 3D . 412. (2分)一元二次方程x(x-2)=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根二、填空题 (共4题;共5分)13. (2分)(2018·遵义模拟) 一个四边形的四个内角中最多有________个钝角,最多有________个锐角.14. (1分) (2019八上·宽城期末) 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图,在△ABC中,∠ACB=90º,AC+AB=10,BC=3,则AC=________.15. (1分) (2020九上·金牛期末) 若是关于x的一元二次方程的解,则代数式的值是________.16. (1分) (2016七下·莒县期中) 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为________度.三、解答题 (共4题;共40分)17. (10分) (2019八下·杭州期末) 化简或解方程(1);(2)18. (10分) (2016七下·文安期中) 如图,直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使点C与坐标原点O是对应点,请画出平移后的三角形,并指出A、B两点的对应点A1、B1的坐标;(2)求△ABC的面积.19. (10分) (2019九上·萧山月考) 如图,在平行四边形ABCD中,EF∥AB.(1)写出所有相似三角形;(2)若,,求的长.20. (10分)已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2) M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共5分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共4题;共40分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:。
2017-2018学年八年级(下)期末数学试卷一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣22.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,43.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣15.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.58.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+259.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>615.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是.18.已知a=﹣,b=+,求a2+b2的值为.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣2【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子有意义的实数x的取值范围是:x≥﹣2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,4【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【解答】解:A、∵72+82≠92,∴此选项不符合题意;B、∵82+152=172,∴此选项符合题意;C、∵1.52+22=2.52,但1.5,2.5不是整数,∴此选项不符合题意;D、∵42+32≠42,∴此选项不符合题意.故选:B.【点评】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…3.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选:B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.5.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个【分析】根据菱形正方形、矩形、菱形、平行四边形、一般四边形的性质分析即可.【解答】解:由正方形、矩形、菱形、平行四边形、一般四边形的性质可知:正方形、矩形的两条对角线一定相等,而菱形的对角线只是垂直,平行四边形的对角线只是互相平分,一般四边形的对角线性质不确定,所以两条对角线一定相等的四边形个数为2个,故选:B.【点评】此题考查了正方形、矩形、菱形、平行四边形、一般四边的性质,需熟练掌握各特殊平行四边形的特点是解题关键.6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【分析】根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.【点评】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.9.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.10.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.5【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【解答】解:连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC===13,∴AE=6.5,∵点A表示的数是﹣1,∴OA=1,∴OE=AE﹣OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选:A.【点评】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.【分析】利用方差公式进而得出答案.【解答】解:这组数据的平均数为:这组数据的方差为:=,故选:D.【点评】此题主要考查了方差,正确记忆方差公式是解题关键.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.【点评】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6【分析】先把A、B点坐标代入y=kx+b计算出k、b,然后解不等式0<kx+b<x即可.【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.【点评】本题考查了一次函数与不等式(组)的关系.解决此类问题关键是利用代入法解得k,b,求得一次函数解析式,然后转化为解不等式.15.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【解答】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选:D.【点评】本题考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=﹣1.【分析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是∠B=∠D =60°.【分析】由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【解答】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:∠B=∠D=60°,【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.18.已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【解答】解:直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷【分析】(1)首先化简二次根式进而利用二次根式加减运算法则计算得出答案;(2)首先化简二次根式进而利用二次根式乘除运算法则计算得出答案.【解答】解:(1)﹣+=3﹣2+=;(2)×÷=2××=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?【分析】根据勾股定理解答即可.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC=6,∴BC2=AB2﹣AC2=36﹣9=27.【点评】此题考查勾股定理.关键是根据勾股定理解答,23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.【分析】根据平行四边形的判定和性质得出AE=DC,进而得出∠AEB=∠C,根据等腰三角形的性质得到∠B=∠AEB,进而得出∠B=∠C.【解答】证明:∵BC∥AD,AE∥DC,∴四边形AECD是平行四边形,∴AE=DC,AE∥DC,∴∠AEB=∠C,∵AB=CD,∴AB=AE,∴∠B=∠AEB,∴∠B=∠C.【点评】此题主要通过考查平行四边形判定和性质,关键是根据平行四边形的判定和性质得出AE=DC.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【解答】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点评】本题主要考查了加权平均数,本题易出现的错误是求三个数的平均数,对平均数的理解不正确.25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)把x=1代入y=2x中,得y=2,所以点B的坐标为(1,2),设一次函数的解析式为y=kx+b,把A(0,3)和B(1,2)代入,得,解得,所以一次函数的解析式是y=﹣x+3;(2)点C(4,﹣2)不在该函数的图象上.理由:当x=4 时,y=﹣1≠﹣2,所以点C(4,﹣2)不在函数的图象上.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),=×3×2=3.所以S△BOD【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),3﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.。
2017-2018学年山东省菏泽市鄄城县八年级(下)期末数学试卷副标题一、选择题(本大题共4小题,共12.0分)1.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示,kx+b0D.2.如果b-a=-6,那么(a-)÷的值是()A. 6B.C.D.3.等腰△ABC的底角若为顶角的,过底边上的一点D作底边BC的垂线交AC于点E,交BA的延长线于点F,则△AEF是()A. 等边三角形B. 直角三角形C. 钝角三角形D. 等腰但非等边三角形4.若分式有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共3小题,共9.0分)5.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD,垂足分别为E、F,∠A=60°,AE=3cm,CF=4.5cm,则平行四边形的面积是______cm2.6.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是BC的三倍,则图中四边形ACED的面积为______.7.若不等式组的解集是-1<x<1,则(a+b)2008=______.三、计算题(本大题共2小题,共16.0分)8.先化简,再求值.(-)÷,其中x=6.9.由甲、乙两个工程队承包某校园绿化工程,甲、乙两队单独完成这项工程所需时间比是2:3,两队合做6天可以完成.(1)求两队单独完成此工程各需多少天?(2)甲乙两队合做6天完成任务后,学校付给他们30000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?四、解答题(本大题共3小题,共23.0分)10.解不等式组,并把解集在数轴上表示出来.>11.如图所示,已知∠CAE=65°,∠E=70°,且AD⊥BC,如果△ABC经过旋转后与△ADE重合.(1)旋转中心是哪个点?(2)旋转了多少度?(3)∠BAC的度数是多少?12.因式分解:(1)x3-12x2y+36xy2(2)9(2x+y)2-(x-2y)2答案和解析1.【答案】D【解析】解:当x=2时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>2.故选:D.由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.2.【答案】A【解析】解:原式=(-)•==a-b,∵b-a=-6,∴a-b=6,则原式=6.故选:A.先化简二次根式,再由b-a=-6得a-b=6,据此可得答案.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3.【答案】A【解析】解:设等腰△ABC的底角为x°,∵等腰△ABC的底角若为顶角的,∴顶角为4x°,∴x+x+4x=180°,∴x=30°,∴∠B=∠C=30°,∴∠EAF=60°,∵FD⊥BC,∴∠F=90°-∠B=60°,∴AE=AF,∴△AEF是等边三角形.故选:A.由等腰△ABC的底角若为顶角的,可求得∠B=∠C=30°,继而求得∠AEF=∠F=60°,则可判定△AEF是等边三角形.此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角三角形的性质.4.【答案】B【解析】解:∵分式有意义,∴6-x≠0,解得:x≠6.故选:B.直接利用分式有意义的条件进而分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.【答案】27【解析】解:∵AB∥CD,AD∥BC,BF⊥DA,BE⊥CD,∴∠ABE=∠FBC=90°,在Rt△ABE中,∠A=60°,AE=3cm,∴∠ABE=30°,∴AB=2AE=6cm,在Rt△BCF中,BF=CF•tan60°=cm,∴S=AB•BF=6×=27(cm2),平行四边形ABCD故答案为27.解直角三角形分别求出AB、BF即可解决问题;本题主要考查了平行四边形的性质以及解直角三角形的应用,根据∠FBE的度数得出∠ABF和∠CBE的度数是解题的关键.6.【答案】60cm2【解析】解:∵△DEF是△ABC平移得到的,∴AD∥CF,AD=CF,∴四边形ACFD是平行四边形,∵S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,∴S▱ACFD=12×3×2=72,∴S四边形ACED =S▱ACFD-S△DEF=S▱ACFD-S△ABC=72-12=60,故答案是60cm2.由于△DEF是△ABC平移得到的,根据平移的性质可得AD∥CF,AD=CF,那么四边形ACFD是平行四边形,又知S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,易求S▱ACFD=72,进而可求四边形ACED的面积.本题考查了平行四边形的判定和性质,解题的关键是先求出▱ACFD的面积,熟练掌握平移的性质.7.【答案】1【解析】解:,解不等式①得,x>a+2,解不等式②得,x<,所以不等式组的解集为a+2<x<,∵不等式组的解集为-1<x<1,∴a+2=-1,=1,解得a=-3,b=2,(a+b)2008=(-3+2)2008=1.故答案为:1.先求出不等式组的解集,然后根据不等式组的解集求出a、b的值,再代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.【答案】解:(-)÷====,当x=6时,原式==.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.9.【答案】解:(1)设甲队单独完成此工程需x天,则乙队单独完成此工程需x天根据题意得+=1,解得x=10,经检验x=10为原方程的解,当x=10时,x=15,答:甲、乙队单独完成此工程分别需10天、15天;(2)甲队所得报酬为:30000×=18000(元);乙队所得报酬为:30000×=12000(元).【解析】(1)设甲队单独完成此工程需x天,则可表示出乙队单独完成此工程需x天,利用工作共量为1列方程+=1,再解方程、检验,然后计算x即可;(2)甲队所得报酬等于30000乘以甲的工作量;乙队所得报酬等于30000乘以乙的工作量.本题考查了分式方程:列分式方程解应用题的一般步骤:设、列、解、验、答.10.【答案】解:解不等式得:x<2,解不等式得:x≥-1,即不等式组的解集为:-1≤x<2,不等式组的解集在数轴上表示如下:【解析】分别解两个不等式,找出两个不等式解集的公共部分即为不等式组的解集,并将解集在数轴上表示出来即可.本题考查解一元一次不等式组和在数轴上表示不等式组的解集,正确掌握解一元一次不等式组的方法是解题的关键.11.【答案】解:(1)旋转中心是点A;(2)旋转的角度即为∠CAE=65°;(3)根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F,则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.【解析】(1)由旋转的定义可得;(2)由旋转的定义即可得;(3)根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF中易求∠B=25°,所以利用△ABC的内角和是180°来求∠BAC的度数即可.本题考查了旋转的性质.解题的过程中,利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数.12.【答案】解:(1)x3-12x2y+36xy2=x(x2-12xy+36y2)=x(x-6y)2;(2)9(2x+y)2-(x-2y)2=[3(2x+y)+(x-2y)][3(2x+y)-(x-2y)]=(7x+y)(5x+5y)=5(x+y)(7x+y).【解析】(1)直接提取公因式x,再利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。
山东省菏泽市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·高邮模拟) 下列式子中的最简二次根式是()A .B .C .D .2. (2分)下列二次根式中与是同类二次根式的是()A .B .C .D .3. (2分)(2017·眉山) 下列说法错误的是()A . 给定一组数据,那么这组数据的平均数一定只有一个B . 给定一组数据,那么这组数据的中位数一定只有一个C . 给定一组数据,那么这组数据的众数一定只有一个D . 如果一组数据存在众数,那么该众数一定是这组数据中的某一个4. (2分) (2017八下·建昌期末) 九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:甲乙丙丁平均数(分)145146145146方差11 1.5 1.7老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A . 甲B . 乙C . 丙D . 丁5. (2分) (2017八下·海淀期末) 如图,在△ 中, ,,边上的中线,那么的长是()A .B .C .D .6. (2分) (2020九上·呼兰期末) 若双曲线经过第二、四象限,则直线经过的象限是()A . 第一、二、三象限B . 第一、二、四象限C . 第一、三、四象限D . 第二、三、四象限7. (2分) (2020八上·武汉期末) 甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A . 他们都骑了20 kmB . 两人在各自出发后半小时内的速度相同C . 甲和乙两人同时到达目的地D . 相遇后,甲的速度大于乙的速度8. (2分)如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A . 3B . 4C . 5D . 69. (2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
2017-2018学年八年级(下)期末数学试卷一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.505.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2. 5 B.3,4,5 C.5,12,13 D.20,30,406.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.97.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.510.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1y2(选择“>”、“<”、=”填空).13.(3分)一直角三角形两条边长分别是12和5,则第三边长为.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)17.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式,故选:B.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.50【解答】解:这组数据中105出现的次数最多,则众数为105.故选:A.5.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.6.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.9【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差S12= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,现在的方差S22= [(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x n﹣5﹣+5)2]= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,所以方差不变.故选:C.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.8.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S【解答】解:∵=(173+175+175+175+177)÷5=175(cm),=(170+171+175+179+180)÷5=175(cm),∴=,∵S2甲= [(173﹣175)2+3×(175﹣175)2+(175﹣177)2]=1.6,S2乙= [(170﹣175)2+(171﹣175)2+(175﹣175)2+(179﹣175)2+(180﹣175)2]=16.4,∴S2甲<S2乙,故选:B.9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.5【解答】解:连接AP,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠BAC=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1>y2(选择“>”、“<”、=”填空).【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.13.(3分)一直角三角形两条边长分别是12和5,则第三边长为13或.【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为=.故答案为:13或.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)【解答】(1)解:(+3﹣2)×2=(+)×2=6+6.(2)解:(﹣1)2+(+2)2﹣2(﹣1)(+2)=[(﹣1)﹣(+2)]2=917.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是75g;乙厂抽取质量的众数是75g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)甲厂处在中间位置的数为第8个,为75克,故甲厂质量中位数为75克;乙厂75克出现了6次,故乙厂众数为75克.故答案为75,75.(2)根据=×[(73﹣75)2×2+(74﹣75)2×4+(75﹣75)2×4+(76﹣75)2×3+(77﹣75)2×1+(78﹣75)2×1)]≈1.87.∵>,∴快餐公司应选购甲加工厂的鸡腿.19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.【解答】解:∵直线y=ax﹣1经过点(4,3),∴4a﹣1=3,解得a=1,此直线解析式为y=x﹣1.∵直线y=﹣0.5x+b交y轴于点B(0,1),∴b=1,此直线解析式为y=﹣0.5x+1,∴,解得,∴点C(,),∴△ABC的面积=×(|1|+|﹣1|)×||=20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.【解答】证明:(1)∵AF⊥BE∴∠EAF+∠AEB=90°又∵正方形ABCD,∴∠ABE+∠AEB=90°,∴∠EAF=∠ABE,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=AF,即AF=BE;(2)MP与NQ相等,理由:作AF∥PM,BE∥NQ,∵正方形ABCD,∴AM∥FP,BN∥EQ,∴四边形AMPF和四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,又∵MP⊥QN,∴BE⊥AF,∵(1)结论知AF=BE,∴MP=NQ.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,w随x的增大而减少,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。
2017-2018学年八年级数学下期末试卷附答案和解释一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S 四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM 的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD=16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD 是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
山东省菏泽市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017九上·黑龙江月考) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)(2019·台州模拟) 下列说法错误的是()A . 两组对边分别平行的四边形是平行四边形B . 两组对边分别相等的四边形是平行四边形C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 一组对边平行且相等的四边形是平行四边形3. (2分)已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为()A . 2B . 8C . 2或8D . 34. (2分)当x>0时,四个函数 y=—x ,y=2x+1,,,其中y随x的增大而增大的函数有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·深圳模拟) 点A,B的坐标分别为(-2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a= .其中正确的是()A . ②④B . ②③C . ①③④D . ①②④6. (2分) (2019·遵义) 为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A . 12岁B . 13岁C . 14岁D . 15岁7. (2分)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
山东省菏泽市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015八下·武冈期中) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)如果关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,那么k的取值范围是()A . -≤k<1且k≠0B . k<1且k≠0C . -≤k<1D . k<13. (2分) (2017八上·利川期中) 如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=()A . 360ºB . 250ºC . 180ºD . 140º4. (2分) (2018八上·盐城月考) 根据下列表述,能确定具体位置的是()A . 我校八年级(1)班班级座位3排4列B . 滨海县育才路C . 东经118°D . 县一中北偏东60°5. (2分) (2020九上·白城月考) 用配方法解方程x2-2x-2=0时,原方程应变形为()A . (x+1)2=3B . (x+2)2=6C . (x-1)2=3D . (x-2)2=66. (2分)已知一次函数y=2x-3与反比例函数y=- ,那么它们在同一坐标系中的图象可能是()。
A .B .C .D .7. (2分)(2016·南岗模拟) 下列说法正确的个数为()个①两组对边分别相等的四边形是平行四边形②对角线相等的四边形是矩形③对角线互相垂直的平行四边形是菱形④正方形是轴对称图形,有2条对称轴.A . 1B . 2C . 3D . 48. (2分) (2019八下·衢州期末) 已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 ( x >0)经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A . (3,8)B . (12,)C . (4,8)D . (12,4)二、填空题 (共8题;共9分)9. (1分) (2017九上·十堰期末) 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为________.10. (1分)(2017·黔西南) (2017•黔西南)函数y= 的自变量x的取值范围是________.11. (1分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动________秒时,△DEB与△BC A全等.12. (1分) (2019九上·顺德月考) 一元二次方程的根是________.13. (1分) (2015九上·临沭竞赛) 如图,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是________.14. (1分)如图是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2).另有情报得知:敌军指挥部坐标为(0,0),你认为敌军指挥部的位置大约是在________ .15. (1分)等腰三角形ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值为________.16. (2分) (2020八下·巴中月考) 快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地,(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图.快车到达甲地时,慢车距离甲地________米.三、解答题 (共12题;共109分)17. (10分) (2019九上·西安月考) 解方程:(1)=2﹣(2) 2x2+x﹣3=0(配方法)(3) 3x(x﹣2)=2x18. (10分)(2018·龙港模拟) 4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第________接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?19. (10分)(2019·梁平模拟) 已知x1 , x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1 , x2满足不等式7+4x1x2>x12+x22 ,且m为整数,求m的值.20. (5分) (2019八下·融安期中) 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,OA=OE.(尺规作图的痕迹已经保留在图中了),连接EF.求证:四边形ABEF为菱形.21. (5分) (2020八下·溧水期末) 如图,有一块宽为16m的矩形荒地,某公园计划将其分为A、B、C三部分,分别种植不同的植物.若已知A、B地块为正方形,C地块的面积比B地块的面积少40m2 ,试求该矩形荒地的长.22. (6分) (2019九上·乐安期中) 如图,在正方形方格纸中,线段的两个端点和点都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以为边的平行四边形(不能画矩形),使点落在的对边上(不包括端点).(2)在图乙中画一个以为对角线的菱形(不能画正方形),使点落在菱形的内部(不包括边界).23. (10分) (2019八下·安岳期中) 如图,一次函数的图像与反比例函数的图像相交于A()、B()两点。
2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。
2017-2018学年山东省菏泽市东明县八年级(下)期末数学试卷一、选择题(本大题共8小题,共24分)1.(3分)下列电视台的台标,是中心对称图形的是()A.B.C.D.2.(3分)不等式组的正整数解有()A.1个B.2个C.3个D.4个3.(3分)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC的度数是()A.15°B.20°C.40°D.50°4.(3分)如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.12cm B.9cm C.6cm D.3cm5.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣)6.(3分)运用分式的性质,下列计算正确的是()A.B.C.D.7.(3分)若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0B.2C.0或2D.0或﹣28.(3分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个二、填空題(本大题共6小题,共18分)9.(3分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是度.10.(3分)已知方程组,则x+y的值是.11.(3分)命题“等腰三角形的两个底角相等”的逆命题是.12.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1<y2中.则正确的序号有.13.(3分)等腰三角形的一个内角是30°,则另两个角的度数分别为.14.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC 沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.三、解答题(本大题共9小题,共78分)15.(8分)因式分解:(1)a(x﹣y)﹣b(y﹣x)2(2)2x3﹣8x2+8x.16.(8分)先化简,再求值:÷(x﹣),其中x=+1.17.(8分)解分式方程:.18.(8分)如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.19.(10分)如图,直线l1交x轴于A(3,0),交y轴于B(0,﹣2)(1)求直线l1的表达式;(2)将l1向上平移到C(0,3),得到直线l2,写出l2的表达式;(3)过点A作直线l3⊥x轴,交l2于点D,求四边形ABCD的面积.20.(10分)关于x、y的方程组的解满足x﹣2y≥1,求满足条件的k的最大整数值.21.(8分)如图,在平行四边形ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形.(2)对角线AC分别与DE、EF交于点M、N,求证:△ABN≌△CDM.22.(10分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?23.(8分)阅读理解在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.方法迁移:请解答下面的问题:在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.2017-2018学年山东省菏泽市东明县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,共24分)1.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.2.【解答】解:由①得x≤4;由②得﹣3x<﹣3,即x>1;由以上可得1<x≤4,∴x的正整数解为2,3,4.故选:C.3.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故选:A.4.【解答】解:∵对角线AC,BD交于点O,∴点O是AC的中点,∵点E是BC的中点,∴OE是△ABC的中位线,∴AB=2OE=2×3=6(cm),即AB的长为6cm.故选:C.5.【解答】解:A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.6.【解答】解:A、分子分母都除以x2,故A错误;B、分子分母都除以(x+y),故B错误;C、分子分母都减x,分式的值发生变化,故C错误;D、分子分母都除以(x﹣y),故D正确;故选:D.7.【解答】解:∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.8.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选:C.二、填空題(本大题共6小题,共18分)9.【解答】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故答案为:45.10.【解答】解:,①﹣②得到:﹣3x﹣3y=6,∴x+y=﹣2,故答案为﹣2.11.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.12.【解答】解:∵一次函数y1=kx+b经过第一、二、三象限,∴k<0,b>0,所以①正确;∵直线y2=x+a的图象与y轴的交点在x轴,下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴x=3时,kx+b=x﹣a,所以③正确;当x<3时,y1>y2,所以④错误.故答案为①③.13.【解答】解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案是75°、75°或30°、120°.14.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.三、解答题(本大题共9小题,共78分)15.【解答】解:(1)原式=(x﹣y)[a﹣b(x﹣y)];(2)原式=2x(x﹣2)2.16.【解答】解:原式=÷=•=,当x=+1时,原式==.17.【解答】解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解.18.【解答】解:过M作ME⊥AB于E,∵∠C=90°,AM平分∠CAB,CM=20cm,∴CM=ME=20cm,∴△ABM的面积是×AB×ME=×70cm×20cm=700cm2,19.【解答】解:(1)设直线l1的表达式为:y=kx+b,由题意可得:,解得:,所以,直线l1的表达式为:y=x﹣2;(2)由几何变换可得:直线l2的表达式为:y=x+3;(3)∵BC=5,OA=3,∴四边形ABCD的面积=5×3=15.20.【解答】解:解关于x,y的方程组,得,把它代入x﹣2y≥1得,3﹣k﹣2(3k﹣6)≥1,解得k≤2,所以满足条件的k的最大整数值为2.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)证明:∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,,∴△ABN≌△CDM(ASA).22.【解答】解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=70.答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.(2)设购买y件甲种商品,则购买(50﹣y)件乙种商品,根据题意得:70y+60(50﹣y)≤3200,解得:x≤20.答:最多可购买20件甲种商品.23.【解答】解:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣×2×1﹣×3×1﹣×2×3=。
2017-2018学年菏泽市八年级下期末数学试卷(时间:100分钟满分:100分)一、选择题(共8小题,每小题3分,共24分)1、(2017甘肃庆阳中考)下面四个应用图标中,属于中心对称图形的是()A.B.C.D.【答案,翰林教育微信136886289整理】B.考点:中心对称图形.2、(2017广西贵港中考)下列运算正确的是()A.2333a a a+=B.()32522a a a -= C.623422a a a+=D.()22238a a a --=【答案,翰林教育微信136886289整理】D考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.3、(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB 绕某点逆时针旋转角α得到的,点A'与A 对应,则角α的大小为(C )A.30°B.60°C.90°D.120°【答案,翰林教育微信136886289整理】C 【解析】考点:图形的旋转4、(2017山东德州中考)不等式组31+2-132+9x x x ⎧≥>⎪⎨⎪⎩的解集为()A.x≥3B.-3≤x<4C.-3≤x<2D.x>4【答案,翰林教育微信136886289整理】B 【解析】试题分析:2x+9≥3的解集是x≥-3;1+2-13xx >的解集是x<4,∴不等式组的解集为:-3≤x<4故选B.考点:解不等式组5、(2017·江苏苏州中考)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为(B)A.30°B.36°C.54°D.72°【答案,翰林教育微信136886289整理】B 【解析】故选B.考点:多边形的基本概念6.(2017山东菏泽中考)如图,函数x y 21-=与32+=ax y 的图象相交于点)2,(m A ,则关于x 的不等式32+>-ax x 的解集是()A.2>x B.2<x C.1->x D.1-<x 【答案,翰林教育微信136886289整理】D 【解析】试题分析:利用x y 21-=和)2,(m A ,知m=-1,∵32+>-ax x ,∴1-<x ,故选D 考点:一次函数的性质;一元一次不等式7.(2017江苏无锡中考)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED,连CE,则线段CE 的长等于()A .2B .54C .53D .75【答案,翰林教育微信136886289整理】D.【解析】试题解析:如图连接BE 交AD 于O,作AH⊥BC 于H.在Rt△ABC 中,∵AC=4,AB=3,=5,∵CD=DB,∴AD=DC=DB=52,12()y 2320y a y ⎧+->-≤⎪⎨⎪⎩∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD 垂直平分线段BE,△BCE 是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE75==.故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8、(2017重庆中考)若数a 使关于x 的分式方程的解为正数,且使关于y 的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案,翰林教育微信136886289整理】B.【解析】试题解析:分式方程的解为x=6-4a,∵关于x 的分式方程+=4的解为正数,∴6-4a>0,∴a<6.y 123)02(2①y ②ya ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.考点:1.分式方程的解;2.解一元一次不等式组.二、填空题(共6题,每题3分,满分18分)9.(2017贵州安顺中考)已知x2y+xy2的值为【答案,翰林教育微信136886289整理】【解析】,∴x2y+xy2=xy(x+y)考点:因式分解的应用.10.(2017贵州黔东南州中考)分式方程的根为【答案,翰林教育微信136886289整理】3【解析】试题解析:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,考点:解分式方程.11.(2017山东德州中考)不等式组的解集为【答案,翰林教育微信136886289整理】-3≤x<4【解析】试题分析:2x+9≥3的解集是x≥-3;1+2-13xx >的解集是x<4,∴不等式组的解集为:-3≤x<4故选B.考点:解不等式组12.(2017湖南怀化中考)一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB △的面积是【答案,翰林教育微信136886289整理】14.【解析】试题解析:∵一次函数y=﹣2x+m 的图象经过点P(﹣2,3),∴3=4+m,解得m=﹣1,∴y=﹣2x﹣1,∵当x=0时,y=﹣1,331x (1)1x x =-++31+2-132+9x x x ⎧≥>⎪⎨⎪⎩∴与y 轴交点B(0,﹣1),∵当y=0时,x=﹣12,∴与x 轴交点A(﹣12,0),∴△AOB 的面积:V 12×1×12=14.考点:一次函数图象上点的坐标特征.13.(2017江苏盐城中考)如图,在▱ABCD 中,DE 平分∠ADC,AD=8,BE=3,则▱ABCD 的周长是【分析】首先由在▱ABCD 中,AD=8,BE=3,求得CE 的长,然后由DE 平分∠ADC,证得△CED 是等腰三角形,继而求得CD 的长,则可求得【答案,翰林教育微信136886289整理】.【解答】解:∵在▱ABCD 中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE 平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,∴▱ABCD 的周长是:2(AD+CD)=26.【考点】平行四边形的性质.14.(2017江苏徐州中考)如图,已知1OB ,以OB 为直角边作等腰直角三角形1A BO.再以1OA 为直角边作等腰直角三角形21A A O,如此下去,则线段nOA 的长度为.【答案,翰林教育微信1368862892n.【解析】试题解析:∵△OBA1为等腰直角三角形,OB=1,∴AA1=OA=1,OA122;∵△OA1A2为等腰直角三角形,∴A1A22,OA221=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA32OA22∵△OA3A4为等腰直角三角形,∴A3A4=OA32,OA423=4.∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA52OA42∵△OA5A6为等腰直角三角形,∴A5A6=OA52,OA625=8.∴OAn2n.考点:等腰直角三角形.三、解答题(共58分,解答应写出文字说明、证明过程或演算步骤.)15.(5分)(2017·天津中考)解不等式组:请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.【答案,翰林教育微信136886289整理】x≥1(2)x ≤3(3)如图所示.(4)1≤x ≤316.(6分)(2017山东菏泽中考)先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪->⎩的整数解.【答案,翰林教育微信136886289整理】【解析】先化简231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,再求11210x x x --⎧->⎪⎨⎪->⎩整数解x=2最后代入求值【解】231111x x x x -⎛⎫+÷ ⎪+-⎝⎭()14)1)(1(14)1)(1(11311113112-=-+⨯+=-+⨯⎪⎭⎫ ⎝⎛+-++=-⨯⎪⎭⎫ ⎝⎛+-+++=x x x x x x x x x x x x x x x x x x 11210x x x --⎧->⎪⎨⎪->⎩323122211<->-->--->-x xx x x xx 101>>-x x ∴31<<x ∵x 是整数∴x=2∴4(x-1)=4考点:解不等式,分式的化简17.(6分)(2017·江苏南京中考)如图,在▱ABCD 中,点E,F 分别在AD,BC 上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.【答案,翰林教育微信136886289整理】证法1:如图所示,连接BE,DF.∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.证法2:连接BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.18.(6分)(2017江苏徐州第25题)如图,已知AC BC⊥,垂足为,4,C AC BC==AC绕点A按逆时针方向旋转60 ,得到线段AD,连接, DC DB.(1)求线段DC的长度;(2)求线段DB的长度.【答案,翰林教育微信136886289整理】【解析】试题分析:(1)证明△ACD是等边三角形,据此求解;(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE和CE的长,然后在Rt△BDE中利用勾股定理求解.试题解析:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,∴Rt△CDE中,DE=12DC=2,CE=DC•cos30°=4×2∴Rt△BDE=.考点:旋转的性质.19.(8分)(2017重庆中考)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【答案,翰林教育微信136886289整理】13【解析】试题分析:(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可求出AC 的长;(2)延长EF 到点G,使得FG=EF,证ΔBMD≌ΔANC 得AC=BD,再证ΔBFG≌ΔCFE 得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.试题解析:(1)∵∠ABM=45°,AM⊥BM,222=3,则CM=BC﹣BM=5﹣2=2,22222313AM CM +=+=;(2)延长EF 到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=BG=CE,因此∠BDG=∠G=∠E.考点:1.全等三角形的判定与性质;2.勾股定理.20.(8分)(2017重庆中考)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,(1)求直线y=kx+b的表达式;(2)求不等式x>kx+b>﹣2的解集.【答案,翰林教育微信136886289整理】【分析】(1)把A、B的坐标代入得出方程组,求出方程组的解,即可得出(2)得出不等式组,求出不等式组的解集即可.【解答】解:(1)∵直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,∴代入得:,解得:k=1,b=﹣1.∴直线y=kx+b的表达式为y=x﹣1;(2)由(1)得:x>x﹣1>﹣2,即,解得:﹣1<x<2.所以不等式x>kx+b>﹣2的解集为﹣1<x<2.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式.21.(9分)(2017贵州安顺中考)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案,翰林教育微信136886289整理】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)4.【解析】试题分析:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.试题解析:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x)元/件,9015040xx =-x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y)件,481525(48)1000<y y y y -+-≤⎧⎨⎩,解得20≤y<24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y 取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.22.(10分)(2017浙江宁波中考)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG =,BF DH =,连接EF ,FG ,GH ,HE .求证:四边形EFGH 为平行四边形;若矩形ABCD 是边长为1的正方形,且45FEB =∠°,AE:AH=1:2,求AE 的长.【答案,翰林教育微信136886289整理】(1)证明见解析;(2)2【解析】试题分析:(1)易证AH=CF,结合已知条件由勾股定理可得EH=FG,同理可得EF=GH,从而得证.(2)设AE=x,则BE=x+1,由45FEB =∠°可得DH=x+1,AH=x+2,由tan 2AEH =∠可求出结果.试题分析:(1)在矩形ABCD 中,AD=BC,∠BAD=∠BCD=90°又∵BF=DH∴AD+DH=BC+BF即AH=CF在RtΔAEH在RtΔCFG ∵AE=CG∴EH=FG同理得:EF=HG∴四边形EFGH 为平行四边形.(2)在正方形ABCD 中,AB=AD=1设AE=x,则BE=x+1∵在RtΔBEF 中,45FEB =∠°∴BE=BF∵BF=DH∴DH=BE=x+1∴AH=AD+DH=x+2∵AE:AH=1:2∴AH=2AE∴2+x=2x∴x=2即AE=2考点:1.矩形的性质;2.平行四边形的判定;3.正方形的性质;4.解直角三角形.。
2017-2018学年八年级数学下期末试卷有答案和解释一、选择题(本大题共6小题,共18.0分)1.函数y=(k-2)x+3是一次函数,则k的取值范围是()A. B. C. D.2.函数y=2x-1的图象经过()A. 一、二、三象限B. 二、三、四象限C. 一、三、四象限D. 一、二、四象限3.下列方程中,有实数根的方程是()A. B. C. D.4.已知向量、满足||=||,则()A. B. C. D. 以上都有可能5.事件“关于y的方程a2y+y=1有实数解”是()A. 必然事件B. 随机事件C. 不可能事件D. 以上都不对6.下列命题中,假命题是()A. 两组对角分别相等的四边形是平行四边形B. 有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形C. 有一组邻边相等且互相垂直的平行四边形是正方形D. 一组邻边互相垂直,两组对边分别平行的四边形是矩形二、填空题(本大题共12小题,共36.0分)7.已知函数f(x)=+1,则f()=______.8.已知一次函数y=1-x,则函数值y随自变量x的增大而______.9.方程x4-16=0的根是______.10.如图,一次函数y=kx+b(k≠0)的图象经过点(2,0),则关于x 的不等式kx+b>0的解集是______.11.用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是______.12.木盒中装有1个黑球和2个白球,这些球除颜色外其他都相同.从木盒里先摸出一个球,放回去后摇匀,再摸出1个球,则摸到1个黑球1白球的概率是______.13.已知一个凸多边形的内角和等于720°,则这个凸多边形的边数为______.14.若梯形的一条底边长8cm,中位线长10cm,则它的另一条底边长是______cm.15.如图,折线ABC表示从甲地向乙地打电话所需的电话费y(元)关于通话时间t(分钟)的函数图象,则通话7分钟需要支付电话费______元.16.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是______.17.我们把对角线与一条底边相等的等腰梯形叫做“完美等腰梯形”,若一个“完美等腰梯形”的对角线长为10,且该梯形的一个内角为75°,则这个梯形的高等于______.18.如图,在边长为6的正方形ABCD中,点M、N分别是边AD、BC的中点,Q是边CD上的一点.联结MN、BQ,将△BCQ沿着直线BQ翻折,若点C恰好与线段MN上的点P重合,则PQ的长等于______.三、解答题(本大题共7小题,共46.0分)19.解方程:3-=x.20.解方程组:21.如图,点E、F在平行四边形ABCD的对角线BD上,BE=DF,设,,.(1)填空:图中与互为相反向量的向量是______;(2)填空:-=______.(3)求作:+(不写作法,保留作图痕迹,写出结果)22.小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件.问小明在网上购买的这一商品每件几元?23.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AD与BE 交于点O,点F、G分别是BO、AO的中点,联结DE、EG、GF、FD.(1)求证:FG∥DE;(2)若AC=BC,求证:四边形EDFG是矩形.24.在平面直角坐标系中,过点(4,6)的直线y=kx+3与y轴相交于点A,将直线向下平移个单位,所得到的直线l与y轴相交于点B.(1)求直线l的表达式;(2)点C位于第一象限且在直线l上,点D在直线y=kx+3,如果以点A、B、C、D为顶点的四边形是菱形,求点C的坐标.25.已知在等腰梯形ABCD中,AD∥BC,AD=AB=CD=6厘米,∠B=60°,点P在边AD上以每秒2厘米的速度从D出发,向点A运动;点Q在边AB上以每秒1厘米的速度从点B出发,向点A运动.已知P、Q两点同时出发,当其中一个点到达终点时,另外一个点也随之停止运动,设两个点的运动时间为t秒,联结PC、QD.(1)如图1,若四边形BQDC的面积为S平方厘米,求S关于t的函数解析式并写出函数定义域;(2)若PC与QE相交于点E,且∠PEQ=60°,求t的值.答案和解析1.【答案】D【解析】解:由题意得:k-2≠0,解得:k≠2,故选:D.根据一次函数定义可得k-2≠0,再解不等式即可.此题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.【答案】C【解析】解:∵2>0,∴一次函数y=-x+2的图象一定经过第一、三象限;又∵-1<0,∴一次函数y=2x-1的图象与y轴交于负半轴,∴一次函数y=2x-1的图象经过第一、三、四象限;故选:C.根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y 的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y 的值随x的值增大而减小.3.【答案】A【解析】解:A、x3+3=0,x=,有实数根,正确;B、平方不能为负数,无实数根,错误;C、分式方程中分母不能为零,无实数根,错误;D、算术平方根不能是负数,无实数根,错误;故选:A.根据立方根、平方根、二次根式和分式的意义判断即可.本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义.4.【答案】D【解析】解:若向量、满足||=||,可得:=,或=-,或∥,故选:D.利用单位向量的定义和性质直接判断即可.此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.5.【答案】A【解析】解:∵△=1-4a2(-1)=4a2+1>0,原方程一定有实数解.∴方程a2y+y=1有实数解是必然事件.故选:A.根据根的判别式△=b2-4ac的值的符号就可以判断下列方程有无实数解.再判断属于哪类事件即可.本题主要考查了随机事件的意义与一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】B【解析】解:A、两组对角分别相等的四边形是平行四边形,是真命题;B、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,是假命题;C、有一组邻边相等且互相垂直的平行四边形是正方形,是真命题;D、一组邻边互相垂直,两组对边分别平行的四边形是矩形是真命题;故选:B.根据平行四边形的判定、菱形的判定、正方形的判定及矩形的判定判断即可.此题主要考查了真命题的定义,解题时分别利用了平行四边形的判定、菱形的判定、正方形的判定及矩形的判定等知识解决问题.7.【答案】3【解析】解:f(x)=+1,则f()=×+1=2+1=3,故答案为:3.根据自变量与函数值的对应关系,可得答案.本题考查了函数值,利用自变量与函数值的对应关系是解题关键.8.【答案】减小【解析】解:∵k=-1<0,∴函数值y随自变量x的增大而减小,故答案为:减小根据一次函数y=kx+b的性质解得即可.本题考查了一次函数的性质;在一次函数y=kx+b中,k>0,y随x 的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9.【答案】±2【解析】解:∵x4-16=0,∴(x2+4)(x+2)(x-2)=0,∴x=±2,∴方程x4-16=0的根是±2,故答案为±2.方程的左边因式分解可得(x2+4)(x+2)(x-2)=0,由此即可解决问题.本题考查高次方程的解,解题的关键是学会应用因式分解法解方程,把高次方程转化为一次方程,属于中考常考题型.10.【答案】x<2【解析】解:由图象可得:当x<2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x<2,故答案为:x<2观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11.【答案】6y2-15y+2=0【解析】解:用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是6y2-15y+2=0,故答案为:6y2-15y+2=0.方程变形后,根据设出的y变形即可.此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.12.【答案】【解析】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,其中摸到1个黑球1白球的有4种结果,∴摸到1个黑球1白球的概率为,故答案为:.列表将所有等可能的结果列举出来,利用概率公式求解即可.考查用列树状图的方法解决概率问题;得到两次摸到1个黑球1白球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.13.【答案】6【解析】解:设这个多边形的边数为n,则(n-2)×180°=720°,解得:n=6,故答案为:6.设这个多边形的边数为n,根据题意得出(n-2)×180°=720°,求出即可.本题考查了多边形的内角和定理,能根据题意得出关于n的方程是解此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.14.【答案】12【解析】解:设另一条底边为x,则8+x=2×10,解得x=12.即另一条底边的长为12.故答案为:12只需根据梯形的中位线等于梯形两底和的一半进行计算即可.本题考查了梯形的中位线定理,解题的关键是熟记梯形的中位线定理并灵活的应用.15.【答案】6.4【解析】解:当通话时间在3分钟以内费用为2.4元,超出之后每分钟元则通话7分钟费用为:2.4+(7-3)=6.4元故答案为:6.4根据图象分段讨论计费方案本题为一次函数实际应用问题,考查一次函数图象的实际意义.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.首先证明△AOB是等边三角形,则可以求得AC的长,然后利用勾股定理求得BC的长本题考查了矩形的性质,等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分.17.【答案】5【解析】解:如图,AB=CD,AD∥BC,BD=BC=10,∠C=75°.作DH⊥BC于H.∵BD=BC,∴∠BDC=∠C=75°,∴∠DBC=180°-75°-75°=30°,∴DH=BD=5.故答案为5作DH⊥BC于H.由BD=BC,推出∠BDC=∠C=75°,推出∠DBC=180°-75°-75°=30°,利用直角三角形30°的性质即可解决问题;本题考查等腰梯形的性质、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.【答案】2【解析】解:∵∠CBQ=∠PBQ=∠PBC,BC=PB=2BN=3,∠BPQ=∠C=90°,∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=6×=2.故答案为:2.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=2.本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:移项得平方得2x-3=9-6x+x2x2-8x+12=0(x-2)(x-6)=0x1=2,x2=6经检验x2=6为增根,舍去;x1=2为原方程的解.原方程的解为x=2.【解析】根据平方,可得整式方程,根据解整式方程,可得答案.本题考查了无理方程,利用平方转化成整式方程是解无理方程的关键,注意要检验方程的根.20.【答案】解:由(2)得x=y+1(3)把(1)、(3)联立得解得.【解析】把(2)变形后代入解答即可.此题考查高次方程的解法,关键是把(2)变形后代入解答.21.【答案】和【解析】解:(1)∵BE=DF,∴BF=ED,∴图中与互为相反向量的向量是和.故答案为和.(2)∵=+=+(-)=-,故答案为(3)如图,即为所求作的向量.(1)根据相等平面向量的定义即可判断;(2)理由三角形法则即可判断;(3)理由三角形法则即可解决问题;本题考查作图-复制作图,平行四边形的性质,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:设小明在网上购买的这一商品每件x元.(1分),(4分)x2+4x-60=0,(2分)x1=-10,x2=6.(1分)经检验它们都是原方程的根,但x=-10不符合题意.(1分)答:小明在网上购买的这一商品每件6元.(1分)【解析】设小明在网上购买的这一商品每件x元,小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件根据此可列方程求解.本题考查分式方程的应用,设出价格,根据件数做为等量关系列方程求解.23.【答案】解:(1)∵AD、BE分别是边BC、AC上的中线,∴DE是△ABC的中位线,∴DE∥AB且DE=AB.∵点F、G分别是BO、AO的中点,∴FG是△OAB的中位线,∴FG∥AB且FG=AB.∴GF∥DE.(2)由(1)GF∥DE,GF=DE∴四边形EDFG是平行四边形.∵AD、BE是BC、AC上的中线,∴CD=BC,CE=AC.又∵AC=BC,∴CD=CE.在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CAB=∠CBA.∵AC=BC,∴∠CAB=∠CBA,∴∠DAB=∠EBA,∴OB=OA.∵点F、G分别是OB、AO的中点,∴OF=OB,OG=OA,∴OF=OG,∴EF=DG,∴四边形EDFG是矩形.【解析】(1)依据三角形的中位线定理可得到DE∥AB且DE=AB、FG∥AB且FG=AB,从而可证明FG∥DE;(2)首先证明四边形EDFG是平行四边形,然后再证明EF=DG,最后,依据矩形的判定定理进行证明即可.本题主要考查的是矩形的判定、三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.24.【答案】解:(1)将点(4,6)代入直线y=kx+3,可得k=,∴y=x+3,将直线向下平移个单位,得到直线l的表达式:y=x+;(2)由题可得A(0,3),B(0,),设C(t,t+),当AB∥CD时,AB2=BC2,即t2+=,解得t1=2,t2=-2,又∵t>0,∴C(2,2);当AB,CD为菱形的对角线时,AC2=BC2,∴t2+=t2+,解得t=,∴C(,).综上所述,点C的坐标为(2,2)或(,).【解析】(1)将点(4,6)代入直线y=kx+3,可得y=x+3,将直线向下平移个单位,即可得到直线l的表达式:y=x+;(2)设C(t,t+),分两种情况进行讨论:当AB∥CD时,AB2=BC2;当AB,CD为菱形的对角线时,AC2=BC2,解方程即可得到点C的坐标.本题主要考查了菱形的判定以及一次函数图象与几何变换,解题时注意:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.【答案】(1)过点A作AH⊥BC,垂足为H,过点D作DF⊥AB,垂足为F,在Rt△ABH中,∠B=60°,AB=6,可得:AH=3、DF=3,S四边形BQDC=S梯形ABCD-SADQ=27-(8-t)=18(0<t≤3);答:求S关于t的函数解析式为S=18(0<t≤3);(2)当且∠PEQ=60°时,可证△CDP≌△ADQ(AAS),∴PD=AQ,即:6-t=2t,t=2.答:t的值为2.【解析】(1)由S四边形BQDC=S梯形ABCD-SADQ即可求出表达式;(2)当且∠PEQ=60°时,可证△CDP≌△ADQ,∴PD=AQ,即可求解.本题考查的是二次函数的应用,(1)中S四边形BQDC=S梯形ABCD-SADQ 这种面积拆分的办法是此类题目常用的方法.。
山东省菏泽市八年级下学期数学期末考试试卷第一部分:选择题(共40题,每题2分,共计80分)1. 已知一根铁杆的重量为6千克,如果要挑起这根铁杆,则需要多少牛的力?A. 60B. 30C. 10D. 902. 化简:5x + 2(3x - 4) = ?A. 9x - 8B. 11x + 8C. 13x - 8D. 7x - 83. 下列哪个是一个正方形?A. 边长为3cm的长方形B. 边长为2cm的三角形C. 边长为4cm的正方形D. 边长为5cm的长方形4. 若m = 3,n = 5,求 m² + 2mn - n² = ?A. -9B. -1C. 7D. 135. 表示式 4x - 7 = 17 的解为:A. x = 6B. x = -5C. x = -3D. x = 3......第二部分:填空题(共10题,每题4分,共计40分)1. 若两个角互补,则它们的和为____度。
2. 三角形的内角和为____度。
3. 一个边长为5cm的正方形的面积为____平方厘米。
4. 4x + 5 = 21的解为x = ____。
5. 若把5千克的苹果平均分成4份,则每份的重量为____千克。
......第三部分:应用题(共5题,每题16分,共计80分)1. 餐厅购买了7桌饭菜,每桌饭菜的价格相同,总共花费了280元。
如果将每桌饭菜的价格增加20元,那么总共需要支付多少元?2. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,车辆共行驶了多少公里?3. 一个矩形花坛的长是7m,宽是4m,周围有一条宽1m的过道,请问过道的面积是多少平方米?4. 书架上共有36本书,其中的4/9是科幻类书籍,剩下的是其他类型的书。
科幻类书籍有多少本?5. 如果x + 3 = 8,那么y - 5 = 2x的解是什么?......第四部分:解答题(共5题,共计100分)1. 解方程:4(x - 2) - 3(2x + 1) = 5(3x - 4) + 72. 已知一个角的补角是30度,那么这个角是多少度?3. 计算:0.75 × (1.2 + 2.5)4. 一个长方形的长是x + 3,宽是x - 2,若它的周长为20cm,求x 的值。
山东省菏泽市东明县2017-2018学年八年级(下)
期末数学试卷
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列电视台的台标,是中心对称图形的是()
A.B.C.D.
2. 不等式组的正整数解的个数有()
A.1个B.2个C.3个D.4个
3. 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC的度数是()
A.15°B.20°C.40°D.50°
4. 如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是()
A.3cm B.6cm C.9cm D.12cm
5. 下面式子从左边到右边的变形是因式分解的是()
A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2
C.(x+1)(x﹣1)=x2﹣1
D.x﹣1=x(1﹣)
6. 运用分式的性质,下列计算正确的是()
A.B.C.D.
7. 若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为
()
A.0 B.2 C.0或2 D.0或﹣2
8. 温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下
零件个数
5 6 7 8
(个)
人数(人) 3 15 22 10
表中表示零件个数的数据中,众数是()
A.5个B.6个C.7个D.8个
二、填空题
9. 经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
10. 已知方程组,则x+y的值是____.
11. 命题“等腰三角形两底角相等”的逆命题是_______
12. 已知一次函数与图象如图所示,则下列结论:
①;②;③关于的方程的解为;④当,
.其中正确的有_______(填序号).
13. 等腰三角形的一个内角是30°,则另两个角的度数分别为___.
14. 如图,中,,点在上,,将线段
沿方向平移得到线段,点分别落在边上,则
的周长是cm.
三、解答题
15. 因式分解:
(1)a(x﹣y)﹣b(y﹣x)2
(2)2x3﹣8x2+8x.
16. 先化简,再求值:÷(x﹣),其中x=+1.
17. 解方程:
18. 如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.
19. 如图,直线l1交x轴于A(3,0),交y轴于B(0,﹣2)
(1)求直线l1的表达式;
(2)将l1向上平移到C(0,3),得到直线l2,写出l2的表达式;
(3)过点A作直线l3⊥x轴,交l2于点D,求四边形ABCD的面
积.
20. 关于x、y的方程组的解满足x﹣2y≥1,求满足条件的k的最大整数值.
21. 如图,在□ABCD中,E、F分别是AB、CD的中点.
(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N.求证:
△ABN≌△CDM.
22. 某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?
23. 阅读理解
在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD ﹣S△EBC=1.
方法迁移:请解答下面的问题:
在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.。