文科导数知识点
- 格式:doc
- 大小:312.33 KB
- 文档页数:8
导数文科高三知识点总结一、导数的概念及几何意义1. 导数的定义导数是函数在某一点的变化率,也可以理解为函数图像在某一点的切线斜率。
若函数y=f(x)在x=a处的导数存在,则称函数在x=a处可导,导数记作f'(a),即f'(a)=lim{h→0}[f(a+h)-f(a)]/h。
2. 导数的几何意义导数的几何意义即为函数图像在某一点的切线斜率,可以用于求解函数图像在某一点的切线方程,从而得出函数图像在该点的局部变化情况。
3. 导数的符号表示在通常情况下,导数的符号表示为f'(a),表示函数y=f(x)在x=a处的导数。
也可以用dy/dx表示函数y=f(x)的导数。
二、导数的计算方法1. 导数的计算公式(1)常数函数的导数若f(x)=c(c为常数),则f'(x)=0。
(2)幂函数的导数若f(x)=x^n(n为常数),则f'(x)=nx^(n-1)。
(3)指数函数的导数若f(x)=a^x(a>0且a≠1),则f'(x)=a^x·lna。
(4)对数函数的导数若f(x)=loga(x)(a>0且a≠1),则f'(x)=1/(x·lna)。
(5)三角函数的导数若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx;若f(x)=tanx,则f'(x)=sec^2 x。
2. 复合函数的导数复合函数的导数计算可以根据链式法则进行,即若y=f(g(x)),则y'=(f'(g(x))·g'(x)。
3. 隐函数的导数若方程F(x,y)=0定义了函数y=f(x),则通过对方程两边求导,并利用隐函数求导公式可以求出y关于x的导数dy/dx。
4. 参数方程的导数若x=x(t)、y=y(t)定义了参数曲线C,可以通过对x(t)和y(t)分别求导来求出参数曲线的切线斜率,从而得出参数曲线的切线方程。
高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
高三文科数学导数知识点导数是高中数学中一个非常重要的概念,它在不同的数学分支中都有广泛的应用。
在高三文科数学中,导数是不可或缺的一部分。
本文将为您详细介绍高三文科数学中的导数知识点。
一、导数的定义与基本性质导数的定义:设函数f(x)在点x0的某一邻域内有定义,若极限lim┬(Δx→0)〖(f(x_0+Δx)-f(x0))/Δx 〗存在,则称此极限为函数f(x)在点x0处的导数,记为f'(x0)。
导数的基本性质包括加法、减法、数乘、乘法和复合等性质,其中最重要的是乘法和复合的性质。
具体的性质表述如下:1. 加法性质:(u(x)+v(x))'=u'(x)+v'(x)2. 减法性质:(u(x)-v(x))'=u'(x)-v'(x)3. 数乘性质:(cu(x))'=cu'(x) (c为常数)4. 乘法性质:(u(x)v(x))'=u'(x)v(x)+u(x)v'(x)5. 复合性质:(u(v(x)))'=u'(v(x))v'(x)二、计算导数的方法在高三文科数学中,常用的计算导数的方法有函数导数的四则运算法则、基本初等函数的导数、反函数的导数、复合函数的导数以及隐函数的导数等。
以下是这些方法的具体介绍:1. 函数导数的四则运算法则:根据导数的定义及其基本性质,可以得到函数导数的加减乘除法则,即通过对函数进行加减乘除的运算,可以得到对应的导数。
2. 基本初等函数的导数:基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
这些函数都有对应的导数公式,可以通过直接应用公式计算导数。
3. 反函数的导数:若函数y=f(x)在某区间内可导且在该区间上存在反函数x=g(y),则可以利用反函数的求导公式计算反函数的导数。
4. 复合函数的导数:如果函数y=f(u)和u=g(x)在一定条件下都可导,则可以利用复合函数的求导公式计算复合函数的导数。
导数文科高三知识点汇总导数是高中数学中的重要概念,对于文科高三学生来说,熟练掌握导数的相关知识点,不仅可以为数学考试打下坚实的基础,还能在其他学科中发挥重要作用。
本文将对导数的相关知识点进行汇总整理,帮助文科高三学生系统地学习和应用导数。
一、导数的定义及基本概念(字数增加,不要求出现小标题)导数是函数在某一点上的变化率,是对函数的局部变化进行描述的工具。
设函数y=f(x),如果函数在点x处的导数存在,那么该导数表示函数在x处的切线斜率,并用f'(x)表示。
导数的基本概念包括导数的定义、导数的几何意义、导数的物理意义和导数的代数运算法则。
导数的定义是通过极限的概念来给出的,即f'(x)=limΔx→0[f(x+Δx)-f(x)]/Δx。
导数的几何意义是函数在某一点的斜率,可以表示函数曲线在该点的切线的斜率。
导数的物理意义是变化率,例如,速度可以看作是位移对时间的导数。
导数的代数运算法则包括常数因子、和差、乘法、除法以及复合函数等运算法则。
二、导数的计算方法(字数增加,不要求出现小标题)导数的计算方法可以根据函数的具体形式来进行推导和应用。
常见的导数计算方法包括基本初等函数的导数、幂函数的导数、指数函数的导数、对数函数的导数、三角函数和反三角函数的导数、复合函数的导数等。
基本初等函数的导数是指常数函数、恒等函数、多项式函数、有理函数、开方函数等的导数,这些函数都有对应的导数表达式。
幂函数的导数可以通过对数函数求导得到,指数函数的导数是指a^x的导数一定是a^xlna,其中a为底数,lna为自然对数。
对数函数的导数可以通过指数函数求导得到,三角函数和反三角函数的导数可以通过基本关系式和导数的定义进行推导。
复合函数的导数可以通过链式法则进行计算。
三、导数的应用(字数增加,不要求出现小标题)导数作为数学中的一项重要工具,具有广泛的应用场景。
在文科高三学习中,导数的应用不仅仅局限于数学学科,在其他学科中也能够发挥重要作用。
高考导数文科知识点导数是高中数学中的重要概念,也是文科生在高考中常遇到的知识点之一。
掌握导数的基本概念、计算方法以及应用是文科生成功应对高考数学考试的关键。
下面将为大家介绍高考导数文科知识点。
一、导数的基本概念导数是函数在某一点的瞬时变化率,也可以理解为函数图像上某一点处的切线斜率。
记函数f(x)的导数为f'(x),它表示函数在x处的导数值。
二、导数的计算方法1. 基本导数公式常函数:f(x) = c,其中c为常数,则其导数为0,即f'(x) = 0。
幂函数:f(x) = x^n,其中n为自然数,则其导数为f'(x) = nx^(n-1)。
指数函数:f(x) = a^x,其中a为大于0且不等于1的常数,则其导数为f'(x) = a^x * ln(a)。
对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数,则其导数为f'(x) = 1 / (x * ln(a))。
三角函数:f(x) = sin(x),f(x) = cos(x),f(x) = tan(x)等三角函数的导数可以通过求导法则得到。
2. 导数的基本运算法则常数乘法法则:[cf(x)]' = cf'(x),其中c为常数。
和差法则:[f(x) ± g(x)]' = f'(x) ± g'(x)。
积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
商法则:[f(x)/g(x)]' = (f'(x)g(x) - f(x)g'(x)) / g^2(x),其中分母g(x)不等于0。
三、导数的应用1. 切线方程给定函数f(x),求其在点(x0, f(x0))处的切线方程。
切线方程的斜率即为函数在该点的导数值,切线方程可以确定切线的斜率和截距。
2. 函数的单调性与极值通过导数的正负来判断函数的单调性。
导数知识点一、基础知识1.导数的定义:='='===0|)()()1(00x x y x f x x x f y 处的导数:在函数='='=y x f x f y )()()2(的导数:函数2.导数的几何意义(1)切点的性质:函数()y f x =在点()()00,P x f x 处切线=切线k ;()()00,P x f x 既在()y f x =上,又在切线上.(2)曲线()y f x =在点()()00,P x f x 处切线方程是: 。
(3)曲线()y f x =过点()00,P x y 处切线:先设切点,切点为 ,则斜率=切线k ,相应的切线方程是: ,再将 代入最后求斜率=切线k '()f a ,确定切线方程。
3.导数的运算:='])()([x g x f ='])([x kf (3)复合函数(())y f g x =的导数求法:①换元,令=u ,则=y ②='y ③回代()u g x = 4.导数的应用 (1)单调性函数)(x f 的导数0)('>x f 在定义域内的解集为I ⇒ 函数)(x f 的导数0)('<x f 在定义域内的解集为I ⇒ 函数)(x f 在区间I 上单调递增⇒ 函数)(x f 在区间I 上单调递减⇒ (2)极值若函数)(x f 在1x 附近 ()('x f 在1x 附近 ),则1x 是)(x f 的 , 是)(x f 的极大值;若函数)(x f 在2x 附近 ()('x f 在2x 附近 ) ,则2x 是)(x f 的 , 是)(x f 的极小值.方程0)('=x f 的解为0x 0x 是)(x f 的极值点;0x 是)(x f 的极值点⇒ . (3) 函数)(x f 在],[b a 的最值假设b x x a <<<21,21,x x 分别是极大值点,极小值点,列出)(),(,'x f x f x 的表格.max min .二、方法总结1.求参数的取值范围的方法:(1)分离参数法(首选);(2)分类讨论.2.不等式的证明:)()(,x g x f I x >∈∀(1)构造法: =)(x F(2)结合最值和图像:在)(x F 最小值不易求的情况,证明max min )()(x g x f ≥或)(x f 图像在)(x g 上方.(3)分析法:)()()()(x q x p x g x f >>等价于证要证,再用(1)或(2)方法证明.2.恒成立,能成立问题(1)⇔≥≤∈∀恒成立))(()(,m x f M x f I x (2)⇒≥≤∈∃成立使得))(()(,m x f Mx f I x(3)⇔≥∈∀恒成立)()(,,t g s f I t s (4)⇒≥∈∃成立使得)()(,,t g s f I t s(5)⇒≥∈∀∈∃成立使得)()(,,,t g s f H s I s (6)⇔≤-∈∀恒成立M t f s f I t s |)()(|,,3.二阶导数(即对函数进行二次求导)(1)求函数],[),(b a x x f y ∈=,要求函数)(x f 的最大值或最小值.(2)求得函数)(x f 的导数)('x f ,令0)('=x f ,但不易求得极值点的情况下.(3)令)()('x f x g =,再求导得)('x g ,并通过判断)('x g 的正负得到)()('x f x g =的单调性,进一步确定)('x f 的正负,得)(x f 的单调性.4.方程的解或函数的零点或两个函数的交点问题(1)方程0)(=x f 在定义域内根的个数,转化成)(x f y =图像在定义域内与x 轴交点的个数,通过求导,确定单调性,极值点来刻画函数)(x f y =的图像;(2)已知0)(),()()(≠-=x h x h m g x f y 有n 个零点个根有方程n x h m g x f 0)()()(=-⇔个交点有与函数n x h m g y x f y )()()(==⇔,求m 的范围.处理的方法:转化得)()()(x h x f m g =⇒直线)(m g y =与函数)()(x h x f y =有n 个交点,看图确定m 的取值范围.例:函数kx e x f x-=)(在)2,0(上有两个零点,求实数k 的取值范围.分析:kx e x f x-=)(在)2,0(上有两个零点⇔方程kx e x=在)2,0(有两个根⇔xe k x=,即直线k y =与函数xe x g x=)(在)2,0(上有两个交点. 求导,结合单调性,极值作出)(x g 图像.观察可得k 范围.。
高三文科导数知识点导数是高中数学中的一个重要概念,也是文科生在学习数学时必须要掌握的内容之一。
本文将介绍高三文科导数的知识点,包括导数的意义、导数的计算、导数的性质和导数的应用等方面,希望能够帮助同学们更好地理解和应用导数知识。
一、导数的意义导数是函数在某一点上的变化率,可以描述函数图像在该点的切线斜率。
具体来说,如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记为f'(a)。
导数的意义主要有以下几个方面:1. 切线斜率:导数可以用来求解函数图像在某一点的切线斜率。
2. 变化率:导数可以表示函数在某一点的变化速率,如物理中的速度、加速度等概念。
3. 极值点:导数可以帮助判断函数图像的极值点。
二、导数的计算导数的计算方法主要有以下几种:1. 函数基本求导法则:常见的函数求导法则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
2. 链式法则:对于由多个函数复合而成的复合函数,可以利用链式法则求导。
3. 隐函数求导法则:对于隐函数所表示的方程,可以利用隐函数求导法则求解。
4. 参数方程求导法则:对于通过参数方程给出的曲线,可以利用参数方程求导法则求解。
三、导数的性质导数具有一些重要的性质,包括:1. 导数的线性性质:即导数运算具有加法性和乘法性。
2. 可导函数的连续性:可导函数必然是连续函数,但连续函数未必可导。
3. 导数与函数的单调性和极值点的关系:函数在单调区间上的导数具有确定的符号,并且函数的极值点对应导数为零的点。
四、导数的应用导数在实际问题中具有广泛的应用,主要包括以下几个方面:1. 最优化问题:导数可以帮助求解最大值、最小值等最优化问题。
2. 几何问题:导数可以帮助求解切线、法线、曲率等几何性质。
3. 物理问题:导数可以描述速度、加速度、变化率等物理量。
4. 经济学问题:导数可以描述边际效应、弹性等经济学概念。
综上所述,高三文科导数是数学中的重要知识点,掌握导数的意义、计算方法、性质和应用可以帮助同学们更好地理解和运用导数知识,提高数学解题能力。
导数导数基础:1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=. ②以知函数定义域为,的定义域为,则与关系为.2. 函数在点处连续与点处可导的关系:函数在点处连续是在点处可导的必要不充分条件.常用性质:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P 处的切线的斜率是,切线方程为0x )(x f y =x 0x x ∆y )()(00x f x x f y -∆+=∆x x f x x f x y ∆-∆+=∆∆)()(00)(x f y =0x x x ∆+0x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000)(x f y =A )('x f y =BA BB A ⊇)(x f y =0x 0x )(x f y =0x )(x f y =0x )(x f y =0x )(x f y =))(,(0x f x )(x f y =))(,(0x f x )(0'x f ).)((0'0x x x fy y -=-4. 求导数的四则运算法则:(为常数)②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.I.(为常数)().5. 复合函数的求导法则:或6. 函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=c )0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 0'=C Cxx cos )(sin '=2'11)(arcsin x x -=1')(-=n n nx x Rn ∈xx sin )(cos '-=2'11)(arccos x x --=xx 1)(ln '=e x x a a log 1)(log '=11)(arctan 2'+=x x xx e e =')(aa a x x ln )('=11)cot (2'+-=x x arc )()())(('''x u f x f x ϕϕ=xu x u y y '''⋅=)(x f y =)('x f )(x f y =)('x f )(x f y =注:①是f (x )递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即0时f (x ) = 0,同样是f (x )7. 极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)当函数在点处连续时,②如果在附近的左侧<0,右侧>0,那么是极小值.①如果在附近的左侧>0,右侧<0,那么是极大值;例1. 8.函数313y x x =+- 有 ( )A.极小值-1,极大值1B. 极小值-2,极大值3C.极小值-1,极大值3D. 极小值-2,极大值26.函数344+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .00)( x f 32x y =),(+∞-∞0)( x f 0)( x f 0x )(x f )(0x f )(0x f )(x f )(x f 0x 0x )('x f )('x f )(0x f 0x )('x f )('x f )(0x f6.函数x xy ln =的最大值为( )A .1-eB .eC .2e D .3102.函数x e x x f -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f xg x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )(A ) 10<<b (B ) 1<b (C ) 0>b (D )21<b5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --= B .450x y +-= C .430x y -+=D .430x y ++=6.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22e C.2e D.22e2.若'0()3fx =-,则000()(3)limh f x h f x h h →+--=( )A .3-B .6-C .9-D .12- 1.(2005全国卷Ⅰ文)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )(A )2 (B )3 (C )4 (D )52.(2008海南、宁夏文)设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 23.(2005广东)函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)4.(2008安徽文)设函数1()21(0),f x x x x =+-< 则()f x ( )A .有最大值B .有最小值C .是增函数D .是减函数5.(2007福建文、理)已知对任意实数x 有f(-x)=-f(x),g()(x),且x>0时,f’(x)>0,g’(x)>0,则x<0时( )A f’(x)>0,g’(x)>0B f’(x)>0,g’(x)<0C f’(x)<0,g’(x)>0D f’(x)<0,g’(x)<0 6.(2008全国Ⅱ卷文)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-导数答案。
导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
导数文科高三知识点总结导数是高三文科学生必须掌握的重要数学概念。
它在微积分中具有广泛的应用,涉及到诸多与变化相关的问题。
下面是对导数相关知识点的总结。
1. 导数的定义导数可以理解为函数在某一点的瞬时变化率。
设函数y=f(x),则函数在点x处的导数定义如下:f'(x) = lim[(f(x+△x) - f(x))/△x] (△x → 0)2. 导函数与导数在导数的定义中,如果函数f(x)在区间内任意一点都有导数,那么这个函数就称为可导函数。
可导函数的导数又称为导函数,记作f'(x)。
3. 基本导数法则对于一些常见的函数,我们可以利用基本导数法则来求导数,以简化计算。
以下是一些常用的基本导数法则:a. 常数函数导数为0:(k)' = 0b. 幂函数导数:(x^n)' = nx^(n-1)c. 三角函数导数:- sinx 的导数为 cosx:(sinx)' = cosx- cosx 的导数为 -sinx:(cosx)' = -sinx- tanx 的导数为 sec^2x:(tanx)' = sec^2xd. 指数函数和对数函数导数:- e^x 的导数为 e^x:(e^x)' = e^x- ln|x| 的导数为 1/x:(ln|x|)' = 1/x4. 导数的四则运算(求导法则)导数运算符满足几个基本的四则运算法则:a. 常数乘以函数:(k·f(x))' = k·f'(x)b. 多项式函数的导数:(c1x^n1 + c2x^n2 + ... + cnx^nn)' = c1·n1x^(n1-1) + c2·n2x^(n2-1) + ... + cn·nnx^(nn-1)c. 函数加减法:(f(x) ± g(x))' = f'(x) ± g'(x)d. 函数乘法:- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2e. 复合函数:(f(g(x)))' = f'(g(x))·g'(x)5. 高阶导数高阶导数是指通过多次求导得到的导数。
导数知识点总结最全一、导数的定义1. 函数的变化率在微积分中,导数是描述函数的变化率的重要工具。
当函数y=f(x)的自变量x在某一点x0处发生微小的增量Δx时,相应的函数值y也会发生微小的增量Δy,即Δy=f(x0+Δx)-f(x0)。
函数f(x)在点x0处的导数定义为:f'(x0)=lim(Δx→0)Δy/Δx=lim(Δx→0)(f(x0+Δx)-f(x0))/Δx该极限存在时,即函数f在点x0处可导,导数f'(x0)就是函数在该点处的变化率。
2. 函数的切线在直角坐标系中,当函数y=f(x)在点x0处可导时,我们可以利用导数来求得函数在该点处的切线。
设切线方程为y=kx+b,则k=f'(x0),b=f(x0)-f'(x0)x0。
通过这个切线方程,我们可以比较精确地描述函数在某一点的近似变化情况。
二、连续性与可导性1. 连续函数的导数在实际应用中,我们常常需要研究函数在某一点的变化情况。
在微积分中,我们知道,如果函数在某一点可导,则该点也是函数的连续点。
也就是说,可导性是函数连续性的充分条件。
但是,连续性并不是可导性的充分条件,也就是说,函数在某一点连续并不一定可导。
2. 可导函数的连续性对于可导函数来说,它具有一定的光滑性,也就是说,可导函数在某一点处的导数存在且有定义。
因此,可导函数的图像具有一定的光滑性,没有明显的折线或者间断点。
3. 不可导的情况在实际应用中,我们也会遇到一些不可导的函数,这些函数的导数在某些点处不存在。
这种情况常常出现在函数图像发生角点、尖点、间断、垂直渐近线等情况下。
这些函数在不可导点处的导数通常需要通过极限或者其他方法来求得。
三、导数的计算1. 基本函数的导数在微积分中,我们需要掌握一些基本函数的导数。
这些基本函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等。
这些基本函数的导数公式对于我们计算更加复杂的函数的导数有着非常重要的作用。
高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值, 函数的最大值和最小值。
导数概念与运算知识清单 1 .导数的概念函数y=f(x),如果自变量x 在X 。
处有增量 X,那么函数y 相应地有增量y=f (x 0+ X ) —f(x 0),yy f(x 。
x) f(x 。
)比值 x 叫做函数y=f f x )在x 0到x 0+ x 之间的平均变化率,即x =x。
_y如果当 x 0时,x 有极限,我们就说函数 y=f(x)在点X 。
处可导,并把这个极限叫做f ( x )在点x 0处的导数,记作f '(x 0 )或y'x/。
y f(x 。
x) f(x 。
) lim lim即 f (x 0) = X 0 X = x 0 x说明:(1) 函数f (X )在点X 0处可导,是指 X 数在点X 0处不可导,或说无导数。
(2)X是自变量X 在X 0处的改变量,X由导数的定义可知,求函数 y=f (X )在点X 0处的导数的步骤(可由学生来归纳): (1)求函数的增量 y=f (x 0+ x )- f (x 0 );y f(x °x) f(x °)(2) 求平均变化率 x =x;.. ylim —(3) 取极限,得导数f ' (X )= x 0 x 。
2 •导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜 率。
也就是说,曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜率是 f' (x 0)。
相应地,切线y y0时, X 有极限。
如果 x 不存在极限,就说函0时,而 y 是函数值的改变量,可以是零。
方程为y—y0=f/ (x0) (x-x0)。
4 •两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和 (或差), 即:(U V ) u v.法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个III函数乘以第二个函数的导数,即:(uv ) uv uv .若C 为常数,则(Cu ) Cu Cu 0 Cu Cu .即常数与函数的积的导数等于常数乘以函数II的导数:(Cu ) Cu .法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除U u'v uv'2以分母的平方: v‘ =v( v 0)。
高三文科导数知识点总结一、导数的概念和求导法则导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
在高三文科中,导数是不可或缺的重要知识点。
1. 导数的定义:函数f(x)在x=a点的导数记作f'(a),表示函数在x=a点的变化率。
导数可以表示为极限的形式:f'(a) = lim (h→0) (f(a+h)-f(a))/h2. 导数的几何意义:导数可以理解为函数图像在某一点处的切线斜率。
当导数为正时,函数在该点上升;当导数为负时,函数在该点下降;当导数为零时,函数存在极值点。
3. 常见的导数法则:- 常数导数法则:常数的导数为零。
例如,f(x) = a,其中a为常数,则f'(x) = 0。
- 幂函数导数法则:幂函数的导数为其指数乘以系数。
例如,f(x) = ax^n,其中a和n为常数,则f'(x) = anx^(n-1)。
- 求和、差和乘积的导数法则:求和、差和乘积函数的导数可以从各个项分别求导后再相加、相减、相乘得到。
- 链式法则:对于复合函数,可以通过链式法则来求导。
链式法则的基本形式为:若y = f(g(x)),则y' = f'(g(x)) * g'(x)。
二、导数的应用导数不仅仅是一个数学概念,也有许多实际应用。
在高三文科中,导数的应用主要包括函数的最值、曲线的凹凸性和函数的图像。
1. 函数的最值:通过求导数,可以判断函数的最值点。
当函数的导数为零时,函数可能存在极大值或极小值。
通过求导数和判断导数的符号,可以找到函数的最值点。
2. 曲线的凹凸性:函数的导数还可以判断曲线的凹凸性。
当函数的二阶导数大于零时,函数是凹的;当函数的二阶导数小于零时,函数是凸的。
3. 函数的图像:通过函数的导数,可以对函数的图像进行分析。
函数图像在导数为正的区间上升,在导数为负的区间下降。
函数的极值点对应导数为零的点。
三、常见的导数函数在高三文科中,涉及到许多常见的函数的导数,这些函数在解题过程中常见且重要。
高考文科数学导数专题复习第1讲 变化率与导数、导数的计算知 识 梳 理1.导数的概念1函数y =fx 在x =x 0处的导数f ′x 0或y ′|x =x 0,即f ′x 0=0lim x ∆→错误!. 2函数fx 的导函数f ′x =0lim x ∆→错误!为fx 的导函数. 2.导数的几何意义函数y =fx 在点x 0处的导数的几何意义,就是曲线y =fx 在点Px 0,fx 0处的切线的斜率,过点P 的切线方程为y -y 0=f ′x 0x -x 0.3.基本初等函数的导数公式4.导数的运算法则若f ′x ,g ′x 存在,则有:考点一 导数的计算例1 求下列函数的导数:1y =e x ln x ;2y =x 错误!;解 1y ′=e x ′ln x +e x ln x ′=e x ln x +e x 错误!=错误!e x .2因为y =x 3+1+错误!, 所以y ′=x 3′+1′+错误!′=3x 2-错误!.训练1 1 已知函数fx 的导函数为f ′x ,且满足fx =2x ·f ′1+ln x ,则f ′1等于A.-eB.-1解析由fx=2xf′1+ln x,得f′x=2f′1+错误!,∴f′1=2f′1+1,则f′1=-1.答案B22015·天津卷已知函数fx=ax ln x,x∈0,+∞,其中a为实数,f′x为fx的导函数.若f′1=3,则a的值为________.2f′x=a错误!=a1+ln x.由于f′1=a1+ln 1=a,又f′1=3,所以a=3.答案23考点二导数的几何意义命题角度一求切线方程例22016·全国Ⅲ卷已知fx为偶函数,当x≤0时,fx=e-x-1-x,则曲线y=fx在点1,2处的切线方程是________.解析1设x>0,则-x<0,f-x=e x-1+x.又fx为偶函数,fx=f-x=e x-1+x,所以当x>0时,fx=e x-1+x.因此,当x>0时,f′x=e x-1+1,f′1=e0+1=2.则曲线y=fx在点1,2处的切线的斜率为f′1=2,所以切线方程为y-2=2x-1,即2x-y=0.答案2x-y=0训练22017·威海质检已知函数fx=x ln x,若直线l过点0,-1,并且与曲线y=fx相切,则直线l的方程为+y-1=0 -y-1=0 +y+1=0 -y+1=02∵点0,-1不在曲线fx=x ln x上,∴设切点为x0,y0.又∵f′x=1+ln x,∴错误!解得x=1,y0=0.∴切点为1,0,∴f′1=1+ln 1=1.∴直线l的方程为y=x-1,即x-y-1=00.答案B命题角度二求切点坐标例32017·西安调研设曲线y=e x在点0,1处的切线与曲线y=错误!x>0上点P处的切线垂直,则P的坐标为________.解析由y′=e x,知曲线y=e x在点0,1处的切线斜率k1=e0=1.设Pm,n,又y=错误!x>0的导数y′=-错误!,曲线y=错误!x>0在点P处的切线斜率k2=-错误!.依题意k1k2=-1,所以m=1,从而n=1.则点P的坐标为1,1.答案1,1训练3若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.解析1由题意得y′=ln x+x·错误!=1+ln x,直线2x-y+1=0的斜率为2.设Pm,n,则1+ln m=2,解得m=e,所以n=eln e=e,即点P的坐标为e,e. 答案1e,e命题角度三求与切线有关的参数值或范围例42015·全国Ⅱ卷已知曲线y=x+ln x在点1,1处的切线与曲线y=ax2+a+2x+1相切,则a=________.解析由y=x+ln x,得y′=1+错误!,得曲线在点1,1处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2x-1,即y=2x-1.又该切线与y=ax2+a+2x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8训练41.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′x=2在0,+∞上有解,而f′x=错误!+a,即错误!+a在0,+∞上有解,a=2-错误!,因为a>0,所以2-错误!<2,所以a的取值范围是-∞,2.答案 2-∞,22.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P 到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-错误!=1,解得x=1或x=-错误!舍去,故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为1,1,点1,1到直线y=x-2的距离等于错误!,∴点P到直线y=x-2的最小距离为错误!.答案D第2讲导数在研究函数中的应用知识梳理函数的单调性与导数的关系函数y=fx在某个区间内可导,则:1若f′x>0,则fx在这个区间内单调递增;2若f′x<0,则fx在这个区间内单调递减;3若f′x=0,则fx在这个区间内是常数函数.考点一利用导数研究函数的单调性例1设fx=e x ax2+x+1a>0,试讨论fx的单调性.解f′x=e x ax2+x+1+e x2ax+1=e x ax2+2a+1x+2=e x ax+1x+2=a e x错误!x+2①当a=错误!时,f′x=错误!e x x+22≥0恒成立,∴函数fx在R上单调递增;②当0<a<错误!时,有错误!>2,令f′x=a e x错误!x+2>0,有x>-2或x<-错误!,令f′x=a e x错误!x+2<0,有-错误!<x<-2,∴函数fx在错误!和-2,+∞上单调递增,在错误!上单调递减;③当a>错误!时,有错误!<2,令f′x=a e x错误!x+2>0时,有x>-错误!或x<-2,令f′x=a e x错误!x+2<0时,有-2<x<-错误!,∴函数fx在-∞,-2和错误!上单调递增;在错误!上单调递减.训练12016·四川卷节选设函数fx=ax2-a-ln x,gx=错误!-错误!,其中a∈R,e=…为自然对数的底数.1讨论fx的单调性;2证明:当x>1时,gx>0.1解由题意得f′x=2ax-错误!=错误!x>0.当a≤0时,f′x<0,fx在0,+∞内单调递减.当a>0时,由f′x=0有x=错误!,当x∈错误!时,f′x<0,fx单调递减;当x∈错误!时,f′x>0,fx单调递增.2证明令sx=e x-1-x,则s′x=e x-1-1.当x>1时,s′x>0,所以e x-1>x,从而gx=错误!-错误!>0.考点二求函数的单调区间例22015·重庆卷改编已知函数fx=ax3+x2a∈R在x=-错误!处取得极值.1确定a的值;2若gx=fx e x,求函数gx的单调减区间.解1对fx求导得f′x=3ax2+2x,因为fx在x=-错误!处取得极值,所以f′错误!=0,即3a·错误!+2·错误!=错误!-错误!=0,解得a=错误!.2由1得gx=错误!e x故g′x=错误!e x+错误!e x=错误!e x=错误!xx+1x+4e x.令g′x<0,得xx+1x+4<0.解之得-1<x<0或x<-4.所以gx的单调减区间为-1,0,-∞,-4.训练2 已知函数fx=错误!+错误!-ln x-错误!,其中a∈R,且曲线y=fx在点1,f1处的切线垂直于直线y=错误!x.1求a的值;2求函数fx的单调区间.解1对fx求导得f′x=错误!-错误!-错误!,由fx在点1,f1处的切线垂直于直线y =错误!x知f′1=-错误!-a=-2,解得a=错误!.2由1知fx=错误!+错误!-ln x -错误!,x>0.则f′x=错误!.令f′x=0,解得x=-1或x=5.但-10,+∞,舍去.当x∈0,5时,f′x<0;当x∈5,+∞时,f′x>0.∴fx的增区间为5,+∞,减区间为0,5.考点三已知函数的单调性求参数例32017·西安模拟已知函数fx=ln x,gx=错误!ax2+2xa≠0.1若函数hx=fx-gx存在单调递减区间,求a的取值范围;2若函数hx=fx-gx在1,4上单调递减,求a的取值范围.解1hx=ln x-错误!ax2-2x,x>0.∴h′x=错误!-ax-2.若函数hx在0,+∞上存在单调减区间,则当x>0时,错误!-ax-2<0有解,即a>错误!-错误!有解.设Gx=错误!-错误!,所以只要a>Gx min.又Gx=错误!错误!-1,所以Gx min=-1.所以a>-1.即实数a的取值范围是-1,+∞.2由hx在1,4上单调递减,∴当x∈1,4时,h′x=错误!-ax-2≤0恒成立,则a≥错误!-错误!恒成立,所以a≥Gx max.又Gx=错误!错误!-1,x∈1,4因为x∈1,4,所以错误!∈错误!,所以Gx max=-错误!此时x=4,所以a≥-错误!.当a=-错误!时,h′x=错误!+错误!x-2=错误!=错误!,∵x∈1,4,∴h′x=错误!≤0,当且仅当x=4时等号成立.∴hx在1,4上为减函数.故实数a的取值范围是错误!.训练3已知函数fx=x3-ax-1.1若fx在R上为增函数,求实数a的取值范围;2若函数fx的单调减区间为-1,1,求a的值.解1因为fx在R上是增函数,所以f′x=3x2-a≥0在R上恒成立,即a≤3x2对x∈R恒成立.因为3x2≥0,所以只需a≤0.又因为a=0时,f′x=3x2≥0,当且仅当x=0时取等号.∴fx=x3-1在R上是增函数.所以实数a的取值范围是-∞,0.2f′x=3x2-a.当a≤0时,f′x≥0,fx在-∞,+∞上为增函数,所以a≤0不合题意.当a>0时,令3x2-a<0,得-错误!<x<错误!,∴fx的单调递减区间为错误!,依题意,错误!=1,即a=3.第3讲导数与函数的极值、最值知识梳理1.函数的极值与导数的关系1函数的极小值与极小值点:若函数fx在点x=a处的函数值fa比它在点x=a附近其他点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数的极小值点,fa叫做函数的极小值.2函数的极大值与极大值点:若函数fx在点x=b处的函数值fb比它在点x=b附近其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数的极大值点,fb叫做函数的极大值.2.函数的最值与导数的关系1函数fx在a,b上有最值的条件:如果在区间a,b上函数y=fx的图象是一条连续不断的曲线,那么它必有最大值和最小值.2求y=fx在a,b上的最大小值的步骤考点一用导数研究函数的极值命题角度一根据函数图象判断极值例1设函数fx在R上可导,其导函数为f′x,且函数y=1-xf′x的图象如图所示,则下列结论中一定成立的是A.函数fx有极大值f2和极小值f1B.函数fx有极大值f-2和极小值f1C.函数fx有极大值f2和极小值f-2D.函数fx有极大值f-2和极小值f2解析由题图可知,当x<-2时,1-x>3,此时f′x>0;当-2<x<1时,0<1-x<3,此时f′x<0;当1<x<2时,-1<1-x<0,此时f′x<0;当x>2时,1-x<-1,此时f′x>0,由此可以得到函数fx在x=-2处取得极大值,在x=2处取得极小值.答案D命题角度二求函数的极值例2求函数fx=x-a ln xa∈R的极值.解由f′x=1-错误!=错误!,x>0知:1当a≤0时,f′x>0,函数fx为0,+∞上的增函数,函数fx无极值;2当a>0时,令f′x=0,解得x=a.又当x∈0,a时,f′x<0;当x∈a,+∞,f′x>0,从而函数fx在x=a处取得极小值,且极小值为fa=a-a ln a,无极大值.综上,当a≤0时,函数fx无极值;当a>0时,函数fx在x=a处取得极小值a-a ln a,无极大值.命题角度三已知极值求参数例3已知关于x的函数fx=-错误!x3+bx2+cx+bc在x=1处有极值-错误!,试求b,c 的值.解∵f′x=-x2+2bx+c,由fx在x=1处有极值-错误!,可得错误!解得错误!或错误!若b=1,c=-1,则f′x=-x2+2x-1=-x-12≤0,fx没有极值.若b=-1,c=3,则f′x =-x2-2x+3=-x+3x-1.当x变化时,fx与f′x的变化情况如下表:∴当x=1时,fx有极大值-错误!,满足题意.故b=-1,c=3为所求.训练1设函数fx=ax3-2x2+x+ca>0.1当a=1,且函数图象过0,1时,求函数的极小值;2若fx在R上无极值点,求a的取值范围.解由题意得f′x=3ax2-4x+1.1函数图象过0,1时,有f0=c=1.当a=1时,f′x=3x2-4x+1.令f′x>0,解得x<错误!或x>1;令f′x<0,解得错误!<x<1.所以函数在错误!和1,+∞上单调递增;在错误!上单调递减.故函数fx的极小值是f1=13-2×12+1+1=1. 2若fx在R上无极值点,则fx在R上是单调函数,故f′x≥0或f′x≤0恒成立.当a=0时,f′x=-4x+1,显然不满足条件;当a≠0时,f′x≥0或f′1≤0恒成立的充要条件是Δ=-42-4×3a×1≤0,即16-12a≤0,解得a≥错误!.综上,a的取值范围是错误!.考点二利用导数求函数的最值例4 2017·郑州模拟已知函数fx=x-k e x.1求fx的单调区间;2求fx在区间0,1上的最小值.解1由fx=x-k e x,得f′x=x-k+1e x,令f′x=0,得x=k-1.当x变化时,fx与f′x的变化情况如下表:所以,fx的单调递减区间是-∞,k-1;单调递增区间是k-1,+∞.2当k-1≤0,即k≤1时,函数fx在0,1上单调递增,所以fx在区间0,1上的最小值为f0=-k,当0<k-1<1,即1<k<2时,由1知fx在0,k-1上单调递减,在k-1,1上单调递增,所以fx在区间0,1上的最小值为fk-1=-e k-1.当k-1≥1,即k≥2时,函数fx在0,1上单调递减,所以fx在区间0,1上的最小值为f1=1-k e.综上可知,当k≤1时,fx min=-k;当1<k<2时,fx min=-e k-1;当k≥2时,fx min=1-k e.训练2设函数fx=a ln x-bx2x>0,若函数fx在x=1处与直线y=-错误!相切,1求实数a,b的值;2求函数fx在错误!上的最大值.解1由fx=a ln x-bx2,得f′x=错误!-2bxx>0.∵函数fx在x=1处与直线y=-错误!相切.∴错误!解得错误!2由1知fx=ln x-错误!x2,则f′x=错误!-x=错误!,当错误!≤x≤e时,令f′x>0,得错误!<x<1,令f′x<0,得1<x<e,∴fx在错误!上单调递增,在1,e上单调递减,∴fx max=f1=-错误!.考点三函数极值与最值的综合问题例5已知函数fx=错误!a>0的导函数y=f′x的两个零点为-3和0.1求fx的单调区间;2若fx的极小值为-e3,求fx在区间-5,+∞上的最大值.解1f′x=错误!=错误!.令gx=-ax2+2a-bx+b-c,由于e x>0.令f′x=0,则gx=-ax2+2a-bx+b-c=0,∴-3和0是y=gx的零点,且f′x与gx的符号相同.又因为a>0,所以-3<x<0时,gx>0,即f′x>0,当x<-3或x>0时,gx<0,即f′x<0,所以fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.2由1知,x=-3是fx的极小值点,所以有错误!解得a=1,b=5,c=5,所以fx=错误!.因为fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.所以f0=5为函数fx的极大值,故fx在区间-5,+∞上的最大值取f-5和f0中的最大者,又f-5=错误!=5e5>5=f0,所数fx在区间-5,+∞上的最大值是5e5.训练3 2017·衡水中学月考已知函数fx=ax-1-ln xa∈R.1讨论函数fx在定义域内的极值点的个数;2若函数fx在x=1处取得极值,x∈0,+∞,fx≥bx-2恒成立,求实数b的最大值.解1fx的定义域为0,+∞,f′x=a-错误!=错误!.当a≤0时,f′x≤0在0,+∞上恒成立,函数fx在0,+∞上单调递减.∴fx在0,+∞上没有极值点.当a>0时,由f′x<0,得0<x<错误!;由f′x>0,得x>错误!,∴fx在错误!上递减,在错误!上递增,即fx在x=错误!处有极小值.综上,当a≤0时,fx在0,+∞上没有极值点;当a>0时,fx在0,+∞上有一个极值点.2∵函数fx在x=1处取得极值,∴f′1=a-1=0,则a=1,从而fx=x-1-ln x.因此fx≥bx-21+错误!-错误!≥b,令gx=1+错误!-错误!,则g′x=错误!,令g′x=0,得x=e2,则gx在0,e2上递减,在e2,+∞上递增,∴gx min=g e2=1-错误!,即b≤1-错误!.故实数b的最大值是1-错误!.第4讲导数与函数的综合应用考点一利用导数研究函数的性质例12015·全国Ⅱ卷已知函数fx=ln x+a1-x.1讨论fx的单调性;2当fx有最大值,且最大值大于2a-2时,求a的取值范围.解1fx的定义域为0,+∞,f′x=错误!-a.若a≤0,则f′x>0,所以fx在0,+∞上单调递增.若a>0,则当x∈错误!时,f′x>0;当x∈错误!时,f′x<0.所以fx在错误!上单调递增,在错误!上单调递减.2由1知,当a≤0,fx在0,+∞上无最大值;当a>0时,fx在x=错误!取得最大值,最大值为f 错误!=ln错误!+a错误!=-ln a+a-1.因此f 错误!>2a-2等价于ln a+a-1<0.令ga=ln a+a-1,则ga在0,+∞上单调递增,g1=0.于是,当0<a<1时,ga<0;当a>1时,ga>0.因此,a的取值范围是0,1.训练1设fx=-错误!x3+错误!x2+2ax.1若fx在错误!上存在单调递增区间,求a的取值范围;2当0<a<2时,fx在1,4上的最小值为-错误!,求fx在该区间上的最大值.解1由f′x=-x2+x+2a=-错误!错误!+错误!+2a,当x∈错误!时,f′x的最大值为f′错误!=错误!+2a;令错误!+2a>0,得a>-错误!.所以,当a>-错误!时,fx在错误!上存在单调递增区间.2已知0<a<2,fx在1,4上取到最小值-错误!,而f′x=-x2+x+2a的图象开口向下,且对称轴x=错误!,∴f′1=-1+1+2a=2a>0,f′4=-16+4+2a=2a-12<0,则必有一点x0∈1,4,使得f′x0=0,此时函数fx在1,x0上单调递增,在x0,4上单调递减,f1=-错误!+错误!+2a=错误!+2a>0,∴f4=-错误!×64+错误!×16+8a=-错误!+8a=-错误!a=1.此时,由f′x0=-x错误!+x0+2=0x0=2或-1舍去,所以函数fx max=f2=错误!.考点二利用导数研究函数的零点或方程的根例2 2015·北京卷设函数fx=错误!-k ln x,k>0.1求fx的单调区间和极值;2证明:若fx存在零点,则fx在区间1,错误!上仅有一个零点. 1解由fx=错误!-k ln xk>0,得x>0且f′x=x-错误!=错误!.由f′x=0,解得x=错误!负值舍去.fx与f′x在区间0,+∞上的情况如下:所以fx的单调递减区间是0,错误!,单调递增区间是错误!,+∞.fx在x=错误!处取得极小值f错误!=错误!.2证明由1知,fx在区间0,+∞上的最小值为f错误!=错误!.因为fx存在零点,所以错误!≤0,从而k≥e.当k=e时,fx在区间1,错误!上单调递减,且f错误!=0,所以x=错误!是fx 在区间1,错误!上的唯一零点.当k>e时,fx在区间0,错误!上单调递减,且f1=错误!>0,f错误!=错误!<0,所以fx在区间1,错误!上仅有一个零点.综上可知,若fx存在零点,则fx在区间1,错误!上仅有一个零点.训练22016·北京卷节选设函数fx=x3+ax2+bx+c.1求曲线y=fx在点0,f0处的切线方程;2设a=b=4,若函数fx有三个不同零点,求c的取值范围.解1由fx=x3+ax2+bx+c,得f′x=3x2+2ax+b.因为f0=c,f′0=b,所以曲线y=fx 在点0,f0处的切线方程为y=bx+c.2当a=b=4时,fx=x3+4x2+4x+c,所以f′x=3x2+8x+4.令f′x=0,得3x2+8x+4=0,解得x=-2或x=-错误!.当x变化时,fx与f′x的变化情况如下:所以,当c>0且c-错误!<0,存在x1∈-4,-2,x2∈错误!,x3∈错误!,使得fx1=fx2=fx3=0.由fx的单调性知,当且仅当c∈错误!时,函数fx=x3+4x2+4x+c有三个不同零点.考点三导数在不等式中的应用命题角度一不等式恒成立问题例32017·合肥模拟已知fx=x ln x,gx=x3+ax2-x+2.1如果函数gx的单调递减区间为错误!,求函数gx的解析式;2对任意x∈0,+∞,2fx≤g′x+2恒成立,求实数a的取值范围.解1g′x=3x2+2ax-1,由题意3x2+2ax-1<0的解集是错误!,即3x2+2ax-1=0的两根分别是-错误!,1.将x=1或-错误!代入方程3x2+2ax-1=0,得a=-1.所以gx=x3-x2-x +2.2由题意2x ln x≤3x2+2ax-1+2在x∈0,+∞上恒成立,可得a≥ln x-错误!x-错误!,设hx=ln x-错误!x-错误!,则h′x=错误!-错误!+错误!=-错误!,令h′x=0,得x=1或-错误!舍,当0<x<1时,h′x>0,当x>1时,h′x<0,所以当x=1时,hx取得最大值,hx max=-2,所以a≥-2,所以a的取值范围是-2,+∞.训练3已知函数fx=x2-ln x-ax,a∈R.1当a=1时,求fx的最小值;2若fx>x,求a的取值范围.解1当a=1时,fx=x2-ln x-x,f′x=错误!.当x∈0,1时,f′x<0;当x∈1,+∞时,f′x>0.所以fx的最小值为f1=0.2由fx>x,得fx-x=x2-ln x-a+1x>0.由于x>0,所以fx>x等价于x-错误!>a+1.令gx =x-错误!,则g′x=错误!.当x∈0,1时,g′x<0;当x∈1,+∞时,g′x>0.故gx有最小值g1=1.故a+1<1,a<0,即a的取值范围是-∞,0.命题角度二证明不等式例42017·昆明一中月考已知函数fx=ln x-错误!.1求函数fx的单调递增区间;2证明:当x>1时,fx<x-1.1解f′x=错误!-x+1=错误!,x∈0,+∞.由f′x>0得错误!解得0<x<错误!.故fx的单调递增区间是错误!.2证明令Fx=fx-x-1,x∈0,+∞.则有F′x=错误!.当x∈1,+∞时,F′x<0,所以Fx在1,+∞上单调递减,故当x>1时,Fx<F1=0,即当x>1时,fx<x-1.故当x>1时,fx<x-1.训练4 2017·泰安模拟已知函数fx=ln x.1求函数Fx=错误!+错误!的最大值;2证明:错误!+错误!<x-fx;1解Fx=错误!+错误!=错误!+错误!,F′x=错误!,当F′x>0时,0<x<e;当F′x<0时,x>e,故Fx在0,e上是增函数,在e,+∞上是减函数,故Fx max=F e=错误!+错误!.2证明令hx=x-fx=x-ln x,则h′x=1-错误!=错误!,当h′x<0时,0<x<1;当h′x>0时,x>1,故hx在0,1上是减函数,在1+∞上是增函数,故hx min=h1=1.又Fx max=错误!+错误!<1,故Fx<hx,即错误!+错误!<x-fx.。
基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)a a a x x ln )(=' (6) (e )e x x '=(7)a x x a ln 1)(log ='(8)x x 1)(ln =',函数的和、差、积、商的求导法则设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2)u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛复合函数求导法则 ()⎣⎦x g f y =令()x g u = 所以)(u f y = 对内层函数求导即()x g u x ''= 再对外层函数求导即()u f y u ''=因此复合函数的导数即为'''ux x y u f ⋅=切线的斜率 已知曲线的方程()x f y = 设切点()00,y x P 斜率即为()0'x f 导数在函数单调性中的应用 一,求单调区间 特别注意定义域的限制若()0'>x f 则函数()x f 单调递增。
若()0'<x f 则函数()x f 单调递减 二,已知单调区间,求参数的范围若函数()x f 单调递增 则()0'≥x f 若函数()x f 单调递减 则()0'≤x f 三,函数极值四,函数最值例1:(1)()324y x x =- (2)sin xy x=(3)3cos 4sin y x x =- (4)()223y x =+(5)()ln 2y x =+ (6)4)31(1x y -=练习1 (1)cos3xy = (2)y = (3)y =(5x -3)4(4y =(2+3x )5 (5)y =(2-x 2)3(6)y =(2x 3+x )2y=ln (x +21x +) y =32)12(1-x y =cos(1+x 2)例二 1,函数)0,4(2cos π在点x y =处的切线方程是2,已知曲线y =18x 2的一条切线的斜率为12,则切点的横坐标为3,在曲线y =x 3+x -2中求在点P (2,8)处的切线方程4,在曲线2x y =中求过点M ()3,2的切线方程。
练习二1过点P (1,2)与曲线y=2x 2相切的切线方程是( ) A. 4x -y -2=0 B. 4x+y -2=0 C. 4x+y=0 D. 4x -y+2=02,曲线y =sin3x 在点P (3π,0)处切线的斜率为___________。
3.已知曲线 y = x 3+ x -2 在点 P 0 处的切线 1l 平行直线4x -y -1=0,且点 P 0 在第三象限,⑴求P 0的坐标; ⑵若直线 1l l ⊥ , 且 l 也过切点P 0 ,求直线l 的方程.4.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程例三 1.(2010全国文)设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性;(Ⅱ)求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值.2.函数3()12f x x x =-在区间[33]-,上的最小值是 3.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=_____.练习三1.函数f (x )=x +9x的单调区间为_______2.函数32x x y -=的单调增区间为 ,单调减区间为___________________3.函数y =ln(x 2-x -2)的单调递减区间为__________4.已知函数f(x)=x 3-21x 2+bx+c. (1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围5.(2011全国I 文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值6.对函数f (x )=-x 4+2x 2+3有( )A .最大值4,最小值-4B .最大值4,无最小值C .无最大值,最小值-4D .既无最大值也无最小值 7.函数()ln (0)f x x x x =>的单调递增区间是8.(2011广东理)函数32()31f x x x =-+在x = 处取得极小值9.已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围导数综合基础训练一,选择题(50分)1. 函数y =2)13(1-x 的导数是( ) A. 3)13(6-x B. 2)13(6-x C. -3)13(6-x D. -2)13(6-x 3. 函数y =sin (3x +4π)的导数为( )A. 3sin (3x +4π)B. 3cos (3x +4π)C. 3sin 2(3x +4π)D. 3cos 2(3x +4π)4. 曲线n x y =在x=2处的导数是12,则n=( )A. 1B. 2C. 3D. 45.函数()(3)xf x x e =-的单调递增区间是A .(),2-∞B .(0,3)C .(1,4)D .()2,+∞6.已知函数)(x f y =,其导函数)(x f y '=的图象如图所示,则)(x f y =【 】 A .在(-∞,0)上为减函数 B .在=x 0处取极小值C .在(4,+∞)上为减函数D .在=x 2处取极大值 7、2y x =的斜率等于2的切线方程为( )A 、210x y -+=B 、210x y -+=或210x y --=C 、210x y --=D 、20x y -=8、过曲线1y x=上一点P 的切线的斜率为4-,则P 的坐标为( ) A 、1(,2)2 B 、1(,2)2或1(,2)2-- C 、1(,2)2-- D 、1(,2)2-9.曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29C.13D.2310.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是( )A ](1,∞-B [)+∞,3C []2,1D []3,2二填空题(20分)11. ___________,2)(,ln )(00'===x x f x x x f 则12. 函数()ln (0)f x x x x =>的单调递增区间是13.已知函数122+x x求曲线()y f x =在点(2(2))f ,处的切线方程 ; 14.曲线3()2f x x x =+-在0P 点处的切线平行于直线41y x =-,则0P 点的坐标为 .15.求函数()()1ln 42+-=x x x f 极值三 解答题16..求下列函数的导数(12分)x x y sin 13+=)( 3)2(24+--=x x x y 4532323-+-=x x x y )()23)(32()4(2-+=x x y (5) xx y sin 2= ()x x x y -+=222ln17.已知(1,1),(2,4)P Q -是曲线2y x =上的两点,求与直线PQ 平行的曲线2y x =的切线方程。
(10分)18.(2010·新课标全国文)设函数f (x )=x (e x -1)-ax 2.(10分) (1)若a =12,求f (x )的单调区间;(2)在(1)的条件下求()x f 的极值。
19(1)设函数()xe f x x= 求函数()f x 的单调区间;(12分)(2)函数y =x 2e -x 的单调递增区间是20.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.(12分)21.设()1xe f x ax =+,其中a 为正实数(12分)(Ⅰ)当a 43=时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
22.已知函数()bx ax x x f --=233,其中b a ,为实数.(12分)(Ⅰ) 若()x f 在1=x 处取得的极值为2,求b a ,的值;(Ⅱ)若()x f 在区间[]2,1-上为减函数,且a b 9=,求a 的取值范围.。