绿色阳离子生物絮凝剂的微波合成与应用
- 格式:pdf
- 大小:264.98 KB
- 文档页数:3
生物质絮凝剂1.引言生物质絮凝剂是一种由生物质原料制备而成的天然高分子絮凝剂。
与传统的合成絮凝剂相比,生物质絮凝剂具有无毒、可生物降解、来源广泛等优点。
随着环保意识的日益增强和可持续发展的要求,生物质絮凝剂在工业水处理、食品工业、染料废水等领域的应用越来越受到关注。
本文将对生物质絮凝剂的来源、制备方法、性能、应用领域、研究现状及未来发展趋势进行详细阐述。
2.生物质絮凝剂的来源生物质絮凝剂的原料主要来源于自然界中广泛存在的植物、动物及微生物资源。
其中,植物源包括木质纤维素、淀粉、藻类等;动物源包括壳聚糖、明胶等;微生物源包括细菌、真菌等。
这些原料经过适当的处理和转化,可得到具有絮凝活性的生物质絮凝剂。
3.生物质絮凝剂的制备方法生物质絮凝剂的制备方法主要包括提取法、微生物发酵法和酶法。
提取法是从天然原料中直接提取出具有絮凝活性的物质,如从壳聚糖中提取的壳聚糖絮凝剂。
微生物发酵法是利用微生物发酵产生具有絮凝活性的代谢产物,如某些细菌发酵产生的多糖类物质。
酶法是利用酶催化天然原料中的特定化学键,生成具有絮凝活性的产物,如用木聚糖酶催化木聚糖制备的絮凝剂。
4.生物质絮凝剂的性能生物质絮凝剂具有良好的絮凝性能和环保特性。
其絮凝机理主要包括电性中和、吸附架桥和卷扫作用。
生物质絮凝剂对多种不同类型的悬浮颗粒都有较好的去除效果,且可有效处理低浓度的悬浮液。
此外,生物质絮凝剂还具有无毒、可生物降解的优点,不会对环境造成二次污染。
5.生物质絮凝剂的应用领域生物质絮凝剂在多个领域具有广泛的应用前景。
在工业水处理领域,生物质絮凝剂可用于去除水中的悬浮颗粒、重金属离子和有害有机物,提高水质。
在食品工业中,生物质絮凝剂可用于果汁、乳制品、肉制品等食品的澄清和过滤,以及食品中蛋白质、色素等物质的提取和分离。
在染料废水处理中,生物质絮凝剂能够有效脱色并去除有毒物质,达到废水排放标准。
此外,生物质絮凝剂还可用于农业废弃物处理、纸张生产等领域。
阳离子聚丙烯酰胺絮凝剂的制备及表征
离子聚丙烯酰胺絮凝剂( IPN) 被广泛应用于石油改性、界面活性剂、分离剂、
液体稳定剂等领域。
离子聚丙烯酰胺絮凝剂的制备成本低、制备过程控制更为容易、制备条件可控性强等,使得其广大的应用。
本实验乃以阴离子聚丙烯酰胺为原料,运用溶剂热法制备阴离子聚丙烯酰胺絮凝剂,用采用傅里叶变换红外光谱
(FTIR)和X射线衍射(XRD)等手段对所制备的离子聚丙烯酰胺絮凝剂进行
表征,进一步探究通过改变溶剂类型和添加剂类型等因子的影响,对制备的离子聚丙烯酰胺絮凝剂的性质及应用提出建议。
实验步骤:
1、将阴离子聚丙烯酰胺和溶剂分别放入烧瓶中;
2、加热搅拌,将其混合成半流动固体;
3、将调配好的混合物倒入容器,置于水浴煮沸,不停搅拌;
4、添加所选择的表面活性剂,一直搅拌至混合物凝固;
5、将凝固物完全收集到一容器中,然后冰镇至室温;
6、运用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等手段对所制备的离子聚丙烯酰胺絮凝剂进行表征;
7、将制备的离子聚丙烯酰胺絮凝剂与水相混合,观察沉淀情况;
8、对制备的离子聚丙烯酰胺絮凝剂的性能进行测试,查看其对不同溶剂、不同表面活性剂等因子下的结果,并进行技术经济分析;
9、收集实验数据,拟合出效价曲线,得出实验结论。
微生物絮凝剂的研究及应用摘要水处理混凝剂的发展速度很快,新产品层出不穷。
第一代絮凝剂为以铝离子为代表的无机盐及其高分子聚合物,第二代为以聚丙烯酰胺为代表的有机高分子絮凝剂,这两代絮凝剂(有机和无机类1均存在不同的缺点。
近年来,人们开发出了一类由微生物产生的、具有高效混凝作用的天然高分子有机物(生物树脂),称为微生物絮凝剂,应用效果好、适用范围广、易生物降解、安全可靠。
处理后的污水最终能实现无污染排放等特点而被称之为第三代絮凝剂。
关键词微生物,絮凝剂,絮凝机理,水处理引言微生物絮凝剂主要包括利用微生物细胞壁提取物的絮凝剂,利用微生物细胞壁代谢产物的絮凝剂、直接利用微生物细胞的絮凝剂和克隆技术所获得的絮凝剂。
微生物产生的絮凝剂物质为糖蛋白、粘多糖、蛋白质、纤维素、DNA等高分子化合物,相对分子质量在105以上。
微生物絮凝剂的研究者早就发现,一些微生物如酵母、细菌等有细胞絮凝现象,但一直未对其产生重视,仅是作为细胞富集的一种方法。
近十几年来,细胞絮凝技术才作为一种简单、经济的生物产品分离技术在连续发酵及产品分离中得到广泛的应用。
微生物絮凝剂是一类由微生物产生的具有絮凝功能的高分子有机物。
主要有糖蛋白、粘多糖、纤维素和核酸等。
能产生微生物絮凝剂的微生物种类很多,它们大量存在于土壤、活性污泥和沉积物中。
从其来源看,也属于天然有机高分子絮凝剂,因此它具有天然有机高分子絮凝剂的一切优点。
同时,微生物絮凝剂的研究工作已由提纯、改性进入到利用生物技术培育、筛选优良的菌种,以较低的成本获得高效的絮凝剂的研究,因此其研究范围已超越了传统的天然有机高分子絮凝剂的研究范畴。
具有分泌絮凝剂能力的微生物称为絮凝剂产生菌。
最早的絮凝剂产生菌是Butterfield从活性污泥中筛选得到。
1976年,Nakamura j.等人从霉菌、细菌、放线菌、酵母菌等菌种中,筛选出19种具有絮凝能力的微生物,其中以酱油曲霉AJ7002产生的絮凝剂效果最好。
绿色絮凝剂的应用与研究叶嘉璇(佛山科学技术学院,环境与土木建筑学院,广东佛山528000)摘要:绿色絮凝剂的概念源于“绿色化学”的提出。
根据美国化学会(ACS)的定义,其核心是利用化学原理从源头上减少和消除工业生产对环境的污染,反应物的原子全部转化为期望的最终产物。
因此,绿色化学是一门从源头上彻底阻止污染发生的化学。
在此基础上,人们提出了绿色絮凝剂的概念,并认为它是21世纪絮凝剂的发展方向。
绿色絮凝剂要求水在经絮凝剂处理过程中,生产用的原材料和转化试剂绿色化、生产反应方式绿色化、生产反应条件绿色化。
絮凝剂的绿色化战略是环境工程学科中的一项要求,也是我国社会可持续发展的需要和追及世界先进技术水平的需要。
关键词:水处理;绿色絮凝剂;绿色化学绿色水处理剂是当前水工业、污染治理与节水处理工程技术中应用最为广泛的产品。
包括絮凝剂、阻垢剂、缓蚀剂、杀生剂等,主要用于去除水中悬浮固体和有毒物质,控制水垢和污泥的形成,减少对水接触材料的腐蚀,除臭杀菌、脱色、软化、稳定水质及海水淡化等。
然而,絮凝剂是水处理剂中用量最大的一种药剂,其绿色化主要着眼于天然高分子絮凝剂。
[1]近年来,天然高分子水处理剂兼具有环境友好、可再生、来源广泛,且完全脱离石油资源等重要特点的备受关注,甚至有人将其誉为“21世纪的绿色絮凝剂材料”。
絮凝效果如何关键取决于絮凝剂的选择,近年来,絮凝剂的开发也逐渐侧重于绿色化,出现了微生物絮凝剂、绿色无机絮凝剂、天然高分子絮凝剂等新型水处理剂。
[2]1绿色絮凝剂的类型与特点1.1 微生物絮凝剂微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,一般由多糖、蛋白质、DNA、纤维素、糖蛋白和聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。
该种絮凝剂具有絮凝范围广、絮凝活性高、安全无害无污染、易被生物降解、使用方便等优点,同时絮凝剂产生菌的种类多、生长快,尤其适于食品工业废水的处理和再生利用。
絮凝剂理论基础是;“聚并”理论,絮凝剂主要是带有正电(负)性的基团中和一些水中带有负(正)电性难于分离的一些粒子或者叫颗粒,降低其电势,使其处于不稳定状态,并利用其聚合性质使得这些颗粒,集中,并通过物理或者化学方法分离出来。
一般为达到这种目的而使用的药剂,称之为絮凝剂。
絮凝剂主要应用于给水各污水处理领域。
絮凝剂按照其化学成分总体可分为无机絮凝剂和有机絮凝剂两类。
其中无机絮凝剂又包括无机凝聚剂和无机高分子絮凝剂;有机絮凝剂又包括合成有机高分子絮凝剂、天然有机高分子絮凝剂和微生物絮凝剂。
无机絮凝剂按其分子量的大小可分为低分子絮凝剂和高分子絮凝剂两大类。
低分子絮凝剂价格低、货源充足、但因其用量大、残渣多、效果差,故无机絮凝剂的发展已经基本上完成了低分子向高分子的转变。
现常用的无机高分子絮凝剂有聚合铝类絮凝剂、聚合铁类絮凝剂和活性硅酸类絮凝剂以及复合絮凝剂四大类。
?(1)聚合铝类絮凝剂(如聚合氯化铝,硫酸铝等)聚合铝水解产生高价离子,形成各种类型的羟基多核络合物。
它们通过羰基式桥联作用,处于亚稳定状态。
而OH-与Al3+的比值[2](一般称盐基度或碱基度)对絮凝效果影响很大。
通常盐基度越高,絮凝效果越强,但过高则本身易生成难溶的氢氧化铝沉淀,导致絮凝效果降低。
研究表明,盐基度在75%-85%时最佳,此时絮凝体产生快,颗粒大而重,沉淀性能好。
聚合铝具有投药量少、沉降速度快、颗粒密实、除浊、除色效果明显等特点。
在工业水处理中得到广泛的应用[3]。
值得注意的是铝,尤其是活性铝,毒性较大,同时聚合铝制备方法不完善,致使较多水解铝的微细颗粒存在于溶液中,这在一定程度上限制了聚合铝的使用。
通过改善混凝反应条件,延长慢速混凝时间,能有效降低水中铝的含量。
(2)聚合铁类絮凝剂(如聚合硫酸铁等)聚合铁是另一新型无机絮凝剂,絮凝机理与聚合铝类似。
其主要类型有聚硫酸铁、聚氯化铁、聚氯化硫酸铁等等。
聚氯化硫酸铁除具有铝盐类无机高分子絮凝剂特点外,还具有价格低、pH值适用范围宽等特点。
阳离子聚丙烯酰胺絮凝剂的合成研究作者:李智利徐景峰来源:《当代化工》2015年第11期摘要:以丙烯酰胺(AM)、自制阳离子单体(CMD)、二甲基二烯丙基氯化铵(DMDAAC)三种单体为原料,采用水溶液复合引发剂聚合法合成了阳离子聚丙烯酰胺(CPAM)。
研究了单体配比、引发剂用量、反应温度等因素对聚合反应的影响,并对产品的溶解性、黏度、残留单体的量进行了评价。
关键词:阳离子聚丙烯酰胺;溶解性;黏度;絮凝中图分类号:TQ 316.3 文献标识码: A 文章编号: 1671-0460(2015)11-2599-03Study on Synthesis of Cationic Polyacrylamide FlocculantsLI Zhi-li, XV Jing-feng(Changzhou Institute of Engineering Technology, Jiangsu Changzhou 213164, China)Abstract: Cationic Polyacrylamide flocculants were synthesized by aqueous composite initiator copolymerization of acrylamide, self-designed cationic monomer and dimethyl diallyl ammonium chloride. The influence of monomers ratio, initiator amount and reaction temperature on the polymerization reaction was studied. The solubility, viscosity and monomer residual amount of the product were evaluated.Key words: Cationic polyacrylamide; Solubility; Viscosity; Flocculation阳离子聚丙烯酰胺(CPAM)是一种含有阳离子的水溶性聚电解质,可以对水中带有负电荷的微粒进行电荷中和以及吸附架桥作用,具有良好的除浊、脱色以及强化固液分离过程的作用,是一种优良的絮凝剂[1]。
胶原蛋白改性阳离子絮凝剂对废弃钻井液的絮凝胶原蛋白改性阳离子絮凝剂对废弃钻井液的絮凝摘要随着钻井业的发展,废弃钻井液的处理越来越受到人们的关注。
本文研究了胶原蛋白改性阳离子絮凝剂对废弃钻井液的絮凝效果。
通过批次试验和统计分析,发现胶原蛋白改性阳离子絮凝剂的最佳剂量为50mg/L,pH值为7。
此外,还发现胶原蛋白改性阳离子絮凝剂能够有效地去除废弃钻井液中的悬浮颗粒、有机物和重金属离子。
因此,胶原蛋白改性阳离子絮凝剂是一种非常有效的废弃钻井液处理剂,有望在废弃钻井液处理中广泛应用。
关键词:废弃钻井液、胶原蛋白改性阳离子絮凝剂、絮凝效果、去除、应用引言废弃钻井液是石油钻井过程中产生的一种副产品,主要包含水、溶解物、悬浮物、油、气体和各种化学物质。
由于废弃钻井液的成份复杂,且含有大量有害物质,若不妥善处理,将会给环境和人类健康带来危害。
目前,常见的废弃钻井液处理方法有自然降解、压实填埋、物理化学处理等。
其中,物理化学处理是目前最广泛应用的废弃钻井液处理方法。
常见的物理化学处理方法包括絮凝、沉淀、过滤和吸附等。
而身为一种重要的废弃钻井液处理方法,絮凝技术又是废弃钻井液处理中最为基本的技术之一,主要通过添加絮凝剂来使悬浮物聚集成大颗粒,便于沉淀分离。
因此,制备一种高效絮凝剂对废弃钻井液进行处理有着很重要的意义。
实验方法材料废弃钻井液:采自一家石油公司胶原蛋白改性阳离子絮凝剂:生产厂家为xx公司试验设备PH计、比色计、离心机试验步骤将废弃钻井液取出100mL分别加入10mL、20mL、30mL和50mL不同比例的胶原蛋白改性阳离子絮凝剂中,经过混合后,放置静置60min左右进行絮凝;将样品置于离心机中,离心10min,沉淀物去液,沉淀物重量称重,记录数据;测定不同pH值时仿况添加50mg/L的胶原蛋白改性阳离子絮凝剂,静置60min左右,进行絮凝;取50mg/L的胶原蛋白改性阳离子絮凝剂添加到废弃钻井液中,静置60min后,采用UV-Vis分光光度法测定溶液中有机物和重金属离子的去除率。
浅谈水处理技术的应用和发展摘要:洁净水资源跟人们的生活息息相关。
本文主要介绍利用水处理技术实现水资源可持续发展。
文章列举了绿色氧化、绿色絮凝以及超声波、微波、等环保水处理技术,以及在国内外的研究应用现状,探讨了绿色水处理技术的发展趋势。
关键词:超声波水微波水光催化氧化水处理0 引言在当前的水处理技术中,处理效率低,能耗高且易带来二次污染,是水处理技术发展中的突出问题。
因此有必要采用高效、无毒、低能耗、无二次污染的绿色水处理技术,这也是实现水资源可持续发展、环境保护和生态安全的重要措施。
1 超声波、微波绿色水处理技术1.1 超声波水处理超声波水处理是一种新型绿色水处理技术,超声波是指频率在20kHz以上的声波。
用其辐射水溶液会产生许多物理化学变化,这种现象称为超声空化效应。
利用此效应,可以方便、快速地处理废水,尤其对含有毒有机污染物的废水,处理效果更显著。
目前,国内外对超声波水处理技术研究较为深入,研究方向也已从利用超声波单独处理转向超声波复合技术应用的研究。
目前主要有以下几个方面。
1.1.1 超声化学氧化目前的氧化物质有空气、、、以及Fenton试剂等,其中研究较早的是空气和。
超声波与臭氧氧化结合,产生超声臭氧氧化技术,处理效果明显。
此法在最近几年中研究较多,可降解的主要有机物包括酚类、染料、芳香化合物等。
超声臭氧氧化技术降解五氯酚,效果明显好于超声或臭氧单独使用时的效果。
在降解染料废水的过程中,超声波和臭氧氧化之间具有协同效应,产生协同效应的主要原因是超声波促进臭氧转化为自由基。
用臭氧对偶氮染料的脱色过程中增加超声辐射后,不仅可以在11min内达到90%的脱色率,而且臭氧投加量可节省48%。
超声波与结合处理难降解有机物的研究已有报道,其用于分解水中邻氯酚时,降解率可达99%,总有机碳的去除率为63%。
用超声强化氧化降解水中的4-氯苯酚,对水中4-氯苯酚的降解率和TOC去除率均比单独采用超声波效果好。
材料绿色合成与应用一、绿色合成的概念和意义绿色合成是一种基于可持续发展理念的新型化学合成方法,它强调在合成过程中尽可能减少对环境的污染和对人体健康的危害。
这种方法不仅可以提高化学反应的效率,还可以减少废弃物和有毒物质的产生,从而实现资源的节约和环境保护。
二、绿色合成技术1. 催化剂技术催化剂技术是绿色合成中最常用的技术之一。
通过添加催化剂,可以促进反应速率、选择性和效率,并减少废弃物和有毒物质的产生。
例如,在酯化反应中使用酸性离子液体作为催化剂,可以将反应温度降低到60℃以下,并且几乎不产生任何废弃物。
2. 超声波技术超声波技术是一种非常有效的绿色合成方法。
通过在反应介质中加入超声波,可以促进分子之间的碰撞和运动,并提高反应速率和效率。
此外,超声波还可以使得反应条件更加温和,从而减少废弃物和有毒物质的产生。
3. 微波技术微波技术是一种快速、高效的绿色合成方法。
通过在反应体系中加入微波辐射,可以使得反应速率大大提高,并且减少废弃物和有毒物质的产生。
此外,微波技术还可以使得反应条件更加温和,从而提高反应的选择性。
4. 原子经济合成技术原子经济合成技术是一种非常重要的绿色合成方法。
它强调在化学反应中尽可能充分利用原料中的每一个原子,并将其转化为目标产物。
这种方法可以最大限度地减少废弃物和有毒物质的产生,并实现资源的节约和环境保护。
三、绿色合成在药物合成中的应用1. 绿色合成可以有效地提高药物合成过程中的效率和选择性,并减少废弃物和有毒物质的产生。
例如,在阿司匹林合成过程中,使用催化剂可以将反应时间缩短到数小时,并且将废液量减少到最低限度。
2. 绿色合成还可以帮助合成出更加纯净和高质量的药物。
例如,在伊马替尼合成过程中,使用超声波技术可以将反应时间缩短到数小时,并且将杂质含量降低到最低限度。
3. 绿色合成还可以帮助开发出更加环保和可持续的药物。
例如,在阿托伐他汀合成过程中,使用原子经济合成技术可以将废弃物产生量降低到最低限度,并且实现资源的节约和环境保护。