Incremental Semi-Supervised Subspace Learning for Image Retrieval
- 格式:pdf
- 大小:123.40 KB
- 文档页数:7
极视角学术分享王晋东中国科学院计算技术研究所2017年12月14日1迁移学习简介23451 迁移学习的背景⏹智能大数据时代⏹数据量,以及数据类型不断增加⏹对机器学习模型的要求:快速构建和强泛化能力⏹虽然数据量多,但是大部分数据往往没有标注⏹收集标注数据,或者从头开始构建每一个模型,代价高昂且费时⏹对已有标签的数据和模型进行重用成为了可能⏹传统机器学习方法通常假定这些数据服从相同分布,不再适用文本图片及视频音频行为1 迁移学习简介⏹迁移学习⏹通过减小源域(辅助领域)到目标域的分布差异,进行知识迁移,从而实现数据标定。
⏹核心思想⏹找到不同任务之间的相关性⏹“举一反三”、“照猫画虎”,但不要“东施效颦”(负迁移)减小差异知识迁移135源域数据标记数据难获取1 迁移学习应用场景⏹应用前景广阔⏹模式识别、计算机视觉、语音识别、自然语言处理、数据挖掘…不同视角、不同背景、不同光照的图像识别语料匮乏条件下不同语言的相互翻译学习不同用户、不同设备、不同位置的行为识别不同领域、不同背景下的文本翻译、舆情分析不同用户、不同接口、不同情境的人机交互不同场景、不同设备、不同时间的室内定位⏹数据为王,计算是核心⏹数据爆炸的时代!⏹计算机更强大了!⏹但是⏹大数据、大计算能力只是有钱人的游戏⏹云+端的模型被普遍应用⏹通常需要对设备、环境、用户作具体优化⏹个性化适配通常很复杂、很耗时⏹对于不同用户,需要不同的隐私处理方式⏹特定的机器学习应用⏹推荐系统中的冷启动问题:没有数据,如何作推荐?⏹为什么需要迁移学习⏹数据的角度⏹收集数据很困难⏹为数据打标签很耗时⏹训练一对一的模型很繁琐⏹模型的角度⏹个性化模型很复杂⏹云+端的模型需要作具体化适配⏹应用的角度⏹冷启动问题:没有足够用户数据,推荐系统无法工作因此,迁移学习是必要的1 迁移学习简介:迁移学习方法常见的迁移学习方法分类基于实例的迁移(instance based TL)•通过权重重用源域和目标域的样例进行迁移基于特征的迁移(feature based TL)•将源域和目标域的特征变换到相同空间基于模型的迁移(parameter based TL)•利用源域和目标域的参数共享模型基于关系的迁移(relation based TL)•利用源域中的逻辑网络关系进行迁移1 迁移学习简介:迁移学习方法研究领域常见的迁移学习研究领域与方法分类12领域自适应问题345⏹领域自适应问题⏹按照目标域有无标签⏹目标域全部有标签:supervised DA⏹目标域有一些标签:semi-supervised DA⏹目标域全没有标签:unsupervised DA⏹Unsupervised DA最有挑战性,是我们的关注点123领域自适应方法453 领域自适应:方法概览⏹基本假设⏹数据分布角度:源域和目标域的概率分布相似⏹最小化概率分布距离⏹特征选择角度:源域和目标域共享着某些特征⏹选择出这部分公共特征⏹特征变换角度:源域和目标域共享某些子空间⏹把两个域变换到相同的子空间⏹解决思路概率分布适配法(Distribution Adaptation)特征选择法(Feature Selection)子空间学习法(Subspace Learning)数据分布特征选择特征变换假设:条件分布适配(Conditional distribution假设:联合分布适配(Joint distribution adaptation)假设:源域数据目标域数据(1)目标域数据(2)⏹边缘分布适配(1)⏹迁移成分分析(Transfer Component Analysis,TCA)[Pan, TNN-11]⏹优化目标:⏹最大均值差异(Maximum Mean Discrepancy,MMD)⏹边缘分布适配(2)⏹迁移成分分析(TCA)方法的一些扩展⏹Adapting Component Analysis (ACA) [Dorri, ICDM-12]⏹最小化MMD,同时维持迁移过程中目标域的结构⏹Domain Transfer Multiple Kernel Learning (DTMKL) [Duan, PAMI-12]⏹多核MMD⏹Deep Domain Confusion (DDC) [Tzeng, arXiv-14]⏹把MMD加入到神经网络中⏹Deep Adaptation Networks (DAN) [Long, ICML-15]⏹把MKK-MMD加入到神经网络中⏹Distribution-Matching Embedding (DME) [Baktashmotlagh, JMLR-16]⏹先计算变换矩阵,再进行映射⏹Central Moment Discrepancy (CMD) [Zellinger, ICLR-17]⏹不只是一阶的MMD,推广到了k阶⏹条件分布适配⏹Domain Adaptation of Conditional Probability Models viaFeature Subsetting[Satpal, PKDD-07]⏹条件随机场+分布适配⏹优化目标:⏹Conditional Transferrable Components (CTC) [Gong,ICML-15]⏹定义条件转移成分,对其进行建模⏹联合分布适配(1)⏹联合分布适配(Joint Distribution Adaptation,JDA)[Long, ICCV-13]⏹直接继承于TCA,但是加入了条件分布适配⏹优化目标:⏹问题:如何获得估计条件分布?⏹充分统计量:用类条件概率近似条件概率⏹用一个弱分类器生成目标域的初始软标签⏹最终优化形式⏹联合分布适配的结果普遍优于比单独适配边缘或条件分布⏹联合分布适配(2)⏹联合分布适配(JDA)方法的一些扩展⏹Adaptation Regularization (ARTL) [Long, TKDE-14]⏹分类器学习+联合分布适配⏹Visual Domain Adaptation (VDA)[Tahmoresnezhad, KIS-17]⏹加入类内距、类间距⏹Joint Geometrical and Statistical Alignment (JGSA)[Zhang, CVPR-17]⏹加入类内距、类间距、标签适配⏹[Hsu,TIP-16]:加入结构不变性控制⏹[Hsu, AVSS-15]:目标域选择⏹Joint Adaptation Networks (JAN)[Long, ICML-17]⏹提出JMMD度量,在深度网络中进行联合分布适配平衡因子当,表示边缘分布更占优,应该优先适配⏹联合分布适配(4)⏹平衡分布适配(BDA):平衡因子的重要性⏹平衡分布适配(BDA):平衡因子的求解与估计⏹目前尚无精确的估计方法;我们采用A-distance来进行估计⏹求解源域和目标域整体的A-distance⏹对目标域聚类,计算源域和目标域每个类的A-distance ⏹计算上述两个距离的比值,则为平衡因子⏹对于不同的任务,边缘分布和条件分布并不是同等重要,因此,BDA 方法可以有效衡量这两个分布的权重,从而达到最好的结果⏹概率分布适配:总结⏹方法⏹基础:大多数方法基于MMD距离进行优化求解⏹分别进行边缘/条件/联合概率适配⏹效果:平衡(BDA)>联合(JDA)>边缘(TCA)>条件⏹使用⏹数据整体差异性大(相似度较低),边缘分布更重要⏹数据整体差异性小(协方差漂移),条件分布更重要⏹最新成果⏹深度学习+分布适配往往有更好的效果(DDC、DAN、JAN)BDA、JDA、TCA精度比较DDC、DAN、JAN与其他方法结果比较⏹特征选择法(Feature Selection)⏹从源域和目标域中选择提取共享的特征,建立统一模型⏹Structural Correspondence Learning (SCL) [Blitzer, ECML-06]⏹寻找Pivot feature,将源域和目标域进行对齐⏹特征选择法其他扩展⏹Joint feature selection and subspace learning [Gu, IJCAI-11]⏹特征选择/变换+子空间学习⏹优化目标:⏹Transfer Joint Matching (TJM) [Long, CVPR-14]⏹MMD分布适配+源域样本选择⏹优化目标:⏹Feature Selection and Structure Preservation (FSSL) [Li, IJCAI-16]⏹特征选择+信息不变性⏹优化目标:⏹特征选择法:总结⏹从源域和目标域中选择提取共享的特征,建立统一模型⏹通常与分布适配进行结合⏹选择特征通常利用稀疏矩阵⏹子空间学习法(Subspace Learning)⏹将源域和目标域变换到相同的子空间,然后建立统一的模型⏹统计特征变换(Statistical Feature Transformation)⏹将源域和目标域的一些统计特征进行变换对齐⏹流形学习(Manifold Learning)⏹在流形空间中进行子空间变换统计特征变换流形学习⏹统计特征变换(1)⏹子空间对齐法(Subspace Alignment,SA)[Fernando, ICCV-13]⏹直接寻求一个线性变换,把source变换到target空间中⏹优化目标:⏹直接获得线性变换的闭式解:⏹子空间分布对齐法(Subspace Distribution Alignment,SDA)[Sun, BMVC-15]⏹子空间对齐+概率分布适配⏹空间对齐法:方法简洁,计算高效⏹统计特征变换(2)⏹关联对齐法(CORrelation Alignment,CORAL)[Sun, AAAI-15]⏹最小化源域和目标域的二阶统计特征⏹优化目标:⏹形式简单,求解高效⏹深度关联对齐(Deep-CORAL) [Sun, ECCV-16]⏹在深度网络中加入CORAL⏹CORAL loss:⏹流形学习(1)⏹采样测地线流方法(Sample Geodesic Flow, SGF) [Gopalan, ICCV-11]⏹把领域自适应的问题看成一个增量式“行走”问题⏹从源域走到目标域就完成了一个自适应过程⏹在流形空间中采样有限个点,构建一个测地线流⏹测地线流式核方法(Geodesic Flow Kernel,GFK)[Gong, CVPR-12]⏹继承了SGF方法,采样无穷个点⏹转化成Grassmann流形中的核学习,构建了GFK⏹优化目标:SGF方法GFK方法⏹流形学习(2)⏹域不变映射(Domain-Invariant Projection,DIP)[Baktashmotlagh,CVPR-13]⏹直接度量分布距离是不好的:原始空间特征扭曲⏹仅作流形子空间学习:无法刻画分布距离⏹解决方案:流形映射+分布度量⏹统计流形法(Statistical Manifold) [Baktashmotlagh, CVPR-14]⏹在统计流形(黎曼流形)上进行分布度量⏹用Fisher-Rao distance (Hellinger distance)进行度量⏹子空间学习法:总结⏹主要包括统计特征对齐和流形学习方法两大类⏹和分布适配结合效果更好⏹趋势:与神经网络结合1234最新研究成果5⏹领域自适应的最新研究成果(1)⏹与深度学习进行结合⏹Deep Adaptation Networks (DAN)[Long, ICML-15]⏹深度网络+MMD距离最小化⏹Joint Adaptation Networks (JAN)[Long, ICML-17]⏹深度网络+联合分布距离最小化⏹Simultaneous feature and task transfer[Tzeng, ICCV-15]⏹特征和任务同时进行迁移⏹Deep Hashing Network (DHN) [CVPR-17]⏹在深度网络中同时学习域适应和深度Hash特征⏹Label Efficient Learning of Transferable Representations acrossDomains and Tasks [Luo, NIPS-17]⏹在深度网络中进行任务迁移⏹领域自适应的最新研究成果(2)⏹与对抗学习进行结合⏹Domain-adversarial neural network[Ganin, JMLR-16]⏹深度网络中加入对抗[Tzeng, arXiv-17]⏹Adversarial Discriminative Domain Adaptation (ADDA)⏹对抗+判别⏹开放世界领域自适应⏹Open set domain adaptation[Busto, ICCV-17]⏹当源域和目标域只共享一部分类别时如何迁移?⏹与张量(Tensor)表示相结合⏹When DA Meets tensor representation[Lu, ICCV-17]⏹用tensor的思想来做领域自适应⏹与增量学习结合⏹Learning to Transfer (L2T) [Wei, arXiv-17]⏹提取已有的迁移学习经验,应用于新任务12345参考资料图:Office+Caltech、USPS+MNIST、ImageNet+VOC、COIL20数据集•[Pan, TNN‐11] Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199‐210.•[Dorri, ICDM‐12] Dorri F, Ghodsi A. Adapting component analysis[C]//Data Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE, 2012: 846‐851.•[Duan, PAMI‐12] Duan L, Tsang I W, Xu D. Domain transfer multiple kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465‐479.•[Long, ICML‐15] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning.2015: 97‐105.•[Baktashmotlagh, JMLR‐16] Baktashmotlagh M, Harandi M, Salzmann M. Distribution‐matching embedding for visual domain adaptation[J]. The Journal of Machine Learning Research, 2016, 17(1): 3760‐3789.•[Zellinger, ICLR‐17] Zellinger W, Grubinger T, Lughofer E, et al. Central moment discrepancy (CMD) for domain‐invariant representation learning[J]. arXiv preprint arXiv:1702.08811, 2017.•[Satpal, PKDD‐07] Satpal S, Sarawagi S. Domain adaptation of conditional probability models via feature subsetting[C]//PKDD. 2007, 4702: 224‐235.•[Gong, ICML‐15] Gong M, Zhang K, Liu T, et al. Domain adaptation with conditional transferable components[C]//International Conference on Machine Learning.2016: 2839‐2848.•[Long, ICCV‐13] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature learning with joint distribution adaptation,”in ICCV, 2013, pp. 2200–2207.•[Long, TKDE‐14] Long M, Wang J, Ding G, et al. Adaptation regularization: A general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076‐1089.•[Tahmoresnezhad, KIS‐17] J. Tahmoresnezhad and S. Hashemi, “Visual domain adaptation via transfer feature learning,” Knowl. Inf. Syst., 2016.•[Zhang, CVPR‐17] Zhang J, Li W, Ogunbona P. Joint Geometrical and Statistical Alignment for Visual Domain Adaptation, CVPR 2017.•[Hsu, AVSS‐15] T. Ming Harry Hsu, W. Yu Chen, C.‐A. Hou, and H. T. et al., “Unsupervised domain adaptation with imbalanced cross‐domain data,” in ICCV, 2015, pp. 4121–4129.•[Hsu, TIP‐16] P.‐H. Hsiao, F.‐J. Chang, and Y.‐Y. Lin, “Learning discriminatively reconstructed source data for object recognition with few examples,” TIP, vol. 25, no.8, pp. 3518–3532, 2016.•[Long, ICML‐17] Long M, Wang J, Jordan M I. Deep transfer learning with joint adaptation networks. ICML 2017.•[Wang, ICDM‐17] Wang J, Chen Y, Hao S, Feng W, Shen Z. Balanced Distribution Adaptation for Transfer Learning. ICDM 2017. pp.1129‐1134.•[Blitzer, ECML‐06] Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning[C]//Proceedings of the 2006 conference on empirical methods in natural language processing. Association for Computational Linguistics, 2006: 120‐128.•[Gu, IJCAI‐11] Gu Q, Li Z, Han J. Joint feature selection and subspace learning[C]//IJCAI Proceedings‐International Joint Conference on Artificial Intelligence. 2011, 22(1): 1294.•[Long, CVPR‐14] Long M, Wang J, Ding G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1410‐1417.•[Li, IJCAI‐16] Li J, Zhao J, Lu K. Joint Feature Selection and Structure Preservation for Domain Adaptation[C]//IJCAI. 2016: 1697‐1703.•[Fernando, ICCV‐13] Fernando B, Habrard A, Sebban M, et al. Unsupervised visual domain adaptation using subspace alignment[C]//Proceedings of the IEEE international conference on computer vision. 2013: 2960‐2967.•[Sun, BMVC‐15] Sun B, Saenko K. Subspace Distribution Alignment for Unsupervised Domain Adaptation[C]//BMVC. 2015: 24.1‐24.10.•[Sun, AAAI‐16] Sun B, Feng J, Saenko K. Return of Frustratingly Easy Domain Adaptation[C]//AAAI. 2016, 6(7): 8.•[Sun, ECCV‐16] Sun B, Saenko K. Deep coral: Correlation alignment for deep domain adaptation[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 443‐450.•[Gopalan, ICCV‐11] Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach[C]//Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011: 999‐1006.•[Gong, CVPR‐12] Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2066‐2073.•[Baktashmotlagh, CVPR‐13] Baktashmotlagh M, Harandi M T, Lovell B C, et al. Unsupervised domain adaptation by domain invariant projection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 769‐776.•[Baktashmotlagh, CVPR‐14] Baktashmotlagh M, Harandi M T, Lovell B C, et al. Domain adaptation on the statistical manifold[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2481‐2488.•[Ganin, JMLR‐16] Ganin Y, Ustinova E, Ajakan H, et al. Domain‐adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17(59): 1‐35.•[Busto, ICCV‐17] Panareda Busto P, Gall J. Open Set Domain Adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017: 754‐763.•[Lu, ICCV‐17] Lu H, Zhang L, Cao Z, et al. When unsupervised domain adaptation meets tensor representations. ICCV 2017.•[Tzeng, arXiv‐17] Tzeng E, Hoffman J, Saenko K, et al. Adversarial discriminative domain adaptation[J]. arXiv preprint arXiv:1702.05464, 2017.•[Wei, arXiv‐17] Wei Y, Zhang Y, Yang Q. Learning to Transfer. arXiv1708.05629, 2017.。
Semi-supervised and unsupervised extreme learningmachinesGao Huang,Shiji Song,Jatinder N.D.Gupta,and Cheng WuAbstract—Extreme learning machines(ELMs)have proven to be an efficient and effective learning paradigm for pattern classification and regression.However,ELMs are primarily applied to supervised learning problems.Only a few existing research studies have used ELMs to explore unlabeled data. In this paper,we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization,thus greatly expanding the applicability of ELMs.The key advantages of the proposed algorithms are1)both the semi-supervised ELM (SS-ELM)and the unsupervised ELM(US-ELM)exhibit the learning capability and computational efficiency of ELMs;2) both algorithms naturally handle multi-class classification or multi-cluster clustering;and3)both algorithms are inductive and can handle unseen data at test time directly.Moreover,it is shown in this paper that all the supervised,semi-supervised and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping,which is the key concept in ELM theory.Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.Index Terms—Clustering,embedding,extreme learning ma-chine,manifold regularization,semi-supervised learning,unsu-pervised learning.I.I NTRODUCTIONS INGLE layer feedforward networks(SLFNs)have been intensively studied during the past several decades.Most of the existing learning algorithms for training SLFNs,such as the famous back-propagation algorithm[1]and the Levenberg-Marquardt algorithm[2],adopt gradient methods to optimize the weights in the network.Some existing works also use forward selection or backward elimination approaches to con-struct network dynamically during the training process[3]–[7].However,neither the gradient based methods nor the grow/prune methods guarantee a global optimal solution.Al-though various methods,such as the generic and evolutionary algorithms,have been proposed to handle the local minimum This work was supported by the National Natural Science Foundation of China under Grant61273233,the Research Fund for the Doctoral Program of Higher Education under Grant20120002110035and20130002130010, the National Key Technology R&D Program under Grant2012BAF01B03, the Project of China Ocean Association under Grant DY125-25-02,and Tsinghua University Initiative Scientific Research Program under Grants 2011THZ07132.Gao Huang,Shiji Song,and Cheng Wu are with the Department of Automation,Tsinghua University,Beijing100084,China(e-mail:huang-g09@;shijis@; wuc@).Jatinder N.D.Gupta is with the College of Business Administration,The University of Alabama in Huntsville,Huntsville,AL35899,USA.(e-mail: guptaj@).problem,they basically introduce high computational cost. One of the most successful algorithms for training SLFNs is the support vector machines(SVMs)[8],[9],which is a maximal margin classifier derived under the framework of structural risk minimization(SRM).The dual problem of SVMs is a quadratic programming and can be solved conveniently.Due to its simplicity and stable generalization performance,SVMs have been widely studied and applied to various domains[10]–[14].Recently,Huang et al.[15],[16]proposed the extreme learning machines(ELMs)for training SLFNs.In contrast to most of the existing approaches,ELMs only update the output weights between the hidden layer and the output layer, while the parameters,i.e.,the input weights and biases,of the hidden layer are randomly generated.By adopting squared loss on the prediction error,the training of output weights turns into a regularized least squares(or ridge regression)problem which can be solved efficiently in closed form.It has been shown that even without updating the parameters of the hidden layer,the SLFN with randomly generated hidden neurons and tunable output weights maintains its universal approximation capability[17]–[19].Compared to gradient based algorithms, ELMs are much more efficient and usually lead to better generalization performance[20]–[22].Compared to SVMs, solving the regularized least squares problem in ELMs is also faster than solving the quadratic programming problem in standard SVMs.Moreover,ELMs can be used for multi-class classification problems directly.The predicting accuracy achieved by ELMs is comparable with or even higher than that of SVMs[16],[22]–[24].The differences and similarities between ELMs and SVMs are discussed in[25]and[26], and new algorithms are proposed by combining the advan-tages of both models.In[25],an extreme SVM(ESVM) model is proposed by combining ELMs and the proximal SVM(PSVM).The ESVM algorithm is shown to be more accurate than the basic ELMs model due to the introduced regularization technique,and much more efficient than SVMs since there is no kernel matrix multiplication in ESVM.In [26],the traditional RBF kernel are replaced by ELM kernel, leading to an efficient algorithm with matched accuracy of SVMs.In the past years,researchers from variesfields have made substantial contribution to ELM theories and applications.For example,the universal approximation ability of ELMs has been further studied in a classification context[23].The gen-eralization error bound of ELMs has been investigated from the perspective of the Vapnik-Chervonenkis(VC)dimension theory and the initial localized generalization error model(LGEM)[27],[28].Varies extensions have been made to the basic ELMs to make it more efficient and more suitable for specific problems,such as ELMs for online sequential data [29]–[31],ELMs for noisy/missing data[32]–[34],ELMs for imbalanced data[35],etc.From the implementation aspect, ELMs has recently been implemented using parallel tech-niques[36],[37],and realized on hardware[38],which made ELMs feasible for large data sets and real time reasoning. Though ELMs have become popular in a wide range of domains,they are primarily used for supervised learning tasks such as classification and regression,which greatly limits their applicability.In some cases,such as text classification, information retrieval and fault diagnosis,obtaining labels for fully supervised learning is time consuming and expensive, while a multitude of unlabeled data are easy and cheap to collect.To overcome the disadvantage of supervised learning al-gorithms that they cannot make use of unlabeled data,semi-supervised learning(SSL)has been proposed to leverage both labeled and unlabeled data[39],[40].The SSL algorithms assume that the input patterns from both labeled and unlabeled data are drawn from the same marginal distribution.Therefore, the unlabeled data naturally provide useful information for exploring the data structure in the input space.By assuming that the input data follows some cluster structure or manifold in the input space,SSL algorithms can incorporate both la-beled and unlabeled data into the learning process.Since SSL requires less effort to collect labeled data and can offer higher accuracy,it has been applied to various domains[41]–[43].In some other cases where no labeled data are available,people may be interested in exploring the underlying structure of the data.To this end,unsupervised learning(USL)techniques, such as clustering,dimension reduction or data representation, are widely used to fulfill these tasks.In this paper,we extend ELMs to handle both semi-supervised and unsupervised learning problems by introducing the manifold regularization framework.Both the proposed semi-supervised ELM(SS-ELM)and unsupervised ELM(US-ELM)inherit the computational efficiency and the learn-ing capability of traditional pared with existing algorithms,SS-ELM and US-ELM are not only inductive (straightforward extension for out-of-sample examples at test time),but also can be used for multi-class classification or multi-cluster clustering directly.We test our algorithms on a variety of data sets,and make comparisons with other related algorithms.The results show that the proposed algorithms are competitive with state-of-the-art algorithms in terms of accuracy and efficiency.It is worth to mention that all the supervised,semi-supervised and unsupervised ELMs can actually be put into a unified framework,that is all the algorithms consist of two stages:1)random feature mapping;and2)output weights solving.Thefirst stage is to construct the hidden layer using randomly generated hidden neurons.This is the key concept in the ELM theory,which differs it from many existing feature learning methods.Generating feature mapping randomly en-ables ELMs for fast nonlinear feature learning and alleviates the problem of over-fitting.The second stage is to solve the weights between the hidden layer and the output layer, and this is where the main difference of supervised,semi-supervised and unsupervised ELMs lies.We believe that the unified framework for the three types of ELMs might provide us a new perspective to understand the underlying behavior of the random feature mapping in ELMs.The rest of the paper is organized as follows.In Section II,we give a brief review of related existing literature on semi-supervised and unsupervised learning.Section III and IV introduce the basic formulation of ELMs and the man-ifold regularization framework,respectively.We present the proposed SS-ELM and US-ELM algorithms in Sections V and VI.Experiment results are given in Section VII,and Section VIII concludes the paper.II.R ELATED WORKSOnly a few existing research studies on ELMs have dealt with the problem of semi-supervised learning or unsupervised learning.In[44]and[45],the manifold regularization frame-work was introduce into the ELMs model to leverage both labeled and unlabeled data,thus extended ELMs for semi-supervised learning.However,both of these two works are limited to binary classification problems,thus they haven’t explore the full power of ELMs.Moreover,both algorithms are only effective when the number of training patterns is more than the number of hidden neurons.Unfortunately,this condition is usually violated in semi-supervised learning since the training data is relatively scarce compared to the hidden neurons,whose number is commonly set to several hundreds or several thousands.Recently,a co-training approach have been proposed to train ELMs in a semi-supervised setting [46].In this algorithm,the labeled training sets are augmented gradually by moving a small set of most confidently predicted unlabeled data to the labeled set at each loop,and ELMs are trained repeatedly on the pseudo-labeled set.Since the algo-rithm need to train ELMs repeatedly,it introduces considerable extra computational cost.The proposed SS-ELM is related to a few other mani-fold assumption based semi-supervised learning algorithms, such as the Laplacian support vector machines(LapSVMs) [47],the Laplacian regularized least squares(LapRLS)[47], semi-supervised neural networks(SSNNs)[48],and semi-supervised deep embedding[49].It has been shown in these works that manifold regularization is effective in a wide range of domains and often leads to a state-of-the-art performance in terms of accuracy and efficiency.The US-ELM proposed in this paper are related to the Laplacian Eigenmaps(LE)[50]and spectral clustering(SC) [51]in that they both use spectral techniques for embedding and clustering.In all these algorithms,an affinity matrix is first built from the input patterns.The SC performs eigen-decomposition on the normalized affinity matrix,and then embeds the original data into a d-dimensional space using the first d eigenvectors(each row is normalized to have unit length and represents a point in the embedded space)corresponding to the d largest eigenvalues.The LE algorithm performs generalized eigen-decomposition on the graph Laplacian,anduses the d eigenvectors corresponding to the second through the(d+1)th smallest eigenvalues for embedding.When LE and SC are used for clustering,then k-means is adopted to cluster the data in the embedded space.Similar to LE and SC,the US-ELM are also based on the affinity matrix,and it is converted to solving a generalized eigen-decomposition problem.However,the eigenvectors obtained in US-ELM are not used for data representation directly,but are used as the parameters of the network,i.e.,the output weights.Note that once the US-ELM model is trained,it can be applied to any presented data in the original input space.In this way,US-ELM provide a straightforward way for handling new patterns without recomputing eigenvectors as in LE and SC.III.E XTREME LEARNING MACHINES Consider a supervised learning problem where we have a training set with N samples,{X,Y}={x i,y i}N i=1.Herex i∈R n i,y i is a n o-dimensional binary vector with only one entry(correspond to the class that x i belongs to)equal to one for multi-classification tasks,or y i∈R n o for regression tasks,where n i and n o are the dimensions of input and output respectively.ELMs aim to learn a decision rule or an approximation function based on the training data. Generally,the training of ELMs consists of two stages.The first stage is to construct the hidden layer using afixed number of randomly generated mapping neurons,which can be any nonlinear piecewise continuous functions,such as the Sigmoid function and Gaussian function given below.1)Sigmoid functiong(x;θ)=11+exp(−(a T x+b));(1)2)Gaussian functiong(x;θ)=exp(−b∥x−a∥);(2) whereθ={a,b}are the parameters of the mapping function and∥·∥denotes the Euclidean norm.A notable feature of ELMs is that the parameters of the hidden mapping functions can be randomly generated ac-cording to any continuous probability distribution,e.g.,the uniform distribution on(-1,1).This makes ELMs distinct from the traditional feedforward neural networks and SVMs. The only free parameters that need to be optimized in the training process are the output weights between the hidden neurons and the output nodes.By doing so,training ELMs is equivalent to solving a regularized least squares problem which is considerately more efficient than the training of SVMs or backpropagation algorithms.In thefirst stage,a number of hidden neurons which map the data from the input space into a n h-dimensional feature space (n h is the number of hidden neurons)are randomly generated. We denote by h(x i)∈R1×n h the output vector of the hidden layer with respect to x i,andβ∈R n h×n o the output weights that connect the hidden layer with the output layer.Then,the outputs of the network are given byf(x i)=h(x i)β,i=1,...,N.(3)In the second stage,ELMs aim to solve the output weights by minimizing the sum of the squared losses of the prediction errors,which leads to the following formulationminβ∈R n h×n o12∥β∥2+C2N∑i=1∥e i∥2s.t.h(x i)β=y T i−e T i,i=1,...,N,(4)where thefirst term in the objective function is a regularization term which controls the complexity of the model,e i∈R n o is the error vector with respect to the i th training pattern,and C is a penalty coefficient on the training errors.By substituting the constraints into the objective function, we obtain the following equivalent unconstrained optimization problem:minβ∈R n h×n oL ELM=12∥β∥2+C2∥Y−Hβ∥2(5)where H=[h(x1)T,...,h(x N)T]T∈R N×n h.The above problem is widely known as the ridge regression or regularized least squares.By setting the gradient of L ELM with respect toβto zero,we have∇L ELM=β+CH H T(Y−Hβ)=0(6) If H has more rows than columns and is of full column rank,which is usually the case where the number of training patterns are more than the number of the hidden neurons,the above equation is overdetermined,and we have the following closed form solution for(5):β∗=(H T H+I nhC)−1H T Y,(7)where I nhis an identity matrix of dimension n h.Note that in practice,rather than explicitly inverting the n h×n h matrix in the above expression,we can use Gaussian elimination to directly solve a set of linear equations in a more efficient and numerically stable manner.If the number of training patterns are less than the number of hidden neurons,then H will have more columns than rows, which often leads to an underdetermined least squares prob-lem.In this case,βmay have infinite number of solutions.To handle this problem,we restrictβto be a linear combination of the rows of H:β=H Tα(α∈R N×n o).Notice that when H has more columns than rows and is of full row rank,then H H T is invertible.Multiplying both side of(6) by(H H T)−1H,we getα+C(Y−H H Tα)=0,(8) This yieldsβ∗=H Tα∗=H T(H H T+I NC)−1Y(9)where I N is an identity matrix of dimension N. Therefore,in the case where training patterns are plentiful compared to the hidden neurons,we use(7)to compute the output weights,otherwise we use(9).IV.T HE MANIFOLD REGULARIZATION FRAMEWORK Semi-supervised learning is built on the following two assumptions:(1)both the label data X l and the unlabeled data X u are drawn from the same marginal distribution P X ;and (2)if two points x 1and x 2are close to each other,then the conditional probabilities P (y |x 1)and P (y |x 2)should be similar as well.The latter assumption is widely known as the smoothness assumption in machine learning.To enforce this assumption on the data,the manifold regularization framework proposes to minimize the following cost functionL m=12∑i,jw ij ∥P (y |x i )−P (y |x j )∥2,(10)where w ij is the pair-wise similarity between two patterns x iand x j .Note that the similarity matrix W =[w ij ]is usually sparse,since we only place a nonzero weight between two patterns x i and x j if they are close,e.g.,x i is among the k nearest neighbors of x j or x j is among the k nearest neighbors of x i .The nonzero weights are usually computed using Gaussian function exp (−∥x i −x j ∥2/2σ2),or simply fixed to 1.Intuitively,the formulation (10)penalizes large variation in the conditional probability P (y |x )when x has a small change.This requires that P (y |x )vary smoothly along the geodesics of P (x ).Since it is difficult to compute the conditional probability,we can approximate (10)with the following expression:ˆLm =12∑i,jw ij ∥ˆyi −ˆy j ∥2,(11)where ˆyi and ˆy j are the predictions with respect to pattern x i and x j ,respectively.It is straightforward to simplify the above expression in a matrix form:ˆL m =Tr (ˆY T L ˆY ),(12)where Tr (·)denotes the trace of a matrix,L =D −W isknown as the graph Laplacian ,and D is a diagonal matrixwith its diagonal elements D ii =l +u∑j =1w i,j .As discussed in [52],instead of using L directly,we can normalize it byD −12L D −12or replace it by L p (p is an integer),based on some prior knowledge.V.S EMI -SUPERVISED ELMIn the semi-supervised setting,we have few labeled data and plenty of unlabeled data.We denote the labeled data in the training set as {X l ,Y l }={x i ,y i }l i =1,and unlabeled dataas X u ={x i }ui =1,where l and u are the number of labeled and unlabeled data,respectively.The proposed SS-ELM incorporates the manifold regular-ization to leverage unlabeled data to improve the classification accuracy when labeled data are scarce.By modifying the ordinary ELM formulation (4),we give the formulation ofSS-ELM as:minβ∈R n h ×n o12∥β∥2+12l∑i =1C i ∥e i ∥2+λ2Tr (F T L F )s.t.h (x i )β=y T i −e T i ,i =1,...,l,f i =h (x i )β,i =1,...,l +u(13)where L ∈R (l +u )×(l +u )is the graph Laplacian built fromboth labeled and unlabeled data,and F ∈R (l +u )×n o is the output matrix of the network with its i th row equal to f (x i ),λis a tradeoff parameter.Note that similar to the weighted ELM algorithm (W-ELM)introduced in [35],here we associate different penalty coeffi-cient C i on the prediction errors with respect to patterns from different classes.This is because we found that when the data is skewed,i.e.,some classes have significantly more training patterns than other classes,traditional ELMs tend to fit the classes that having the majority of patterns quite well but fits other classes poorly.This usually leads to poor generalization performance on the testing set (while the prediction accuracy may be high,but the some classes are neglected).Therefore,we propose to alleviate this problem by re-weighting instances from different classes.Suppose that x i belongs to class t i ,which has N t i training patterns,then we associate e i with a penalty ofC i =C 0N t i.(14)where C 0is a user defined parameter as in traditional ELMs.In this way,the patterns from the dominant classes will not be over fitted by the algorithm,and the patterns from a class with less samples will not be neglected.We substitute the constraints into the objective function,and rewrite the above formulation in a matrix form:min β∈R n h×n o 12∥β∥2+12∥C 12( Y −Hβ)∥2+λ2Tr (βT H TL Hβ)(15)where Y∈R (l +u )×n o is the training target with its first l rows equal to Y l and the rest equal to 0,C is a (l +u )×(l +u )diagonal matrix with its first l diagonal elements [C ]ii =C i ,i =1,...,l and the rest equal to 0.Again,we compute the gradient of the objective function with respect to β:∇L SS −ELM =β+H T C ( Y−H β)+λH H T L H β.(16)By setting the gradient to zero,we obtain the solution tothe SS-ELM:β∗=(I n h +H T C H +λH H T L H )−1H TC Y .(17)As in Section III,if the number of labeled data is fewer thanthe number of hidden neurons,which is common in SSL,we have the following alternative solution:β∗=H T (I l +u +C H H T +λL L H H T )−1C Y .(18)where I l +u is an identity matrix of dimension l +u .Note that by settingλto be zero and the diagonal elements of C i(i=1,...,l)to be the same constant,(17)and (18)reduce to the solutions of traditional ELMs(7)and(9), respectively.Based on the above discussion,the SS-ELM algorithm is summarized as Algorithm1.Algorithm1The SS-ELM algorithmInput:The labeled patterns,{X l,Y l}={x i,y i}l i=1;The unlabeled patterns,X u={x i}u i=1;Output:The mapping function of SS-ELM:f:R n i→R n oStep1:Construct the graph Laplacian L from both X l and X u.Step2:Initiate an ELM network of n h hidden neurons with random input weights and biases,and calculate the output matrix of the hidden neurons H∈R(l+u)×n h.Step3:Choose the tradeoff parameter C0andλ.Step4:•If n h≤NCompute the output weightsβusing(17)•ElseCompute the output weightsβusing(18)return The mapping function f(x)=h(x)β.VI.U NSUPERVISED ELMIn this section,we introduce the US-ELM algorithm for unsupervised learning.In an unsupervised setting,the entire training data X={x i}N i=1are unlabeled(N is the number of training patterns)and our target is tofind the underlying structure of the original data.The formulation of US-ELM follows from the formulation of SS-ELM.When there is no labeled data,(15)is reduced tomin β∈R n h×n o ∥β∥2+λTr(βT H T L Hβ)(19)Notice that the above formulation always attains its mini-mum atβ=0.As suggested in[50],we have to introduce addtional constraints to avoid a degenerated solution.Specifi-cally,the formulation of US-ELM is given bymin β∈R n h×n o ∥β∥2+λTr(βT H T L Hβ)s.t.(Hβ)T Hβ=I no(20)Theorem1:An optimal solution to problem(20)is given by choosingβas the matrix whose columns are the eigenvectors (normalized to satisfy the constraint)corresponding to thefirst n o smallest eigenvalues of the generalized eigenvalue problem:(I nh +λH H T L H)v=γH H T H v.(21)Proof:We can rewrite the problem(20)asminβ∈R n h×n o,ββT Bβ=I no Tr(βT Aβ),(22)Algorithm2The US-ELM algorithmInput:The training data:X∈R N×n i;Output:•For embedding task:The embedding in a n o-dimensional space:E∈R N×n o;•For clustering task:The label vector of cluster index:y∈N N×1+.Step1:Construct the graph Laplacian L from X.Step2:Initiate an ELM network of n h hidden neurons withrandom input weights,and calculate the output matrix of thehidden neurons H∈R N×n h.Step3:•If n h≤NFind the generalized eigenvectors v2,v3,...,v no+1of(21)corresponding to the second through the n o+1smallest eigenvalues.Letβ=[ v2, v3,..., v no+1],where v i=v i/∥H v i∥,i=2,...,n o+1.•ElseFind the generalized eigenvectors u2,u3,...,u no+1of(24)corresponding to the second through the n o+1smallest eigenvalues.Letβ=H T[ u2, u3,..., u no+1],where u i=u i/∥H H T u i∥,i=2,...,n o+1.Step4:Calculate the embedding matrix:E=Hβ.Step5(For clustering only):Treat each row of E as a point,and cluster the N points into K clusters using the k-meansalgorithm.Let y be the label vector of cluster index for allthe points.return E(for embedding task)or y(for clustering task);where A=I nh+λH H T L H and B=H T H.It is easy to verify that both A and B are Hermitianmatrices.Thus,according to the Rayleigh-Ritz theorem[53],the above trace minimization problem attains its optimum ifand only if the column span ofβis the minimum span ofthe eigenspace corresponding to the smallest n o eigenvaluesof(21).Therefore,by stacking the normalized eigenvectors of(21)corresponding to the smallest n o generalized eigenvalues,we obtain an optimal solution to(20).In the algorithm of Laplacian eigenmaps,thefirst eigenvec-tor is discarded since it is always a constant vector proportionalto1(corresponding to the smallest eigenvalue0)[50].In theUS-ELM algorithm,thefirst eigenvector of(21)also leadsto small variations in embedding and is not useful for datarepresentation.Therefore,we suggest to discard this trivialsolution as well.Letγ1,γ2,...,γno+1(γ1≤γ2≤...≤γn o+1)be the(n o+1)smallest eigenvalues of(21)and v1,v2,...,v no+1be their corresponding eigenvectors.Then,the solution to theoutput weightsβis given byβ∗=[ v2, v3,..., v no+1],(23)where v i=v i/∥H v i∥,i=2,...,n o+1are the normalizedeigenvectors.If the number of labeled data is fewer than the numberTABLE ID ETAILS OF THE DATA SETS USED FOR SEMI-SUPERVISED LEARNINGData set Class Dimension|L||U||V||T|G50C2505031450136COIL20(B)2102440100040360USPST(B)225650140950498COIL2020102440100040360USPST1025650140950498of hidden neurons,problem(21)is underdetermined.In this case,we have the following alternative formulation by using the same trick as in previous sections:(I u+λL L H H T )u=γH H H T u.(24)Again,let u1,u2,...,u no +1be generalized eigenvectorscorresponding to the(n o+1)smallest eigenvalues of(24), then thefinal solution is given byβ∗=H T[ u2, u3,..., u no +1],(25)where u i=u i/∥H H T u i∥,i=2,...,n o+1are the normal-ized eigenvectors.If our task is clustering,then we can adopt the k-means algorithm to perform clustering in the embedded space.We summarize the proposed US-ELM in Algorithm2. Remark:Comparing the supervised ELM,the semi-supervised ELM and the unsupervised ELM,we can observe that all the algorithms have two similar stages in the training process,that is the random feature learning stage and the out-put weights learning stage.Under this two-stage framework,it is easy tofind the differences and similarities between the three algorithms.Actually,all the algorithms share the same stage of random feature learning,and this is the essence of the ELM theory.This also means that no matter the task is a supervised, semi-supervised or unsupervised learning problem,we can always follow the same step to generate the hidden layer. The differences of the three types of ELMs lie in the second stage on how the output weights are computed.In supervised ELM and SS-ELM,the output weights are trained by solving a regularized least squares problem;while the output weights in the US-ELM are obtained by solving a generalized eigenvalue problem.The unified framework for the three types of ELMs might provide new perspectives to further develop the ELM theory.VII.E XPERIMENTAL RESULTSWe evaluated our algorithms on wide range of semi-supervised and unsupervised parisons were made with related state-of-the-art algorithms, e.g.,Transductive SVM(TSVM)[54],LapSVM[47]and LapRLS[47]for semi-supervised learning;and Laplacian Eigenmap(LE)[50], spectral clustering(SC)[51]and deep autoencoder(DA)[55] for unsupervised learning.All algorithms were implemented using Matlab R2012a on a2.60GHz machine with4GB of memory.TABLE IIIT RAINING TIME(IN SECONDS)COMPARISON OF TSVM,L AP RLS,L AP SVM AND SS-ELMData set TSVM LapRLS LapSVM SS-ELMG50C0.3240.0410.0450.035COIL20(B)16.820.5120.4590.516USPST(B)68.440.9210.947 1.029COIL2018.43 5.841 4.9460.814USPST68.147.1217.259 1.373A.Semi-supervised learning results1)Data sets:We tested the SS-ELM onfive popular semi-supervised learning benchmarks,which have been widely usedfor evaluating semi-supervised algorithms[52],[56],[57].•The G50C is a binary classification data set of which each class is generated by a50-dimensional multivariate Gaus-sian distribution.This classification problem is explicitlydesigned so that the true Bayes error is5%.•The Columbia Object Image Library(COIL20)is a multi-class image classification data set which consists1440 gray-scale images of20objects.Each pattern is a32×32 gray scale image of one object taken from a specific view.The COIL20(B)data set is a binary classification taskobtained from COIL20by grouping thefirst10objectsas Class1,and the last10objects as Class2.•The USPST data set is a subset(the testing set)of the well known handwritten digit recognition data set USPS.The USPST(B)data set is a binary classification task obtained from USPST by grouping thefirst5digits as Class1and the last5digits as Class2.2)Experimental setup:We followed the experimental setup in[57]to evaluate the semi-supervised algorithms.Specifi-cally,each of the data sets is split into4folds,one of which was used for testing(denoted by T)and the rest3folds for training.Each of the folds was used as the testing set once(4-fold cross-validation).As in[57],this random fold generation process were repeated3times,resulted in12different splits in total.Every training set was further partitioned into a labeled set L,a validation set V,and an unlabeled set U.When we train a semi-supervised learning algorithm,the labeled data from L and the unlabeled data from U were used.The validation set which consists of labeled data was only used for model selection,i.e.,finding the optimal hyperparameters C0andλin the SS-ELM algorithm.The characteristics of the data sets used in our experiment are summarized in Table I. The training of SS-ELM consists of two stages:1)generat-ing the random hidden layer;and2)training the output weights using(17)or(18).In thefirst stage,we adopted the Sigmoid function for nonlinear mapping,and the input weights and biases were generated according to the uniform distribution on(-1,1).The number of hidden neurons n h wasfixed to 1000for G50C,and2000for the rest four data sets.In the second stage,wefirst need to build the graph Laplacian L.We followed the methods discussed in[52]and[57]to compute L,and the hyperparameter settings can be found in[47],[52] and[57].The trade off parameters C andλwere selected from。
第 22卷第 4期2023年 4月Vol.22 No.4Apr.2023软件导刊Software Guide多尺度上采样方法的轻量级图像超分辨率重建蔡靖,曾胜强(上海理工大学光电信息与计算机工程学院,上海 200093)摘要:目前,大多数图像超分辨率网络通过加深卷积神经网络层数与拓展网络宽度提升重建能力,但极大增加了模型复杂度。
为此,提出一种轻量级图像超分辨率算法,通过双分支特征提取算法可使网络模型一次融合并输出不同尺度的特征信息,组合像素注意力分支分别对各像素添加权重,仅以较少参数为代价增强像素细节的特征表达。
同时,上采样部分结合亚像素卷积与邻域插值方法,分别提取特征深度、空间尺度信息,输出最终图像。
此外,组合注意力机制的亚像素卷积分支也进一步强化了重要信息,使输出图像具有更好的视觉效果。
实验表明,该模型在参数量仅为351K的情况下达到了与参数量为1 592K的CARN模型相似的重建性能,在部分测试集中的SSIM值高于CARN,证实了所提方法的有效性,可为轻量级图像超分辨率重建提供新的解决方法。
关键词:图像超分辨率重建;轻量级;像素注意力;多尺度上采样;图像处理DOI:10.11907/rjdk.221516开放科学(资源服务)标识码(OSID):中图分类号:TP391.41 文献标识码:A文章编号:1672-7800(2023)004-0168-07Lightweight Image Super-resolution Reconstruction using Multi-scaleUpsampling MethodCAI Jing, ZENG Sheng-qiang(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093, China)Abstract:At present, most image super-resolution networks improve the reconstruction ability by deepening the convolution neural network layers and expanding the network width, but greatly increase the model complexity. To this end, a lightweight image super-resolution algo‐rithm is proposed. Through the two-branch feature extraction algorithm, the network model can be fused and output the feature information of different scales at one time, and the pixel attention branches are combined to add weights to each pixel respectively, which only enhances the feature expression of pixel details at the cost of fewer parameters. In addition, the up-sampling part combines subpixel convolution and neigh‐borhood interpolation methods to extract feature depth and spatial scale information respectively, and output the final image. In addition, the subpixel convolution integral branch of the combined attention mechanism further strengthens the important information and makes the output image have better visual effect. The experimental results show that the model achieves similar reconstruction performance to the CARN model with a parameter quantity of 1 592K when the parameter quantity is only 351K, and the SSIM value in some test sets is higher than the CARN value, which confirms the effectiveness of the proposed method and can provide a new solution for lightweight image super-resolution recon‐struction.Key Words:image super-resolution; lightweight; pixel attention; multi-scale upsampling; image processing0 引言图像超分辨率重建是指将低分辨率图像重建为与之对应的高分辨率图像重建,在机器视觉和图像处理领域是非常重要的课题。
深度强化学习算法在高维状态空间中的应用深度强化学习(Deep Reinforcement Learning)是人工智能领域中的一项重要技术,已经在许多领域展现出巨大的应用潜力。
本文将探讨深度强化学习算法在高维状态空间中的应用,以及其在解决实际问题中所面临的挑战。
一、引言在传统的强化学习算法中,状态空间通常是由有限个数的离散状态组成。
然而,在许多实际问题中,状态空间往往是高维且连续的,如机器人控制、无人驾驶汽车等。
这种情况下,传统的强化学习算法无法有效处理这样的状态空间。
深度强化学习算法的出现填补了这一空白,为高维状态空间中的问题提供了新的解决思路。
二、深度强化学习算法概述深度强化学习算法是将深度学习方法与强化学习相结合的一种技术。
它通常通过深度神经网络来近似值函数或策略函数,以实现对于高维状态空间的建模和学习。
深度神经网络具有强大的表征能力,能够对复杂的状态空间进行表示和提取特征,从而更好地学习到最优的策略。
三、深度强化学习在高维状态空间中的应用1. 机器人控制深度强化学习在机器人控制领域中有着广泛的应用。
通过构建一个具有高维状态空间的环境模拟器,深度强化学习算法可以让机器人自主地学习到在复杂环境中的最优策略。
例如,在走迷宫的任务中,机器人需要通过学习不同的动作来寻找出口。
深度强化学习可以通过对状态空间的建模和训练,使机器人能够高效地找到最优路径。
2. 无人驾驶汽车无人驾驶汽车是一个典型的高维状态空间问题。
在实现无人驾驶汽车时,需要通过对各种信息(如图像、雷达数据等)的处理和分析,建立起对于当前环境状态的认知。
深度强化学习算法可以通过对大量真实驾驶数据的学习和训练,使无人驾驶汽车具备自主决策和规避障碍物的能力。
四、深度强化学习在高维状态空间中面临的挑战1. 维度灾难高维状态空间中存在着维度灾难的问题,即随着状态空间维度的增加,样本空间会呈指数级增长。
这给深度强化学习算法的训练和学习带来了巨大困难,容易导致算法的不稳定性和低效性。
MQL4 Reference MQL4命令手册(本手册采用Office2007编写)2010年2月目录MQL4 Reference (1)MQL4命令手册 (1)Basics基础 (12)Syntax语法 (12)Comments注释 (12)Identifiers标识符 (12)Reserved words保留字 (13)Data types数据类型 (13)Type casting类型转换 (14)Integer constants整数常量 (14)Literal constants字面常量 (14)Boolean constants布尔常量 (15)Floating-point number constants (double)浮点数常量(双精度) (15)String constants字符串常量 (15)Color constants颜色常数 (16)Datetime constants日期时间常数 (16)Operations & Expressions操作表达式 (17)Expressions表达式 (17)Arithmetical operations算术运算 (17)Assignment operation赋值操作 (17)Operations of relation操作关系 (18)Boolean operations布尔运算 (18)Bitwise operations位运算 (19)Other operations其他运算 (19)Precedence rules优先规则 (20)Operators操作符 (21)Compound operator复合操作符 (21)Expression operator表达式操作符 (21)Break operator终止操作符 (21)Continue operator继续操作符 (22)Return operator返回操作符 (22)Conditional operator if-else条件操作符 (23)Switch operator跳转操作符 (23)Cycle operator while循环操作符while (24)Cycle operator for循环操作符for (24)Functions函数 (25)Function call函数调用 (26)Special functions特殊函数 (27)Variables变量 (27)Local variables局部变量 (28)Formal parameters形式变量 (28)Static variables静态变量 (29)Global variables全局变量 (29)Defining extern variables外部定义变量 (30)Initialization of variables初始化变量 (30)External functions definition外部函数的定义 (30)Preprocessor预处理 (31)Constant declaration常量声明 (31)Controlling compilation编译控制 (32)Including of files包含文件 (32)Importing of functions导入功能 (33)Standard constants标准常数 (35)Series arrays系列数组 (35)Timeframes图表周期时间 (35)Trade operations交易操作 (36)Price constants价格常数 (36)MarketInfo市场信息识别符 (36)Drawing styles画线风格 (37)Arrow codes预定义箭头 (38)Wingdings宋体 (39)Web colors颜色常数 (39)Indicator lines指标线 (40)Ichimoku Kinko Hyo (41)Moving Average methods移动平均方法 (41)MessageBox信息箱 (41)Object types对象类型 (43)Object properties对象属性 (44)Object visibility (45)Uninitialize reason codes撤销初始化原因代码 (45)Special constants特别常数 (46)Error codes错误代码 (46)Predefined variables预定义变量 (50)Ask最新卖价 (50)Bars柱数 (50)Bid最新买价 (50)Close[]收盘价 (51)Digits汇率小数位 (51)High[]最高价 (51)Low[]最低价 (52)Open[]开盘价 (53)Point点值 (53)Time[]开盘时间 (53)Volume[]成交量 (54)Program Run程序运行 (56)Program Run程序运行 (56)Imported functions call输入函数调用 (57)Runtime errors运行错误 (57)Account information账户信息 (68)AccountBalance( )账户余额 (68)AccountCredit( )账户信用点数 (68)AccountCompany( )账户公司名 (68)AccountCurrency( )基本货币 (68)AccountEquity( )账户资产净值 (68)AccountFreeMargin( )账户免费保证金 (69)AccountFreeMarginCheck()账户当前价格自由保证金 (69)AccountFreeMarginMode( )账户免费保证金模式 (69)AccountLeverage( )账户杠杆 (69)AccountMargin( )账户保证金 (69)AccountName( )账户名称 (70)AccountNumber( )账户数字 (70)AccountProfit( )账户利润 (70)AccountServer( )账户连接服务器 (70)AccountStopoutLevel( )账户停止水平值 (70)AccountStopoutMode( )账户停止返回模式 (71)Array functions数组函数 (72)ArrayBsearch()数组搜索 (72)ArrayCopy()数组复制 (72)ArrayCopyRates()数组复制走势 (73)ArrayCopySeries()数组复制系列走势 (74)ArrayDimension()返回数组维数 (75)ArrayGetAsSeries()返回数组序列 (75)ArrayInitialize()数组初始化 (75)ArrayIsSeries()判断数组连续 (75)ArrayMaximum()数组最大值定位 (76)ArrayMinimum()数组最小值定位 (76)ArrayRange()返回数组指定维数数量 (76)ArrayResize()改变数组维数 (77)ArraySetAsSeries()设定系列数组 (77)ArraySize()返回数组项目数 (78)ArraySort()数组排序 (78)Checkup检查 (79)GetLastError( )返回最后错误 (79)IsConnected( )返回联机状态 (79)IsDemo( )返回模拟账户 (79)IsDllsAllowed( )返回dll允许调用 (80)IsExpertEnabled( )返回智能交易开启状态 (80)IsLibrariesAllowed( )返回数据库函数调用 (80)IsOptimization( )返回策略测试中优化模式 (81)IsStopped( )返回终止业务 (81)IsTesting( )返回测试模式状态 (81)IsTradeAllowed( )返回允许智能交易 (81)IsTradeContextBusy( )返回其他智能交易忙 (82)IsVisualMode( )返回智能交易“图片模式” (82)UninitializeReason( )返回智能交易初始化原因 (82)Client terminal客户端信息 (83)TerminalCompany( )返回客户端所属公司 (83)TerminalName( )返回客户端名称 (83)TerminalPath( )返回客户端文件路径 (83)Common functions常规命令函数 (84)Alert弹出警告窗口 (84)Comment显示信息在走势图左上角 (84)GetTickCount获取时间标记 (84)MarketInfo在市场观察窗口返回不同数据保证金列表 (85)MessageBox创建信息窗口 (85)PlaySound播放声音 (86)Print窗口中显示文本 (86)SendFTP设置FTP (86)SendMail设置Email (87)Sleep指定的时间间隔内暂停交易业务 (87)Conversion functions格式转换函数 (88)CharToStr字符转换成字符串 (88)DoubleToStr双精度浮点转换成字符串 (88)NormalizeDouble给出环绕浮点值的精确度 (88)StrToDouble字符串型转换成双精度浮点型 (89)StrToInteger字符串型转换成整型 (89)StrToTime字符串型转换成时间型 (89)TimeToStr时间类型转换为"yyyy.mm.dd hh:mi"格式 (89)Custom indicators自定义指标 (91)IndicatorBuffers (91)IndicatorCounted (92)IndicatorDigits (92)IndicatorShortName (93)SetIndexArrow (94)SetIndexBuffer (94)SetIndexDrawBegin (95)SetIndexEmptyValue (95)SetIndexLabel (96)SetIndexShift (97)SetIndexStyle (98)SetLevelStyle (98)SetLevelValue (99)Date & Time functions日期时间函数 (100)Day (100)DayOfWeek (100)Hour (100)Minute (101)Month (101)Seconds (101)TimeCurrent (101)TimeDay (102)TimeDayOfWeek (102)TimeDayOfYear (102)TimeHour (102)TimeLocal (102)TimeMinute (103)TimeMonth (103)TimeSeconds (103)TimeYear (103)Year (104)File functions文件函数 (105)FileClose关闭文件 (105)FileDelete删除文件 (105)FileFlush将缓存中的数据刷新到磁盘上去 (106)FileIsEnding文件结尾 (106)FileIsLineEnding (107)FileOpen打开文件 (107)FileOpenHistory历史目录中打开文件 (108)FileReadArray将二进制文件读取到数组中 (108)FileReadDouble从文件中读取浮点型数据 (109)FileReadInteger从当前二进制文件读取整形型数据 (109)FileReadNumber (109)FileReadString从当前文件位置读取字串符 (110)FileSeek文件指针移动 (110)FileSize文件大小 (111)FileTell文件指针的当前位置 (111)FileWrite写入文件 (112)FileWriteArray一个二进制文件写入数组 (112)FileWriteDouble一个二进制文件以浮动小数点写入双重值 (113)FileWriteInteger一个二进制文件写入整数值 (113)FileWriteString当前文件位置函数写入一个二进制文件字串符 (114)Global variables全局变量 (115)GlobalVariableCheck (115)GlobalVariableDel (115)GlobalVariableGet (115)GlobalVariableName (116)GlobalVariableSet (116)GlobalVariableSetOnCondition (116)GlobalVariablesTotal (117)Math & Trig数学和三角函数 (119)MathAbs (119)MathArccos (119)MathArcsin (119)MathArctan (120)MathCeil (120)MathCos (120)MathExp (121)MathFloor (121)MathLog (122)MathMax (122)MathMin (122)MathMod (122)MathPow (123)MathRand (123)MathRound (123)MathSin (124)MathSqrt (124)MathSrand (124)MathTan (125)Object functions目标函数 (126)ObjectCreate建立目标 (126)ObjectDelete删除目标 (127)ObjectDescription目标描述 (127)ObjectFind查找目标 (127)ObjectGet目标属性 (128)ObjectGetFiboDescription斐波纳契描述 (128)ObjectGetShiftByValue (128)ObjectGetValueByShift (129)ObjectMove移动目标 (129)ObjectName目标名 (129)ObjectsDeleteAll删除所有目标 (130)ObjectSet改变目标属性 (130)ObjectSetFiboDescription改变目标斐波纳契指标 (131)ObjectSetText改变目标说明 (131)ObjectsTotal返回目标总量 (131)ObjectType返回目标类型 (132)String functions字符串函数 (133)StringConcatenate字符串连接 (133)StringFind字符串搜索 (133)StringGetChar字符串指定位置代码 (133)StringLen字符串长度 (134)StringSubstr提取子字符串 (134)StringTrimLeft (135)StringTrimRight (135)Technical indicators技术指标 (136)iAC比尔.威廉斯的加速器或减速箱振荡器 (136)iAD离散指标 (136)iAlligator比尔・威廉斯的鳄鱼指标 (136)iADX移动定向索引 (137)iATR平均真实范围 (137)iAO比尔.威廉斯的振荡器 (138)iBearsPower熊功率指标 (138)iBands保力加通道技术指标 (138)iBandsOnArray保力加通道指标 (139)iBullsPower牛市指标 (139)iCCI商品通道索引指标 (139)iCCIOnArray商品通道索引指标 (140)iCustom指定的客户指标 (140)iDeMarker (140)iEnvelopes包络指标 (141)iEnvelopesOnArray包络指标 (141)iForce强力索引指标 (142)iFractals分形索引指标 (142)iGator随机震荡指标 (142)iIchimoku (143)iBWMFI比尔.威廉斯市场斐波纳契指标 (143)iMomentum动量索引指标 (143)iMomentumOnArray (144)iMFI资金流量索引指标 (144)iMA移动平均指标 (144)iMAOnArray (145)iOsMA移动振动平均震荡器指标 (145)iMACD移动平均数汇总/分离指标 (146)iOBV能量潮指标 (146)iSAR抛物线状止损和反转指标 (146)iRSI相对强弱索引指标 (147)iRSIOnArray (147)iRVI相对活力索引指标 (147)iStdDev标准偏差指标 (148)iStdDevOnArray (148)iStochastic随机震荡指标 (148)iWPR威廉指标 (149)Timeseries access时间序列图表数据 (150)iBars柱的数量 (150)iClose (150)iHigh (151)iHighest (151)iLow (152)iLowest (152)iOpen (152)iTime (153)iVolume (153)Trading functions交易函数 (155)Execution errors (155)OrderClose (157)OrderCloseBy (158)OrderClosePrice (158)OrderCloseTime (158)OrderComment (159)OrderCommission (159)OrderDelete (159)OrderExpiration (160)OrderLots (160)OrderMagicNumber (160)OrderModify (160)OrderOpenPrice (161)OrderOpenTime (161)OrderPrint (162)OrderProfit (162)OrderSelect (162)OrderSend (163)OrdersHistoryTotal (164)OrderStopLoss (164)OrdersTotal (164)OrderSwap (165)OrderSymbol (165)OrderTakeProfit (165)OrderTicket (166)OrderType (166)Window functions窗口函数 (167)HideTestIndicators隐藏指标 (167)Period使用周期 (167)RefreshRates刷新预定义变量和系列数组的数据 (167)Symbol当前货币对 (168)WindowBarsPerChart可见柱总数 (168)WindowExpertName智能交易系统名称 (169)WindowFind返回名称 (169)WindowFirstVisibleBar第一个可见柱 (169)WindowHandle (169)WindowIsVisible图表在子窗口中可见 (170)WindowOnDropped (170)WindowPriceMax (170)WindowPriceMin (171)WindowPriceOnDropped (171)WindowRedraw (172)WindowScreenShot (172)WindowTimeOnDropped (173)WindowsTotal指标窗口数 (173)WindowXOnDropped (173)WindowYOnDropped (174)Obsolete functions过时的函数 (175)MetaQuotes Language 4 (MQL4) 是一种新的内置型程序用来编写交易策略。
fassis 聚类算法FASISS(Fast and Scalable Incremental Subspace Clustering)是一种增量式子空间聚类算法。
与传统的聚类算法不同,FASISS能够在数据增量的情况下进行高效的子空间聚类。
本文将对FASISS算法进行详细介绍,并逐步回答与该算法相关的问题。
1. 什么是聚类算法?聚类算法是一种将数据分为多个组别的无监督学习方法。
聚类算法旨在通过将具有相似特征的数据点分组,来揭示数据的内在结构,帮助我们更好地理解数据。
2. 什么是子空间聚类?子空间聚类是一种基于数据点在不同特征空间中的分布进行聚类的方法。
相比传统聚类算法,子空间聚类更适用于高维数据,因为它能够考虑到数据在不同维度上的相关性。
3. FASISS算法的原理是什么?FASISS算法的核心原理是基于局部距离和全局距离相结合的增量式子空间聚类。
具体来说,FASISS使用一种称为距离累积的方法来衡量数据点之间的相似性,并通过管道机制将新的数据点逐步地添加到聚类中。
4. FASISS算法的步骤是什么?FASISS算法的步骤如下:- 步骤1:初始化阶段。
在此阶段,FASISS会选择一些数据点作为初始聚类中心,并计算它们之间的距离。
- 步骤2:增量式聚类阶段。
在此阶段,FASISS会逐步添加新的数据点,并将它们分配到合适的聚类中心。
对于每个新的数据点,FASISS会计算其局部距离和全局距离,并将其添加到距离最小的聚类中心。
- 步骤3:聚类更新阶段。
在此阶段,FASISS会更新聚类中心,并重新计算数据点之间的距离。
如果某个聚类中心变得不稳定,FASISS会将其剔除,并选择一个新的聚类中心。
5. FASISS算法与传统聚类算法的区别是什么?与传统聚类算法相比,FASISS算法有以下几个不同点:- FASISS算法是一种增量式聚类算法,可以高效地处理数据增量的情况。
- FASISS算法是基于子空间聚类的,能够应对高维数据,并考虑到数据在不同维度上的相关性。
常用英语词汇 -andrew Ng课程average firing rate均匀激活率intensity强度average sum-of-squares error均方差Regression回归backpropagation后向流传Loss function损失函数basis 基non-convex非凸函数basis feature vectors特点基向量neural network神经网络batch gradient ascent批量梯度上涨法supervised learning监察学习Bayesian regularization method贝叶斯规则化方法regression problem回归问题办理的是连续的问题Bernoulli random variable伯努利随机变量classification problem分类问题bias term偏置项discreet value失散值binary classfication二元分类support vector machines支持向量机class labels种类标记learning theory学习理论concatenation级联learning algorithms学习算法conjugate gradient共轭梯度unsupervised learning无监察学习contiguous groups联通地区gradient descent梯度降落convex optimization software凸优化软件linear regression线性回归convolution卷积Neural Network神经网络cost function代价函数gradient descent梯度降落covariance matrix协方差矩阵normal equations DC component直流重量linear algebra线性代数decorrelation去有关superscript上标degeneracy退化exponentiation指数demensionality reduction降维training set训练会合derivative导函数training example训练样本diagonal对角线hypothesis假定,用来表示学习算法的输出diffusion of gradients梯度的弥散LMS algorithm “least mean squares最小二乘法算eigenvalue特点值法eigenvector特点向量batch gradient descent批量梯度降落error term残差constantly gradient descent随机梯度降落feature matrix特点矩阵iterative algorithm迭代算法feature standardization特点标准化partial derivative偏导数feedforward architectures前馈构造算法contour等高线feedforward neural network前馈神经网络quadratic function二元函数feedforward pass前馈传导locally weighted regression局部加权回归fine-tuned微调underfitting欠拟合first-order feature一阶特点overfitting过拟合forward pass前向传导non-parametric learning algorithms无参数学习算forward propagation前向流传法Gaussian prior高斯先验概率parametric learning algorithm参数学习算法generative model生成模型activation激活值gradient descent梯度降落activation function激活函数Greedy layer-wise training逐层贪心训练方法additive noise加性噪声grouping matrix分组矩阵autoencoder自编码器Hadamard product阿达马乘积Autoencoders自编码算法Hessian matrix Hessian矩阵hidden layer隐含层hidden units隐蔽神经元Hierarchical grouping层次型分组higher-order features更高阶特点highly non-convex optimization problem高度非凸的优化问题histogram直方图hyperbolic tangent双曲正切函数hypothesis估值,假定identity activation function恒等激励函数IID 独立同散布illumination照明inactive克制independent component analysis独立成份剖析input domains输入域input layer输入层intensity亮度/灰度intercept term截距KL divergence相对熵KL divergence KL分别度k-Means K-均值learning rate学习速率least squares最小二乘法linear correspondence线性响应linear superposition线性叠加line-search algorithm线搜寻算法local mean subtraction局部均值消减local optima局部最优解logistic regression逻辑回归loss function损失函数low-pass filtering低通滤波magnitude幅值MAP 极大后验预计maximum likelihood estimation极大似然预计mean 均匀值MFCC Mel 倒频系数multi-class classification多元分类neural networks神经网络neuron 神经元Newton’s method牛顿法non-convex function非凸函数non-linear feature非线性特点norm 范式norm bounded有界范数norm constrained范数拘束normalization归一化numerical roundoff errors数值舍入偏差numerically checking数值查验numerically reliable数值计算上稳固object detection物体检测objective function目标函数off-by-one error缺位错误orthogonalization正交化output layer输出层overall cost function整体代价函数over-complete basis超齐备基over-fitting过拟合parts of objects目标的零件part-whole decompostion部分-整体分解PCA 主元剖析penalty term处罚因子per-example mean subtraction逐样本均值消减pooling池化pretrain预训练principal components analysis主成份剖析quadratic constraints二次拘束RBMs 受限 Boltzman 机reconstruction based models鉴于重构的模型reconstruction cost重修代价reconstruction term重构项redundant冗余reflection matrix反射矩阵regularization正则化regularization term正则化项rescaling缩放robust 鲁棒性run 行程second-order feature二阶特点sigmoid activation function S型激励函数significant digits有效数字singular value奇怪值singular vector奇怪向量smoothed L1 penalty光滑的L1 范数处罚Smoothed topographic L1 sparsity penalty光滑地形L1 稀少处罚函数smoothing光滑Softmax Regresson Softmax回归sorted in decreasing order降序摆列source features源特点Adversarial Networks抗衡网络sparse autoencoder消减归一化Affine Layer仿射层Sparsity稀少性Affinity matrix亲和矩阵sparsity parameter稀少性参数Agent 代理 /智能体sparsity penalty稀少处罚Algorithm 算法square function平方函数Alpha- beta pruningα - β剪枝squared-error方差Anomaly detection异样检测stationary安稳性(不变性)Approximation近似stationary stochastic process安稳随机过程Area Under ROC Curve/ AUC Roc 曲线下边积step-size步长值Artificial General Intelligence/AGI通用人工智supervised learning监察学习能symmetric positive semi-definite matrix Artificial Intelligence/AI人工智能对称半正定矩阵Association analysis关系剖析symmetry breaking对称无效Attention mechanism注意力体制tanh function双曲正切函数Attribute conditional independence assumptionthe average activation均匀活跃度属性条件独立性假定the derivative checking method梯度考证方法Attribute space属性空间the empirical distribution经验散布函数Attribute value属性值the energy function能量函数Autoencoder自编码器the Lagrange dual拉格朗日对偶函数Automatic speech recognition自动语音辨别the log likelihood对数似然函数Automatic summarization自动纲要the pixel intensity value像素灰度值Average gradient均匀梯度the rate of convergence收敛速度Average-Pooling均匀池化topographic cost term拓扑代价项Backpropagation Through Time经过时间的反向流传topographic ordered拓扑次序Backpropagation/BP反向流传transformation变换Base learner基学习器translation invariant平移不变性Base learning algorithm基学习算法trivial answer平庸解Batch Normalization/BN批量归一化under-complete basis不齐备基Bayes decision rule贝叶斯判断准则unrolling组合扩展Bayes Model Averaging/ BMA 贝叶斯模型均匀unsupervised learning无监察学习Bayes optimal classifier贝叶斯最优分类器variance 方差Bayesian decision theory贝叶斯决议论vecotrized implementation向量化实现Bayesian network贝叶斯网络vectorization矢量化Between-class scatter matrix类间散度矩阵visual cortex视觉皮层Bias 偏置 /偏差weight decay权重衰减Bias-variance decomposition偏差 - 方差分解weighted average加权均匀值Bias-Variance Dilemma偏差–方差窘境whitening白化Bi-directional Long-Short Term Memory/Bi-LSTMzero-mean均值为零双向长短期记忆Accumulated error backpropagation积累偏差逆传Binary classification二分类播Binomial test二项查验Activation Function激活函数Bi-partition二分法Adaptive Resonance Theory/ART自适应谐振理论Boltzmann machine玻尔兹曼机Addictive model加性学习Bootstrap sampling自助采样法/可重复采样Bootstrapping自助法Break-Event Point/ BEP 均衡点Calibration校准Cascade-Correlation级联有关Categorical attribute失散属性Class-conditional probability类条件概率Classification and regression tree/CART分类与回归树Classifier分类器Class-imbalance类型不均衡Closed -form闭式Cluster簇/ 类/ 集群Cluster analysis聚类剖析Clustering聚类Clustering ensemble聚类集成Co-adapting共适应Coding matrix编码矩阵COLT 国际学习理论会议Committee-based learning鉴于委员会的学习Competitive learning竞争型学习Component learner组件学习器Comprehensibility可解说性Computation Cost计算成本Computational Linguistics计算语言学Computer vision计算机视觉Concept drift观点漂移Concept Learning System /CLS观点学习系统Conditional entropy条件熵Conditional mutual information条件互信息Conditional Probability Table/ CPT 条件概率表Conditional random field/CRF条件随机场Conditional risk条件风险Confidence置信度Confusion matrix混杂矩阵Connection weight连结权Connectionism 连结主义Consistency一致性/相合性Contingency table列联表Continuous attribute连续属性Convergence收敛Conversational agent会话智能体Convex quadratic programming凸二次规划Convexity凸性Convolutional neural network/CNN卷积神经网络Co-occurrence同现Correlation coefficient有关系数Cosine similarity余弦相像度Cost curve成本曲线Cost Function成本函数Cost matrix成本矩阵Cost-sensitive成本敏感Cross entropy交错熵Cross validation交错考证Crowdsourcing众包Curse of dimensionality维数灾害Cut point截断点Cutting plane algorithm割平面法Data mining数据发掘Data set数据集Decision Boundary决议界限Decision stump决议树桩Decision tree决议树/判断树Deduction演绎Deep Belief Network深度信念网络Deep Convolutional Generative Adversarial NetworkDCGAN深度卷积生成抗衡网络Deep learning深度学习Deep neural network/DNN深度神经网络Deep Q-Learning深度Q 学习Deep Q-Network深度Q 网络Density estimation密度预计Density-based clustering密度聚类Differentiable neural computer可微分神经计算机Dimensionality reduction algorithm降维算法Directed edge有向边Disagreement measure不合胸怀Discriminative model鉴别模型Discriminator鉴别器Distance measure距离胸怀Distance metric learning距离胸怀学习Distribution散布Divergence散度Diversity measure多样性胸怀/差别性胸怀Domain adaption领域自适应Downsampling下采样D-separation( Directed separation)有向分别Dual problem对偶问题Dummy node 哑结点General Problem Solving通用问题求解Dynamic Fusion 动向交融Generalization泛化Dynamic programming动向规划Generalization error泛化偏差Eigenvalue decomposition特点值分解Generalization error bound泛化偏差上界Embedding 嵌入Generalized Lagrange function广义拉格朗日函数Emotional analysis情绪剖析Generalized linear model广义线性模型Empirical conditional entropy经验条件熵Generalized Rayleigh quotient广义瑞利商Empirical entropy经验熵Generative Adversarial Networks/GAN生成抗衡网Empirical error经验偏差络Empirical risk经验风险Generative Model生成模型End-to-End 端到端Generator生成器Energy-based model鉴于能量的模型Genetic Algorithm/GA遗传算法Ensemble learning集成学习Gibbs sampling吉布斯采样Ensemble pruning集成修剪Gini index基尼指数Error Correcting Output Codes/ ECOC纠错输出码Global minimum全局最小Error rate错误率Global Optimization全局优化Error-ambiguity decomposition偏差 - 分歧分解Gradient boosting梯度提高Euclidean distance欧氏距离Gradient Descent梯度降落Evolutionary computation演化计算Graph theory图论Expectation-Maximization希望最大化Ground-truth实情/真切Expected loss希望损失Hard margin硬间隔Exploding Gradient Problem梯度爆炸问题Hard voting硬投票Exponential loss function指数损失函数Harmonic mean 调解均匀Extreme Learning Machine/ELM超限学习机Hesse matrix海塞矩阵Factorization因子分解Hidden dynamic model隐动向模型False negative假负类Hidden layer隐蔽层False positive假正类Hidden Markov Model/HMM 隐马尔可夫模型False Positive Rate/FPR假正例率Hierarchical clustering层次聚类Feature engineering特点工程Hilbert space希尔伯特空间Feature selection特点选择Hinge loss function合页损失函数Feature vector特点向量Hold-out 留出法Featured Learning特点学习Homogeneous 同质Feedforward Neural Networks/FNN前馈神经网络Hybrid computing混杂计算Fine-tuning微调Hyperparameter超参数Flipping output翻转法Hypothesis假定Fluctuation震荡Hypothesis test假定考证Forward stagewise algorithm前向分步算法ICML 国际机器学习会议Frequentist频次主义学派Improved iterative scaling/IIS改良的迭代尺度法Full-rank matrix满秩矩阵Incremental learning增量学习Functional neuron功能神经元Independent and identically distributed/独Gain ratio增益率立同散布Game theory博弈论Independent Component Analysis/ICA独立成分剖析Gaussian kernel function高斯核函数Indicator function指示函数Gaussian Mixture Model高斯混杂模型Individual learner个体学习器Induction归纳Inductive bias归纳偏好Inductive learning归纳学习Inductive Logic Programming/ ILP归纳逻辑程序设计Information entropy信息熵Information gain信息增益Input layer输入层Insensitive loss不敏感损失Inter-cluster similarity簇间相像度International Conference for Machine Learning/ICML国际机器学习大会Intra-cluster similarity簇内相像度Intrinsic value固有值Isometric Mapping/Isomap等胸怀映照Isotonic regression平分回归Iterative Dichotomiser迭代二分器Kernel method核方法Kernel trick核技巧Kernelized Linear Discriminant Analysis/KLDA核线性鉴别剖析K-fold cross validation k折交错考证/k 倍交错考证K-Means Clustering K–均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation知识表征Label space标记空间Lagrange duality拉格朗日对偶性Lagrange multiplier拉格朗日乘子Laplace smoothing拉普拉斯光滑Laplacian correction拉普拉斯修正Latent Dirichlet Allocation隐狄利克雷散布Latent semantic analysis潜伏语义剖析Latent variable隐变量Lazy learning懒散学习Learner学习器Learning by analogy类比学习Learning rate学习率Learning Vector Quantization/LVQ学习向量量化Least squares regression tree最小二乘回归树Leave-One-Out/LOO留一法linear chain conditional random field线性链条件随机场Linear Discriminant Analysis/ LDA 线性鉴别剖析Linear model线性模型Linear Regression线性回归Link function联系函数Local Markov property局部马尔可夫性Local minimum局部最小Log likelihood对数似然Log odds/ logit对数几率Logistic Regression Logistic回归Log-likelihood对数似然Log-linear regression对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function损失函数Machine translation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majority voting绝对多半投票法Manifold assumption流形假定Manifold learning流形学习Margin theory间隔理论Marginal distribution边沿散布Marginal independence边沿独立性Marginalization边沿化Markov Chain Monte Carlo/MCMC马尔可夫链蒙特卡罗方法Markov Random Field马尔可夫随机场Maximal clique最大团Maximum Likelihood Estimation/MLE极大似然预计/极大似然法Maximum margin最大间隔Maximum weighted spanning tree最大带权生成树Max-Pooling 最大池化Mean squared error均方偏差Meta-learner元学习器Metric learning胸怀学习Micro-P微查准率Micro-R微查全率Minimal Description Length/MDL最小描绘长度Minimax game极小极大博弈Misclassification cost误分类成本Mixture of experts混杂专家Momentum 动量Moral graph道德图/正直图Multi-class classification多分类Multi-document summarization多文档纲要One shot learning一次性学习Multi-layer feedforward neural networks One-Dependent Estimator/ ODE 独依靠预计多层前馈神经网络On-Policy在策略Multilayer Perceptron/MLP多层感知器Ordinal attribute有序属性Multimodal learning多模态学习Out-of-bag estimate包外预计Multiple Dimensional Scaling多维缩放Output layer输出层Multiple linear regression多元线性回归Output smearing输出调制法Multi-response Linear Regression/ MLR Overfitting过拟合/过配多响应线性回归Oversampling 过采样Mutual information互信息Paired t-test成对 t查验Naive bayes 朴实贝叶斯Pairwise 成对型Naive Bayes Classifier朴实贝叶斯分类器Pairwise Markov property成对马尔可夫性Named entity recognition命名实体辨别Parameter参数Nash equilibrium纳什均衡Parameter estimation参数预计Natural language generation/NLG自然语言生成Parameter tuning调参Natural language processing自然语言办理Parse tree分析树Negative class负类Particle Swarm Optimization/PSO粒子群优化算法Negative correlation负有关法Part-of-speech tagging词性标明Negative Log Likelihood负对数似然Perceptron感知机Neighbourhood Component Analysis/NCA Performance measure性能胸怀近邻成分剖析Plug and Play Generative Network即插即用生成网Neural Machine Translation神经机器翻译络Neural Turing Machine神经图灵机Plurality voting相对多半投票法Newton method牛顿法Polarity detection极性检测NIPS 国际神经信息办理系统会议Polynomial kernel function多项式核函数No Free Lunch Theorem/ NFL 没有免费的午饭定理Pooling池化Noise-contrastive estimation噪音对照预计Positive class正类Nominal attribute列名属性Positive definite matrix正定矩阵Non-convex optimization非凸优化Post-hoc test后续查验Nonlinear model非线性模型Post-pruning后剪枝Non-metric distance非胸怀距离potential function势函数Non-negative matrix factorization非负矩阵分解Precision查准率/正确率Non-ordinal attribute无序属性Prepruning 预剪枝Non-Saturating Game非饱和博弈Principal component analysis/PCA主成分剖析Norm 范数Principle of multiple explanations多释原则Normalization归一化Prior 先验Nuclear norm核范数Probability Graphical Model概率图模型Numerical attribute数值属性Proximal Gradient Descent/PGD近端梯度降落Letter O Pruning剪枝Objective function目标函数Pseudo-label伪标记Oblique decision tree斜决议树Quantized Neural Network量子化神经网络Occam’s razor奥卡姆剃刀Quantum computer 量子计算机Odds 几率Quantum Computing量子计算Off-Policy离策略Quasi Newton method拟牛顿法Radial Basis Function/ RBF 径向基函数Random Forest Algorithm随机丛林算法Random walk随机闲步Recall 查全率/召回率Receiver Operating Characteristic/ROC受试者工作特点Rectified Linear Unit/ReLU线性修正单元Recurrent Neural Network循环神经网络Recursive neural network递归神经网络Reference model 参照模型Regression回归Regularization正则化Reinforcement learning/RL加强学习Representation learning表征学习Representer theorem表示定理reproducing kernel Hilbert space/RKHS重生核希尔伯特空间Re-sampling重采样法Rescaling再缩放Residual Mapping残差映照Residual Network残差网络Restricted Boltzmann Machine/RBM受限玻尔兹曼机Restricted Isometry Property/RIP限制等距性Re-weighting重赋权法Robustness稳重性 / 鲁棒性Root node根结点Rule Engine规则引擎Rule learning规则学习Saddle point鞍点Sample space样本空间Sampling采样Score function评分函数Self-Driving自动驾驶Self-Organizing Map/ SOM自组织映照Semi-naive Bayes classifiers半朴实贝叶斯分类器Semi-Supervised Learning半监察学习semi-Supervised Support Vector Machine半监察支持向量机Sentiment analysis感情剖析Separating hyperplane分别超平面Sigmoid function Sigmoid函数Similarity measure相像度胸怀Simulated annealing模拟退火Simultaneous localization and mapping同步定位与地图建立Singular Value Decomposition奇怪值分解Slack variables废弛变量Smoothing光滑Soft margin软间隔Soft margin maximization软间隔最大化Soft voting软投票Sparse representation稀少表征Sparsity稀少性Specialization特化Spectral Clustering谱聚类Speech Recognition语音辨别Splitting variable切分变量Squashing function挤压函数Stability-plasticity dilemma可塑性 - 稳固性窘境Statistical learning统计学习Status feature function状态特点函Stochastic gradient descent随机梯度降落Stratified sampling分层采样Structural risk构造风险Structural risk minimization/SRM构造风险最小化Subspace子空间Supervised learning监察学习/有导师学习support vector expansion支持向量展式Support Vector Machine/SVM支持向量机Surrogat loss代替损失Surrogate function代替函数Symbolic learning符号学习Symbolism符号主义Synset同义词集T-Distribution Stochastic Neighbour Embeddingt-SNE T–散布随机近邻嵌入Tensor 张量Tensor Processing Units/TPU张量办理单元The least square method最小二乘法Threshold阈值Threshold logic unit阈值逻辑单元Threshold-moving阈值挪动Time Step时间步骤Tokenization标记化Training error训练偏差Training instance训练示例/训练例Transductive learning直推学习Transfer learning迁徙学习Treebank树库algebra线性代数Tria-by-error试错法asymptotically无症状的True negative真负类appropriate适合的True positive真切类bias 偏差True Positive Rate/TPR真切例率brevity简洁,简洁;短暂Turing Machine图灵机[800 ] broader宽泛Twice-learning二次学习briefly简洁的Underfitting欠拟合/欠配batch 批量Undersampling欠采样convergence收敛,集中到一点Understandability可理解性convex凸的Unequal cost非均等代价contours轮廓Unit-step function单位阶跃函数constraint拘束Univariate decision tree单变量决议树constant常理Unsupervised learning无监察学习/无导师学习commercial商务的Unsupervised layer-wise training无监察逐层训练complementarity增补Upsampling上采样coordinate ascent同样级上涨Vanishing Gradient Problem梯度消逝问题clipping剪下物;剪报;修剪Variational inference变分推测component重量;零件VC Theory VC维理论continuous连续的Version space版本空间covariance协方差Viterbi algorithm维特比算法canonical正规的,正则的Von Neumann architecture冯· 诺伊曼架构concave非凸的Wasserstein GAN/WGAN Wasserstein生成抗衡网络corresponds相切合;相当;通讯Weak learner弱学习器corollary推论Weight权重concrete详细的事物,实在的东西Weight sharing权共享cross validation交错考证Weighted voting加权投票法correlation互相关系Within-class scatter matrix类内散度矩阵convention商定Word embedding词嵌入cluster一簇Word sense disambiguation词义消歧centroids质心,形心Zero-data learning零数据学习converge收敛Zero-shot learning零次学习computationally计算(机)的approximations近似值calculus计算arbitrary任意的derive获取,获得affine仿射的dual 二元的arbitrary任意的duality二元性;二象性;对偶性amino acid氨基酸derivation求导;获取;发源amenable 经得起查验的denote预示,表示,是的标记;意味着,[逻]指称axiom 公义,原则divergence散度;发散性abstract提取dimension尺度,规格;维数architecture架构,系统构造;建筑业dot 小圆点absolute绝对的distortion变形arsenal军械库density概率密度函数assignment分派discrete失散的人工智能词汇discriminative有辨别能力的indicator指示物,指示器diagonal对角interative重复的,迭代的dispersion分别,散开integral积分determinant决定要素identical相等的;完整同样的disjoint不订交的indicate表示,指出encounter碰到invariance不变性,恒定性ellipses椭圆impose把强加于equality等式intermediate中间的extra 额外的interpretation解说,翻译empirical经验;察看joint distribution结合概率ennmerate例举,计数lieu 代替exceed超出,越出logarithmic对数的,用对数表示的expectation希望latent潜伏的efficient奏效的Leave-one-out cross validation留一法交错考证endow 给予magnitude巨大explicitly清楚的mapping 画图,制图;映照exponential family指数家族matrix矩阵equivalently等价的mutual互相的,共同的feasible可行的monotonically单一的forary首次试试minor较小的,次要的finite有限的,限制的multinomial多项的forgo 摒弃,放弃multi-class classification二分类问题fliter过滤nasty厌烦的frequentist最常发生的notation标记,说明forward search前向式搜寻na?ve 朴实的formalize使定形obtain获取generalized归纳的oscillate摇动generalization归纳,归纳;广泛化;判断(依据不optimization problem最优化问题足)objective function目标函数guarantee保证;抵押品optimal最理想的generate形成,产生orthogonal(矢量,矩阵等 ) 正交的geometric margins几何界限orientation方向gap 裂口ordinary一般的generative生产的;有生产力的occasionally有时的heuristic启迪式的;启迪法;启迪程序partial derivative偏导数hone 怀恋;磨property性质hyperplane超平面proportional成比率的initial最先的primal原始的,最先的implement履行permit同意intuitive凭直觉获知的pseudocode 伪代码incremental增添的permissible可同意的intercept截距polynomial多项式intuitious直觉preliminary预备instantiation例子precision精度人工智能词汇perturbation不安,搅乱theorem定理poist 假定,假想tangent正弦positive semi-definite半正定的unit-length vector单位向量parentheses圆括号valid 有效的,正确的posterior probability后验概率variance方差plementarity增补variable变量;变元pictorially图像的vocabulary 词汇parameterize确立的参数valued经估价的;可贵的poisson distribution柏松散布wrapper 包装pertinent有关的总计 1038 词汇quadratic二次的quantity量,数目;重量query 疑问的regularization使系统化;调整reoptimize从头优化restrict限制;限制;拘束reminiscent回想旧事的;提示的;令人联想的( of )remark 注意random variable随机变量respect考虑respectively各自的;分其他redundant过多的;冗余的susceptible敏感的stochastic可能的;随机的symmetric对称的sophisticated复杂的spurious假的;假造的subtract减去;减法器simultaneously同时发生地;同步地suffice知足scarce罕有的,难得的split分解,分别subset子集statistic统计量successive iteratious连续的迭代scale标度sort of有几分的squares 平方trajectory轨迹temporarily临时的terminology专用名词tolerance容忍;公差thumb翻阅threshold阈,临界。
半监督深度学习图像分类方法研究综述吕昊远+,俞璐,周星宇,邓祥陆军工程大学通信工程学院,南京210007+通信作者E-mail:*******************摘要:作为人工智能领域近十年来最受关注的技术之一,深度学习在诸多应用中取得了优异的效果,但目前的学习策略严重依赖大量的有标记数据。
在许多实际问题中,获得众多有标记的训练数据并不可行,因此加大了模型的训练难度,但容易获得大量无标记的数据。
半监督学习充分利用无标记数据,提供了在有限标记数据条件下提高模型性能的解决思路和有效方法,在图像分类任务中达到了很高的识别精准度。
首先对于半监督学习进行概述,然后介绍了分类算法中常用的基本思想,重点对近年来基于半监督深度学习框架的图像分类方法,包括多视图训练、一致性正则、多样混合和半监督生成对抗网络进行全面的综述,总结多种方法共有的技术,分析比较不同方法的实验效果差异,最后思考当前存在的问题并展望未来可行的研究方向。
关键词:半监督深度学习;多视图训练;一致性正则;多样混合;半监督生成对抗网络文献标志码:A中图分类号:TP391.4Review of Semi-supervised Deep Learning Image Classification MethodsLYU Haoyuan +,YU Lu,ZHOU Xingyu,DENG XiangCollege of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,ChinaAbstract:As one of the most concerned technologies in the field of artificial intelligence in recent ten years,deep learning has achieved excellent results in many applications,but the current learning strategies rely heavily on a large number of labeled data.In many practical problems,it is not feasible to obtain a large number of labeled training data,so it increases the training difficulty of the model.But it is easy to obtain a large number of unlabeled data.Semi-supervised learning makes full use of unlabeled data,provides solutions and effective methods to improve the performance of the model under the condition of limited labeled data,and achieves high recognition accuracy in the task of image classification.This paper first gives an overview of semi-supervised learning,and then introduces the basic ideas commonly used in classification algorithms.It focuses on the comprehensive review of image classification methods based on semi-supervised deep learning framework in recent years,including multi-view training,consistency regularization,diversity mixing and semi-supervised generative adversarial networks.It summarizes the common technologies of various methods,analyzes and compares the differences of experimental results of different methods.Finally,this paper thinks about the existing problems and looks forward to the feasible research direction in the future.Key words:semi-supervised deep learning;multi-view training;consistency regularization;diversity mixing;semi-supervised generative adversarial networks计算机科学与探索1673-9418/2021/15(06)-1038-11doi:10.3778/j.issn.1673-9418.2011020基金项目:国家自然科学基金(61702543)。
光学 精密工程Optics and Precision Engineering第 29 卷 第 5 期2021年5月Vol. 29 No. 5May 2021文章编号 1004-924X( 2021)05-1127-09联合训练生成对抗网络的半监督分类方法徐哲,耿杰*,蒋雯,张卓,曾庆捷(西北工业大学电子信息学院,西安710072)摘要:深度神经网络需要大量数据进行监督训练学习,而实际应用中往往难以获取大量标签数据°半监督学习可以减小深度网络对标签数据的依赖,基于半监督学习的生成对抗网络可以提升分类效果,旦仍存在训练不稳定的问题°为进一步提高网络的分类精度并解决网络训练不稳定的问题,本文提出一种基于联合训练生成对抗网络的半监督分类方法,通 过两个判别器的联合训练来消除单个判别器的分布误差,同时选取无标签数据中置信度高的样本来扩充标签数据集,提高半监督分类精度并提升网络模型的泛化能力°在CIFAR -10和SVHN 数据集上的实验结果表明,本文方法在不同数量的标签数据下都获得更好的分类精度°当标签数量为2 000时,在CIFAR -10数据集上分类精度可达80.36% ;当标签 数量为10时,相比于现有的半监督方法,分类精度提升了约5%°在一定程度上解决了 GAN 网络在小样本条件下的过拟合问题°关键词:生成对抗网络;半监督学习;图像分类;深度学习中图分类号:TP391文献标识码:Adoi :10. 37188/OPE. 20212905.1127Co -training generative adversarial networks forsemi -supervised classification methodXU Zhe , GENG Jie * , JIANG Wen , ZHANG Zhuo , ZENG Qing -jie(School of E lectronics and Information , Northwestern Polytechnical University , Xian 710072, China )* Corresponding author , E -mail : gengjie@nwpu. edu. cnAbstract : Deep neural networks require a large amount of data for supervised learning ; however , it is dif ficult to obtain enough labeled data in practical applications. Semi -supervised learning can train deep neuralnetworks with limited samples. Semi -supervised generative adversarial networks can yield superior classifi cation performance ; however , they are unstable during training in classical networks. To further improve the classification accuracy and solve the problem of training instability for networks , we propose a semi -su pervised classification model called co -training generative adversarial networks ( CT -GAN ) for image clas sification. In the proposed model , co -training of two discriminators is applied to eliminate the distribution error of a single discriminator and unlabeled samples with higher confidence are selected to expand thetraining set , which can be utilized for semi -supervised classification and enhance the generalization of deep networks. Experimental results on the CIFAR -10 dataset and the SVHN dataset showed that the pro posed method achieved better classification accuracies with different numbers of labeled data. The classifi cation accuracy was 80. 36% with 2000 labeled data on the CIFAR -10 dataset , whereas it improved by收稿日期:2020-11-04;修订日期:2021-01-04.基金项目:装备预研领域基金资助项目(No. 61400010304);国家自然科学基金资助项目(No. 61901376)1128光学精密工程第29卷about5%compared with the existing semi-supervised method with10labeled data.To a certain extent, the problem of GAN overfitting under a few sample conditions is solved.Key words:generative adversarial networks;semi-supervised learning;image classification;deep learning1引言图像分类作为计算机视觉领域最基础的任务之一,主要通过提取原始图像的特征并根据特征学习进行分类[11o传统的特征提取方法主要是对图像的颜色、纹理、局部特征等图像表层特征进行处理实现的,例如尺度不变特征变换法[21,方向梯度法[31以及局部二值法[41等。
量子计算中的无限维希尔伯特空间量子计算作为一种新兴的计算模型,已经在科学界引起了广泛的关注。
与传统的经典计算相比,量子计算利用了量子力学中的一些特性,如叠加态和纠缠态,以实现更高效、更强大的计算能力。
在量子计算中,无限维希尔伯特空间扮演着重要的角色。
希尔伯特空间是量子力学中描述量子态的数学结构。
在经典计算中,我们使用二进制位(0和1)来表示信息,而在量子计算中,我们使用量子比特(qubit)来表示信息。
一个qubit可以处于叠加态,即同时处于0态和1态的叠加状态。
而希尔伯特空间则提供了描述这种叠加态的数学工具。
在经典计算中,我们可以使用有限维的希尔伯特空间来描述信息的状态。
例如,一个有n个二进制位的经典计算机可以使用一个n维的希尔伯特空间来表示其状态。
而在量子计算中,由于量子比特可以处于叠加态,我们需要使用无限维的希尔伯特空间来描述量子系统的状态。
在无限维希尔伯特空间中,我们可以用基态来表示量子比特的不同状态。
基态是希尔伯特空间中的一组正交归一基矢量,它们对应于量子比特的不同状态。
例如,对于一个有无限多个基态的量子比特,我们可以用|0⟩、|1⟩、|2⟩等来表示不同的状态。
在无限维希尔伯特空间中,我们还可以进行一些基本的操作,如叠加、测量和纠缠。
叠加是指将两个量子比特放在一起,使它们处于叠加态。
测量是指对量子比特进行观测,得到一个确定的结果。
纠缠是指将两个量子比特之间建立起一种特殊的关系,使它们的状态相互依赖。
无限维希尔伯特空间的引入,使得量子计算具备了更强大的计算能力。
在经典计算中,我们使用的是确定性的逻辑门,如与门和或门。
而在量子计算中,我们使用的是概率性的量子门,如Hadamard门和CNOT门。
这些量子门可以对多个量子比特进行操作,从而实现更复杂的计算任务。
除了在计算中的应用,无限维希尔伯特空间还在量子通信和量子模拟等领域发挥着重要作用。
在量子通信中,我们可以利用纠缠态在远距离间传递信息,从而实现更安全、更快速的通信。
(完整版)量子力学英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation 角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
面向小样本学习的双重度量孪生神经网络面向小样本学习的双重度量孪生神经网络(Siamese neural networks for small-sample learning)是一种用于解决小样本学习问题的深度学习模型。
小样本学习是指在数据集中样本数量较少的情况下,通过模型训练和学习推理准确的能力。
传统的深度学习模型在小样本学习问题上表现不佳,因为它们需要大量的训练数据来提取特征并进行泛化。
双重度量孪生神经网络是一种特殊的神经网络结构,由两个共享权重的子网络组成,常被用于计算两个输入之间的相似度。
该网络通过学习距离度量来评估样本之间的相似性。
在小样本学习中,双重度量孪生神经网络可以学习到更具鲁棒性的特征表示,并通过度量模型直接比较样本之间的相似度,从而实现小样本分类和识别。
在双重度量孪生神经网络中,每个输入样本都通过子网络进行特征提取。
这些特征向量被输入到度量模型中,通过计算样本之间的距离来度量相似性。
常用的度量模型包括欧氏距离、曼哈顿距离等。
在训练过程中,网络通过最小化相似样本的距离和最大化不相似样本的距离来学习特征表示和度量模型的参数。
这样的学习方式可以使得网络对小样本数据更具判别力,提高分类准确率。
双重度量孪生神经网络在小样本学习中有广泛的应用。
例如,在人脸识别任务中,由于数据集中每个人的样本数较少,传统的深度学习模型很难实现准确的识别。
而使用双重度量孪生神经网络,可以通过学习距离度量准确地比较两个人脸图像之间的相似度,从而实现准确的人脸识别。
与传统的深度学习模型相比,双重度量孪生神经网络具有以下优势。
首先,它充分利用了双重度量来评估样本之间的相似性,可以更准确地进行分类和识别。
其次,它不依赖于大量的训练数据,适用于小样本学习场景。
此外,双重度量孪生神经网络还可以应用于其他领域,如目标跟踪、特征匹配等。
总之,面向小样本学习的双重度量孪生神经网络是一种有效的深度学习模型,可以在小样本学习问题中提高分类和识别的准确性。
固体力学英语词汇翻译(2)固体力学英语词汇翻译(2)裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle, ctoa裂尖张开位移 crack tip opening displacement, ctod 裂尖奇异场 crack tip singularity field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth裂纹[扩展]减速 crack retardation止裂 crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 tearing撕裂模量 tearing modulus断裂准则 fracture criterionj积分 j-integralj阻力曲线 j-resistance curve断裂韧度 fracture toughness应力强度因子 stress inteity factorhrr场 hutchion-rice-rosengren field守恒积分 coervation integral有效应力张量 effective stress teor应变能密度 strain energy deity能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区 heat affected zone, haz延脆转变温度 brittle-ductile traition temperature剪切带 shear band剪切唇 shear lip无损检测 non-destructive ipection双边缺口试件 double edge notched specimen, den specimen单边缺口试件 single edge notched specimen, sen specimen三点弯曲试件 three point bending specimen, tpb specimen中心裂纹拉伸试件 center cracked teion specimen, cct specimen 中心裂纹板试件 center cracked panel specimen, ccp specimen 紧凑拉伸试件 compact teion specimen, ct specimen大范围屈服 large scale yielding小范围攻屈服 small scale yielding韦布尔分布 weibull distribution帕里斯公式 paris formula空穴化 cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic risk assessment, pra损伤力学 damage mechanics损伤 damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation损伤软化 damage softening损伤强化 damage strengthening损伤张量 damage teor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳 fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striatio疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片 crack gage裂纹扩展 crack growth, crack propagation 裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stress analysis工作[应变]片 active[strain] gage基底材料 backing material应力计 stress gage零[点]飘移 zero shift, zero drift应变测量 strain measurement应变计 strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain seitivity机械式应变仪 mechanical strain gage直角应变花 rectangular rosette引伸仪 exteometer应变遥测 telemetering of strain横向灵敏系数 travee gage factor横向灵敏度 travee seitivity焊接式应变计 weldable strain gage平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计 bonded foiled gage粘贴丝式应变计 bonded wire gage桥路平衡 bridge balancing电容应变计 capacitance strain gage补偿片 compeation technique补偿技术 compeation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compeating gage 半导体应变计 semiconductor strain gage集流器 slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage光[测]力学 photomechanics光弹性 photoelasticity光塑性 photoplasticity杨氏条纹 young fringe双折射效应 birefrigent effect等位移线 contour of equal displacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 isochromatic等倾线 isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 isostatic亮条纹 light fringe光程差 optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating method光弹性夹片法 photoelastic sandwich method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic seitivity应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent effect脉冲全息法 pulsed holography透射式光弹性仪 tramission polariscope实时全息干涉法 real-time holographic interferometry 网格法 grid method全息光弹性法 holo-photoelasticity全息图 hologram全息照相 holograph全息干涉法 holographic interferometry全息云纹法 holographic moire technique全息术 holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑 speckle错位散斑干涉法 speckle-shearing interferometry, shearography 散斑图 specklegram白光散斑法 white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 traformation of coordinates计算结构力学 computational structural mechanics加权残量法 weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 ritz method广义变分原理 generalized variational principle最小二乘法 least square method胡[海昌]一鹫津原理 hu-washizu principle赫林格-赖斯纳原理 hellinger-reissner principle修正变分原理 modified variational principle约束变分原理 cotrained variational principle 混合法 mixed method杂交法 hybrid method边界解法 boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition自然边界条件 natural boundary condition离散化 discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable节点 node, nodal point[单]元 element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimeional element一维元 one-dimeional element三维元 three-dimeional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element 拉格朗日元 lagrange element拉格朗日族 lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 coistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 rayleigh damping刚度矩阵的组集 assembly of stiffness matrices 载荷矢量的组集 coistent mass matrix质量矩阵的组集 assembly of mass matrices单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condeation合同变换 contragradient traformation形状函数 shape function试探函数 trial function检验函数 test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modep收敛 p-convergenceh收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化 minimization of band width波前法 frontal method子空间迭代法 subspace iteration method宝岛优品—倾心为你打造精品文档行列式搜索法 determinant search method逐步法 step-by-step method纽马克法 newmark威尔逊法 wilson拟牛顿法 quasi-newton method牛顿-拉弗森法 newton-raphson method增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法 mode superposition method平衡迭代 equilibrium iteration子结构 substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure固体力学英语词汇翻译(2) 相关内容:力学名词英语翻译固体力学英语词汇翻译(1)流体力学英语词汇翻译(2)流体力学英语词汇翻译(1)统计相关英语词汇核工业相关词汇的英语翻译数学常用英语词汇数学新词汇的中英翻译查看更多>> 数学物理英语词汇宝岛优品—倾心为你打造精品文档。
深度学习技术中的稀疏自编码器方法详解深度学习在图像识别、语音识别、自然语言处理等领域取得了很大的成功,其中稀疏自编码器方法被广泛应用。
稀疏自编码器是一种无监督学习方法,能够自动从输入数据中学习到有效的表示,并在特征空间中进行重建。
稀疏自编码器是一种具有稀疏性约束的自编码器。
自编码器是一种神经网络模型,由输入层、隐藏层和输出层组成,其中隐藏层的维度一般比输入层低。
自编码器的目标是尽可能地重构输入数据,同时通过压缩隐藏层的维度来学习数据的有效表示。
稀疏性约束是稀疏自编码器的核心特性之一。
稀疏性要求隐藏层的激活值(或称为输出值)中只有少数几个元素是非零的,大部分元素都应该接近于零。
这样的约束能够促使自编码器学习到对输入数据进行压缩编码的稀疏表示。
稀疏性约束可以通过引入稀疏惩罚项来实现。
最常用的稀疏惩罚项是L1正则化,它可以通过限制隐藏层激活值的绝对值之和来实现。
具体地,对于每个隐藏层的激活值a,L1正则化可以定义为λ * |a|,其中λ是一个控制稀疏程度的超参数。
稀疏自编码器的训练过程包括两个阶段:编码阶段和解码阶段。
在编码阶段,输入数据通过前向传播传递到隐藏层,隐藏层的激活值被计算出来。
在解码阶段,隐藏层的激活值通过反向传播传递到输出层,重构数据被生成出来。
训练过程的目标是最小化重构误差,即输入数据与重构数据之间的差距。
稀疏自编码器的训练可以使用梯度下降法等优化算法进行。
在训练过程中,除了最小化重构误差外,还需要考虑稀疏性约束的损失。
稀疏自编码器中隐藏层的激活值可以使用sigmoid函数或ReLU函数进行非线性变换。
这些函数的选择对模型的性能和稀疏性有一定的影响。
稀疏自编码器方法在深度学习中有很多的应用。
其中一个重要的应用是特征学习。
通过训练稀疏自编码器,可以学习到输入数据的有效表示,这些表示可以作为其他任务(如分类、聚类等)的特征输入。
稀疏自编码器还可以被用作降维方法,通过减少输入数据的维度,可以减少计算复杂性,并提高模型的泛化能力。
实验一编码与译码一、实验学时:2学时二、实验类型:验证型三、实验仪器:安装Matlab软件的PC机一台四、实验目的:用MATLAB仿真技术实现信源编译码、过失操纵编译码,并计算误码率。
在那个实验中咱们将观看到二进制信息是如何进行编码的。
咱们将要紧了解:1.目前用于数字通信的基带码型2.过失操纵编译码五、实验内容:1.经常使用基带码型(1)利用MATLAB 函数wave_gen 来产生代表二进制序列的波形,函数wave_gen 的格式是:wave_gen(二进制码元,‘码型’,Rb)此处Rb 是二进制码元速度,单位为比特/秒(bps)。
产生如下的二进制序列:>> b = [1 0 1 0 1 1];利用Rb=1000bps 的单极性不归零码产生代表b的波形且显示波形x,填写图1-1:>> x = wave_gen(b,‘unipolar_nrz’,1000);>> waveplot(x)(2)用如下码型重复步骤(1)(提示:能够键入“help wave_gen”来获取帮忙),并做出相应的记录:a 双极性不归零码b 单极性归零码c 双极性归零码d 曼彻斯特码(manchester)x 10-3x 10-3图1-1 单极性不归零码图1-2双极性不归零码x 10-3x 10-32.过失操纵编译码(1) 利用MATLAB 函数encode 来对二进制序列进行过失操纵编码, 函数encode 的格式是:A .code = encode(msg,n,k,'linear/fmt',genmat)B .code = encode(msg,n,k,'cyclic/fmt',genpoly)C .code = encode(msg,n,k,'hamming/fmt',prim_poly)其中A .用于产生线性分组码,B .用于产生循环码,C .用于产生hamming 码,msg 为待编码二进制序列,n 为码字长度,k 为分组msg 长度,genmat 为生成矩阵,维数为k*n ,genpoly 为生成多项式,缺省情形下为cyclpoly(n,k)。
semi-supervised deep continuous
learning 笔记
半监督学习(semi-supervised learning)研究的是如何充分利用已标记数据和大量未标记数据来提升学习性能的方法。
假设数据取样自样本空间$X$和标记空间$Y$上的未知分布$D$。
在半监督学习中,给定标记数据集$L$和未标记数据集$U$,其中$xi∈X,yi∈Y$,且通常有$l<<m$,目标为学习获得$H:X→V$。
简单起见,考虑二分类任务,即$Y=\{-1,+1\}$。
未标记数据可以帮助揭示潜在数据分布的一些信息,进而帮助构建具有更强泛化能力的模型。
半监督学习方法的基础就在于如何构建假设来刻画未标记数据所揭示的数据分布和类别标记信息之间的联系。
两类基本假设包括聚类假设(cluster assumption)和流形假设(manifold assumption)。
聚类假设假设相似的输入具有相似的类别标记;流形假设假设所有的数据都在一个低维流形中,未标记数据有助于构造此流形。
聚类假设关注分类任务,流形假设可被应用到分类以外的其他学习任务上。
另外,直推学习和半监督学习紧密相关,两者的区别在于对测试数据的假设。
直推学习采用封闭世界假设(closed-world assumption),即未标记数据就是测试数据,事先已知;半监督学习是基于开放世界假设(open-world assumption),即测试数据未知,未标记数据未必是测试数据。
因此,直推学习可以看成一种特殊的半监督学习。
总的来说,半监督学习是一个不断发展和演进的领域,它在机器学习和数据挖掘领域中具有重要的研究价值和应用前景。
(3条消息)图卷积网络GCNGraphConvolutionalNetwork(谱域GCN。
文章目录1. 为什么会出现图卷积神经网络?2. 图卷积网络的两种理解方式2.1 vertex domain(spatial domain):顶点域(空间域)2.2 spectral domain:频域方法(谱方法)3. 什么是拉普拉斯矩阵?3.1 常用的几种拉普拉斯矩阵普通形式的拉普拉斯矩阵对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian)随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian)泛化的拉普拉斯 (Generalized Laplacian)3.2 无向图的拉普拉斯矩阵有什么性质3.3 为什么GCN要用拉普拉斯矩阵?3.4. 拉普拉斯矩阵的谱分解(特征分解)3.5 拉普拉斯算子4. 如何通俗易懂地理解卷积?4.1 连续形式的一维卷积4.2 离散形式的一维卷积4.3 实例:掷骰子问题5. 傅里叶变换5.1 连续形式的傅立叶变换5.2 频域(frequency domain)和时域(time domain)的理解5.3 周期性离散傅里叶变换(Discrete Fourier Transform, DFT)6. Graph上的傅里叶变换及卷积6.1 图上的傅里叶变换6.2 图的傅立叶变换——图的傅立叶变换的矩阵形式6.3 图的傅立叶逆变换——图的傅立叶逆变换的矩阵形式6.4 图上的傅里叶变换推广到图卷积7. 为什么拉普拉斯矩阵的特征向量可以作为傅里叶变换的基?特征值表示频率?7.1 为什么拉普拉斯矩阵的特征向量可以作为傅里叶变换的基?7.2 怎么理解拉普拉斯矩阵的特征值表示频率?8. 深度学习中GCN的演变8.1 Spectral CNN8.2 Chebyshev谱CNN(ChebNet)8.3 一阶ChebNet(1stChebNet)-GCNGCN的一些特点GCN的一些改进的变种9. GCN代码分析和数据集Cora、Pubmed、Citeseer格式10. 从空间角度理解GCN11. GCN处理不同类型的图关于带权图问题关于有向图问题节点没有特征的图12. 问题讨论Q1:GCN中邻接矩阵为什么要归一化?Q2:GCN中邻接矩阵为什么要对称归一化,从前面计算的例子对称化后如何看出来归一化的特点?Q3:GCN中参数矩阵W的维度如何确定?Q4:为什么GCN里使用NELL数据集相比于其他三个的分类准确率这么低?Q5:目前GCN的分类准确率仅为80%左右,如何提高GCN在Citeseer、Cora、Pubmed、Nell上的分类准确率?资料下载参考1. 为什么会出现图卷积神经网络?普通卷积神经网络研究的对象是具备Euclidean domains的数据,Euclidean domains data数据最显著的特征是他们具有规则的空间结构,如图片是规则的正方形,语音是规则的一维序列等,这些特征都可以用一维或二CNN的【平移不变性】在【非矩阵结构】数据上不适用平移不变性(translation invariance):比较好理解,在用基础的分类结构比如ResNet、Inception给一只猫分类时,无论猫怎么扭曲、平移,最终识别出来的都是猫,输入怎么变形输出都不变这就是平移不变性,网络平移可变性(translation variance):针对目标检测的,比如一只猫从图片左侧移到了右侧,检测出的猫的坐标会发生变化就称为平移可变性。