第八章 椭球面元素归算至投影面——高斯投影
- 格式:ppt
- 大小:2.69 MB
- 文档页数:84
高斯投影原理高斯投影原理是地图投影中常用的一种方法,它是由德国数学家高斯在19世纪提出的。
高斯投影原理的基本思想是将地球表面上的经纬度坐标系投影到一个平面上,以便于制作地图和进行测量。
在实际应用中,高斯投影原理被广泛用于各种地图的制作和测量工作中。
高斯投影原理的核心是将地球表面上的三维坐标投影到一个二维平面上。
这种投影会引入一定的形变,但是可以通过适当的数学变换来减小形变的影响。
高斯投影原理的优势在于可以将地球表面上的曲线投影成直线或者近似直线,这样就方便了地图的制作和使用。
在高斯投影原理中,地球被看作是一个椭球体,而投影面通常是一个圆柱面或者圆锥面。
根据投影面的不同,高斯投影可以分为圆柱高斯投影和圆锥高斯投影两种。
在实际应用中,圆柱高斯投影常用于大范围的地图制作,而圆锥高斯投影常用于局部地图的制作。
高斯投影原理的具体数学表达可以通过一系列的数学公式来描述。
这些公式涉及到大量的数学知识,包括球面三角学、微积分、线性代数等。
通过这些数学公式,可以将地球表面上的经纬度坐标转换为平面坐标,或者将平面坐标转换为经纬度坐标。
在实际应用中,高斯投影原理需要考虑到地图的精度和形变的影响。
由于地球是一个椭球体,而不是一个完美的球体,因此在进行投影时需要考虑到椭球体的形状参数。
此外,由于地图投影会引入形变,因此需要通过一些数学手段来补偿这种形变,以保证地图的精度。
总的来说,高斯投影原理是地图投影中非常重要的一种方法。
它通过将地球表面上的经纬度坐标投影到一个平面上,方便了地图的制作和使用。
在实际应用中,需要考虑到地球的形状参数和形变的影响,以保证地图的精度。
通过高斯投影原理,我们可以更好地理解地图的制作和使用,为地理信息系统的发展提供了重要的理论基础。
当然会有变形了。
把一个球面三角形投影到平面上,哪能不变形呢?注意,这里的变形指得是长度变形,高斯投影是一种正形投影,投影后角度即形状不变,但是长度比是会发生变化的。
具体原理可以参考《地图学》,是通过微分几何来解释的。
这里的“投影”其实指一种点到点的映射关系(x,y)=f(X,Y,Z),其中(x,y)是“投影”后的点,(X,Y,Z)是被“投影”的点,而函数f 则是投影函数,是根据正形投影条件解得的一个复杂的数学表达式,并不能完全当作通常意义下的“投影”。
正是由于有这种变形,为了限制变形量的大小,才采用分带投影的方法,工程中施工地点属于哪一个投影带,就在那个带投影。
至于你说的坐标系,是可以通过换带公式对不同投影带之间的点进行转换,使之位于同一坐标系下的。
主要是将坐标纵轴西移500公里,保证了我国的横坐标恒为正,有3度投影和6度投影,但它们的坐标原点不同,要注意。
高斯坐标即高斯-克吕格坐标系(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。
德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。
该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。
投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。
设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。
将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。
取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
第八章 高斯投影地面-----椭球面-----平面熟悉,简单地图投影高斯—克吕格投影〔高斯投影〕高斯投影概述投影与变形所谓地球投影,简略说来就是将椭球面各元素〔包括坐标、方向和长度〕按一定的数学法则投影到平面上。
研究这个问题的专门学科叫地图投影学。
这里所说的数学法则可用下面两个方程式表示:),(),(21B L F y B L F x == (8-1)式中L ,B 是椭球面上某点的大地坐标,而y x ,是该点投影后的平面(投影面)直角坐标。
式(8-1)表示了椭球面上一点同投影面上对应点之间坐标的解析关系,也叫做坐标投影公式。
投影问题也就是建立椭球面元素与投影面相对应元素之间的解析关系式。
投影的方法很多,每种方法的本质特征都是由坐标投影公式F 的具体形式表达的。
椭球面是一个凸起的、不可展平的曲面,假设将这个曲面上的元素〔比方一段距离、一个角度、一个图形〕投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称作投影的变形。
地图投影必然产生变形。
投影变形一般分为角度变形、长度变形和面积变形三种。
在地图投影时,我们可根据需要使某种变形为零,也可使其减小到某一适当程度。
因此,地图投影中产生了所谓的等角投影〔投影前后角度相等,但长度和面积有变形〕、等距投影〔投影前后长度相等,但角度和面积有变形〕、等积投影〔投影前后面积相等,但角度和长度有变形〕等。
控制测量对地图投影的要求1.应采用等角投影〔又称正形投影〕。
这样①保证了在三角测量中大量的角度元素在投影前后保持不变,免除了大量的投影工作;②所测制的地图可以保证在有限的范围内使得地图上图形同椭球上原形保持相似,给国民经济建设中识图用图带来很大方便。
如图多边形,相应角度相等,但长度有变化,投影面上的边长与原面上的相应长度之比,称为长度比。
图中,EA A E AB B A m ''==''=即在微小范围内保证了形状的相似性,当ABCDE 无限接近时,可把该多边形看作一个点,因此在正形投影中,长度比m 仅与点的位置有关,与方向无关,给地图测制及地图的使用等带来极大方便。
第八章高斯平面直角坐标§1 正形投影的基本公式一、地图投影的概念1.投影的必要性及其方法①投影的必要性:测量工作的根本任务,是测定地面点的坐标和测绘各种地形图。
因:1)椭球面上计算复杂;2)地图是画在平面图纸上,故,有必要将椭球面上的坐标、方向、长度投影到平面上。
②投影的方法:按一定的数学法则,得到如下的解析关系(函数关系)x=F1(B,L)y=F2(B,L)式中B,L——椭球面上的大地坐标x,y——投影平面上的直角坐标按高斯投影方法得到的平面直角坐标x,y叫高斯平面直角坐标。
2.投影的分类椭球面是不可展开的曲面(圆柱,圆锥面是可展开曲面)。
若展开成平面,必产生变形。
投影按变形的性质可分为:等距离投影━投影后地面点见的距离不变等面积投影━保证投影后面积不变等角投影━投影后微分范围的形状相似3.测量采用的投影测量工作从计算和测图考虑,采用等角投影(又称正形投影、保角投影)。
其便利在于:1)可把椭球面上的角度,不加改正地转换到平面上。
(注:椭球面上大地线投影到平面上亦为曲线。
为实用,需将投影的曲线方向改正为两点间弧线方向,称方向改化。
方向改化是在平面上为实用而做的工作,非投影工作。
且:①改化小,公式简单;②只在等级控制改化,图根控制、测图不顾及)2)因微分范围内投影前后图形相似,则大比例尺图的图形与实地完全相似,应用方便。
二、正形投影1.正形投影的特性有微分三角形如图:对于保角投影:A′=A;B′=B;C′=C所以长度比 cc b b a a md d d d d d '='='=故,正形投影在一个点(微分范围)上,各方向长度比相同。
即投影后保持图形相似。
例如下图,对一个任意形状的微小图形,总可以取一个边数极多的中点多边形逼近它,对于正形投影:m obb o oa a o =='='但上述特点只在微分范围内成立。
在广大范围内,投影前后图形保持相似是不可能的(否则意味着椭球面可以展开)。