03-电子显微分析-基础知识与TEM(1-电子显微镜光学基础)
- 格式:ppt
- 大小:12.12 MB
- 文档页数:64
TEM电子显微镜工作原理详解TEM电子显微镜是一种高分辨率的分析仪器,能够在纳米尺度下观察材料的微观结构和成分,对于研究材料的性质和特性具有重要意义。
本文将详细介绍TEM电子显微镜的工作原理,包括透射电子显微镜和扫描透射电子显微镜。
透射电子显微镜(Transmission Electron Microscope,TEM)工作原理:透射电子显微镜主要由电子光源、透镜和探测器组成。
首先,电子光源发射高能电子束,这些电子从阴极发射出来,经过加速器获得较高的能量。
然后,电子束通过一系列的电磁透镜进行聚焦,使电子束变得更加细致和密集。
接着,电子束通过物质样本,部分电子被样本吸收或散射,形成透射电子。
这些透射电子被接收器捕获和放大成像,形成TEM图像。
透射电子显微镜的工作原理是基于电子的波粒二象性。
电子是一种粒子同时也是一种波动,其波动性质使得它具备非常短的波长,远远小于可见光的波长。
这使得TEM能够观察到比传统光学显微镜更小的尺度。
另外,透射电子显微镜在工作中还需要考虑电子束的束流强度、对样本的破坏性和控制样本与探测器之间的距离等因素。
TEM电子显微镜通过透射电子成像方式观察样本,因此对样本的制备要求非常高。
样品需要制备成非常薄的切片,通常厚度在几十纳米到几百纳米之间,以保证电子可以穿透。
对于一些无法制备成切片的样品,可以利用离子切割或焦离子技术获得透明的样品。
此外,在观察样本时需要避免污染和氧化等现象。
扫描透射电子显微镜(Scanning Transmission Electron Microscope,STEM)工作原理:扫描透射电子显微镜是透射电子显微镜的一种变种,它在透射成像的基础上加入了扫描功能。
STEM可以实现高分辨率的成像,同时也可以进行能谱分析和电子衍射。
STEM电子显微镜工作原理类似于透射电子显微镜,但需要注意的是,STEM使用的电子束并不需要通过所有的样本区域。
电子束只需通过样本中的一个小区域,然后扫描整个样本,因此样本制备要求和透射电子显微镜相比较低。
电子显微分析 电子显微分析是利用聚焦电子束与试样物质相互作用产生的各种物理信号,分析试样物质的微区形貌、晶体结构和化学组成。
包括:用透射电子显微镜TEM 进行的透射电子显微分析用扫描电子显微镜SEM 进行的扫描电子显微分析用电子探针仪EPMS 进行的X 射线显微分析电子显微分析是材料科学的重要分析方法之一,与其它的形貌、结构和化学组成分析方法相比具有以下特点:1)具有在极高放大倍率下直接观察试样的形貌、晶体结构和化学成分。
2) 为一种微区分析方法,具有很高的分辨率,成像分辨率达到0.2~0.3nm (TEM ),可直接分辨原子,能进行纳米尺度的晶体结构及化学组成分析。
一、电子光学基础磁场中运动,特别是在电场和磁场中偏转、聚焦和成像规律的一门科学。
它与几何光学有很多相似之处:(1)几何光学是利用透镜使光线聚焦成像,而电子光学则利用电、磁场使电子束聚焦成像,电、磁场起着透镜的作用。
(2)几何光学中,利用旋转对称面作为折射面,而电子光学系统中,是利用旋转对称的电、磁场产生的等位面作为折射面。
因此涉及的电子光学主要是研究电子在旋转对称电、磁场中的运动规律。
(3)电子光学可仿照几何光学把电子运动轨迹看成射线,并由此引入一系列的集合光学参数来表征电子透镜对于电子射线的聚焦成像作用。
电镜中,用静电透镜作电子枪,发射电子束;用磁透镜做会聚透镜,起成像和放大作用。
静电透镜和磁透镜统称电子透镜1. 电子在静电场中的运动电子在静电场中受到电场力的作用将产生加速度。
初速度为0的自由电子从零电位到达V 电位时,电子的运动速度v 为:(10) 2m eV v当电子的初速度不为零、运动方向与电场力方向不一致时,电场力不仅改变电子运动的能量,而且也改变电子的运动方向。
2、静电透镜与玻璃的凸透镜可以使光线聚焦成像相似,一定形状的等电位曲面簇 也可以使电子束聚焦成像。
产生这种旋转对称等三电位曲面簇的电极装置即为静电透镜。
它有二极式和三极式之分。
电子显微分析知识点总结(粗字体为重点)
第一讲电子光学基础
1、电子显微分析特点
2、Airy斑概念
3、Rayleigh准则
4、光学显微镜极限分辨率大小:半波长,200nm
5、电子波的速度、波长推导公式
6、光学显微镜和电子显微镜的不同之处:光源不同、透镜不同、环境不同
7、电磁透镜的像差产生原因,如何消除和减少像差。
8、影响光学显微镜和电磁透镜分辨率的关键因素,如何提高电磁透镜的分辨率
9、电子波的特征,与可见光的异同
第二讲TEM
1、TEM的基本构造
2、TEM中实现电子显微成像模式与电子衍射模式操作
第三讲电子衍射
1、电子衍射的基本公式推导过程
2、衍射花样的分类:斑点花样、菊池线花样、会聚束花样
3、透射电子显微镜图像衬度,各自的成像原理。
第四讲TEM制样
1、粉末样品制备步骤
2、块状样品制备减薄的方法
3、块状脆性样品制备减薄——离子减薄
4、塑料样品制备——离子减薄
5、复型的概念、分类
第五讲SEM
1、电子束入射固体样品表面会激发的信号、特点和用途
2、SEM工作原理
3、SEM的组成
4、SEM的成像衬度:二次电子表面形貌衬度、背散射电子原子序数衬度、吸收电子像的
衬度、X射线图像的衬度
第六讲EDS和WDS
1、EDS探测系统——锂漂移硅固体探测器
2、EDS与WDS的优缺点
第七讲EBSD
1、EBSD的应用
第八讲其它电子显微分析方法
1、各种设备的缩写形式。
tem的基本原理宝子!今天咱们来唠唠TEM,也就是透射电子显微镜的基本原理,这玩意儿可神奇啦。
你可以把TEM想象成一个超级厉害的微观世界探险家。
它主要的任务呢,就是让咱们能看到超级超级小的东西,小到原子、分子那种级别的哦。
那它是咋做到的呢?咱先说说电子源。
这就像是TEM的小炮弹发射站。
这里会发射出电子束,就像一群特别特别小的子弹。
这些电子束可不像咱们平常看到的光那么简单哦。
它们能量可不小呢。
电子源就像是一个微观世界的小太阳,不断地往外发射这些电子“小炮弹”。
然后呢,这个电子束得经过一系列的透镜。
这里的透镜可不是咱们平常戴的眼镜那种透镜哦。
这些是电磁透镜。
电磁透镜就像是微观世界里的魔法通道。
它可以把电子束聚焦起来,就像咱们用放大镜把太阳光聚焦成一个小亮点一样。
不过这个可比那复杂多啦。
通过这些电磁透镜的魔法,电子束就变得又细又集中,这样它就能精准地去探测咱们想要看的微观样品啦。
说到样品,这可是个关键角色。
当这个细细的电子束打到样品上的时候,就像是一群小蚂蚁在探索一个神秘的小城堡。
电子束和样品之间会发生各种各样的相互作用。
有些电子呢,会直接穿过样品,就像那些特别厉害的小蚂蚁,直接从城堡的缝隙里钻过去了。
这些穿过样品的电子就带着样品内部结构的信息呢。
但是呢,还有些电子就没那么顺利啦。
它们可能会被样品里面的原子或者分子给散射掉。
这就像是小蚂蚁在城堡里迷路了,找不到方向到处乱撞。
这些散射的电子也很重要哦,它们也能告诉我们很多关于样品结构的信息。
比如说,如果某个地方散射的电子特别多,那就说明这个地方的原子排列或者结构比较特殊。
那这些带着信息的电子最后去哪儿了呢?它们会打到一个探测器上。
这个探测器就像是一个超级灵敏的小耳朵。
它能听到电子打在上面的声音,不对不对,是能感受到电子打在上面的信号啦。
然后把这些信号转化成我们能看到的图像。
这个图像就是微观世界的一个小窗口,通过这个窗口,我们就能看到样品内部的结构啦。
你看,TEM的整个过程就像是一场微观世界的奇妙冒险。
透射电子显微镜分析基础透射电子显微镜(Transmission Electron Microscope, TEM)是一种高分辨率显微镜,用于观察和研究材料的超微结构。
它通过透射电子束穿透材料并在接收器上形成像,使得材料的原子尺度细节能够被精确观察。
下面是关于透射电子显微镜分析的基础知识。
1.TEM的工作原理透射电子显微镜基于电子在物质中的相互作用来实现成像。
电子束从电子枪中产生并且通过一系列透镜系统聚焦形成细致的聚焦点,然后穿过待观察的样品。
透过样品的电子束会发生散射、吸收和透射,其中透射的电子会被接收器捕获并形成图像。
2.TEM的分辨率3.透射电子显微镜的成像方式TEM有两种主要的成像方式:亮场和暗场成像。
亮场成像是通过选择透射的电子束来形成图像,适用于展示样品内部的形貌和微结构。
而暗场成像是通过选择散射的电子束来形成图像,适用于观察特殊缺陷或异质性结构。
4.透射电子显微镜的样品制备为了在TEM中观察样品,样品必须具备一定的条件。
首先,样品必须是非透明的,通常是以薄片的形式。
其次,样品必须具备足够的稳定性,以避免在电子束照射过程中发生损坏。
最后,样品表面需要进行特定的处理,以避免电荷积累或散射。
5.TEM的应用透射电子显微镜在多个领域有着广泛的应用,包括材料科学、纳米科技、生命科学等。
它可以用于观察和分析晶体的结构、薄膜的成分、纳米颗粒的形状等。
此外,TEM还可以用于研究生物分子的结构和功能,例如蛋白质和DNA的高分辨率成像。
6.TEM的限制和挑战虽然透射电子显微镜提供了高分辨率的成像能力,但它仍然面临一些限制和挑战。
首先,样品制备对于薄片的制备和特殊标记的选择需要高度技术和经验的支持。
其次,电子束照射会导致样品的辐照损伤,因此图像的解释需要谨慎处理。
此外,TEM的设备本身非常昂贵,维护和操作也需要专业的技能。
总之,透射电子显微镜是一种重要的材料科学工具,它可以提供材料的超高分辨率成像,从而更好地理解材料的微观结构和性质。