最新北师大版八年级数学上册1.1探索勾股定理学案(1)
- 格式:doc
- 大小:187.50 KB
- 文档页数:4
1.1探索勾股定理学科数学年级八年级授课班级主备教师参与教师课型新授课课题§ 1.1 探索勾股定理备课组长审核签名教研组长审核签名1、学习目标:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题2 •教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题3 •教学难点:验证勾股定理.、自主预习(感知)(1) 勾股定理的内容是_______________________(2) 直角三角形两边长为3和4,求第三边长(3) 、求出x的值二、合作探究(理解) 验证勾股定理点你现囁卜出图曲r“ 崗农门阻条讪]辿炳比孙孙为丸fic=4.( 祢研究这个首萌涵堆的潇型川?的丘的*:方是左%J-4-+72?拼图验证.准备的四个全等的直角三角形拼出正方形思考1:你能由图1表示大正方形的面积吗?能用两种方法吗?能由此得到勾股定理吗?2:你能由图2表示大正方形的面积吗?能用两种方法吗? 能由此得到勾股定理吗?3、请利用图3验证勾股定理a4、利用四个全等的直角三角形拼图验证勾股定理你还有哪些方法?5L I J 如腔近岬吐白印 一 7「1卅fl :l+T 磺込叩- 血山:鮎腔址內济」-lf (P 吃的川远心刊」.卫;平仅川"刿庄Jfl »« 9输门他—J4\ H 沐曲I I I-J n 州冶广i 和一一角JU 中I 耶一 r 汨为弄昭” i Y 「屮屮If 11J H- V?TN 呵、* ill I flIPj 勺:」;- 佑览T 皴出鹉ft frij S 俎.11! ) V 1 f » I Jfl ?1> All Ji ei . b. LP I I c. It ■码 d b -e< Ar 起Xi :-于吕 c! !'] ./' C ^j - 't!: i- \ i 口H ;- c'ri -h .吧ij 工v >;t 任J ico > :片丹”丫件”‘小-厂的 午护型「祢知托iht 放.*tV tcn !j ijIHAi'kdl bl J , t - 5; 5. 12, LMm S .. 15 . 17( 7 . 24, 2OL 20, 21 . 291 9. (0.LU …G#」抑|投i :^\ L Ifj f>绘f,',仍除;丄対以竝VII三、轻松尝试(运用)1飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方孩子头顶5000米,飞机每小时飞行多少千米? 2、 利用全等的办法证明勾股定理?3、 轮船从海中岛 A 出发,先向北航行 9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向 西航行6km,再折向北航行 2km,最后又向西航行 9km,到达目的地 B ,求AB 两地间的距离. 4、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?四、 拓展延伸(提高) 折叠长方形ABCD 勺一边AD 使点D 落在BC 边的F 点处,若 AB=8cm BC=10cm 求 EC 的长.五、 收获盘点(升华)六、 当堂检测(达标) 1. 若△ ABC 中,/ C=90°, (1 )若 a =5, b =12,则 c =右 a : b =3 : 4, c =10,贝 V a = , b = 2.直角三角形两直角边长分别为 5cm, 12cm,则斜边上的高为 3.等腰三角形的腰长为 13cm ,底边长为10cm,则面积为( ).4000米处,过了 20秒,飞机距离这个男;(2)若 a =6, c =10,则 b =E2 2 2 2A. 30 cmB. 130 cmC. 120 cmD. 60 cm学习反思:。
课题:1.1 探索勾股定理(1)教学目标:1.引导学生经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.引导学生探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力.教学重点:了解勾股定理的由来,并能用它来解决一些简单的问题.教学难点:勾股定理的发现.课前准备:多媒体课件、三角板.教学设计:一、创设情境,自然引入引导语:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500多年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理.师:(板书课题)1.1探索勾股定理(1)设计意图:问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题.学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了.这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”.二、设问质疑,合作探究探究一师:你能发现下图中等腰直角三角形ABC有什么性质吗?等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1.(图中每个小方格代表一个单位面积)正方形A 中含有______个小方格,即A 的面积是______个单位面积; 正方形B 中含有______个小方格,即B 的面积是______个单位面积; 正方形C 中含有______个小方格,即C 的面积是______个单位面积.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3生:我们从上面的图中更进一步验证了等腰直角三角形直角边的平方和等于斜边的平方.学生交流后形成共识,教师板书,A+B=C .师:原来著名的哲学家毕达哥拉斯,他在朋友家地板砖的启发下,也发现了这个结论. 并且还做了更为深入的研究,你知道是什么吗?生:等腰直角三角形有上述性质,其他的直角三角形是否也有这个性质呢? 师:的确如此,想知道结果吗?我们不妨寻着大哲学家的足迹,也做更深入的探究. 设计意图:通过让学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方,让学生亲历发现、探究结论的过程,也有利于培养学生的语言表达能力,体会数形结合的思想.探究二师:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A 、B 、C ,A′、B′、C′的面积,看看能得出什么结论.预设:生1:从图中不难观察出A 、B 两个正方形分别含有4个小方格和9个小方格; A′、B′ 两个正方形分别含有9个小方格和25个小方格.生2:正方形C 的面积可看作虚线标出的正方形的面积减去四个直角三角形的面积, 即5×5-4×12×2×3=13.所以正方形A 的面积+正方形B 的面积等于正方形C 的面积, 即4+9=13.生3: 用同样的方法计算C′的面积可得8×8-4×12×3×5=64-30=34.所以正方形A′的面积+正方形B′的面积=正方形C′ 的面积.师:三个正方形之间的面积关系能用直角三角形的三边关系表示吗?在同学的交流回答的基础上,师板书:勾股定理:勾股定理:直角三角形两直角边的平方和等于斜边的平方. 如果用a ,b 和c 分别表示直角三角形两直角边和斜边,那么a 2+b 2=c 2.设计意图:意在让学生在上面面积结论的基础上,进一步发现直角三角形三边关系,得到勾股定理.并能用自己的语言叙述出来. 使学生感受方法的技巧获得掌握知识的快感,这对于学生良好思维品质的形成有重要作用.数学小史:(投影出示)师:当时大哲学家也发现并进一步深入探究的也正是这个结论,看似平淡无奇的现象有时却隐藏着深刻的道理.我们也应该向大哲学家学习,认真体验生活,努力发现生活中存在的各种奥秘.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,中国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名. “勾三,股四,弦五” 正是直角三角形三边关系的重要体现.不仅如此,我们汉代的赵爽曾用2002年在北京召开的 国际数学家大会的徽标的图案如右图证明了此结论,也 正因为为了纪念这一伟大的发现而采用了此图案作徽标. 下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.设计意图:此处主要是让学生对数学的一些历史有所了解,并让他们知道,我国在数学的发展史上占有非常重要的作用,培养学生的爱国热情,激励他们更加努力的学习,争取长大后也能为国争光. 三、思维训练,应用新知例1 (投影出示)如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少?解:设树倒下部分的面积为x m∵树倒下后与地面正好构成一个直角三角形∴222912x=+225811442=+=x ∴15=x (m )∴大树在折断前的高度为:24915=+(m)例2 (投影出示)小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的?225100想法吗?你能解释这是为什么吗?解:我们通常所说的29英寸和74厘米的电视机,是指其荧屏的对角线的长度,而不是其荧屏的长和宽,同时,荧屏的边框遮盖了一部分,所以实际测量存在一些误差.设计意图:例题学习其目的是巩固新知,通过老师的扳演,强调格式步骤.通过引例的探究,让学生知道勾股定理在现实生活中的应用非常多,同时也让学生明白如何利用勾股定理来解题,尤其是解题过程如何书写.基础题型练习:1.求下列图形中未知正方形的面积或未知边的长度(口答)2.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从 一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米3.如图,在△ABC 中,cm AC AB 10==,AC BD ⊥于点D 且cm CD 2=,则BC的长是 ( )A .cm 6B .cm 5 C.cm D . 8cm4.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是 cm 2.设计意图:通过练习,进一步加深了学生对勾股定理的理解和应用,也让学生知道了如何运用所学知识服务于解题中来. 在这里通过具体的实际问题,使学生学数学、用数学的意识得到强化.使学生创造性的将数学知识应用于实践,并在实践中获得创造的成功感.更重要的是学生的创造性思维在实践中得到了锻炼. 四、交流心得,学习反思 1.你这节课的主要收获是什么?2.在探索和验证定理的过程中,我们运用了哪些方法?设计意图:梳理本节课的重要方法和知识点,加深对本节知识的理解.让学生在总结DA7cmCB第4题图的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧 解难让学生对知识形成正向迁移 .从而构建出合理的知识体系,养成良好的学习习惯. 五、达标检测,反馈矫正1. 已知三组数据:①2,3,4;②3,4,5;③5,12,13.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有 .(填序号)2.如图,△ABC 是等边三角形,cm AB 4 ,则BC 边上的高AD 等于 . 3. 如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为 A .600mB .500mC .400mD .300m4. 一直角三角形的两边长分别为3和4.则第三边的长的平方为( ) A .25 B .7 C .5 D .25或75.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.设计意图:本节课主要任务是探索勾股定理,所以检测设计三个较为简单的题目,可以提升学生学习信心,培养学生的学习兴趣.及时反馈,了解学生对本节课知识的掌握情况,让学生在独立自主解答问题的过程中,进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.教师要及时巡视,根据学生的完成情况有针对性的进行讲解. 六、布置作业,落实目标 必做题:P 7 第1、2、3 题.选做题:印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.注:花离原位二尺远指两花之间的距离.设计意图:A组题目为必做题,一方面可以了解学生对本节课所学内容的掌握情况,同时也可以培养学生快速准确解答问题的能力. B组问题为学有余力的同学设计,努力使每个学生在课堂上都有所发展,也充分利用课堂时间提高了优秀生解决问题的能力,如课上不能完成,可作为课后作业 ,分层次布置作业,使不同层次的学生得到不同的发展. 板书设计:。
北师大版八年级数学上册:1.1《探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容是八年级数学上册的开篇,主要让学生了解勾股定理的证明过程,培养学生的逻辑思维能力和探索精神。
教材通过引入古希腊人证明勾股定理的故事,引导学生学习运用几何图形和数学逻辑来证明这个重要的数学定理。
二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,对几何图形的认知和推理能力有所提高。
但勾股定理的证明过程涉及到较复杂的逻辑推理,对学生来说是一个较大的挑战。
因此,在教学过程中,需要关注学生的学习反馈,适时给予引导和帮助。
三. 教学目标1.让学生了解勾股定理的证明过程,理解并掌握勾股定理的证明方法。
2.培养学生的逻辑思维能力和探索精神,提高学生运用几何图形和数学逻辑解决问题的能力。
3.激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 教学重难点1.勾股定理的证明过程及证明方法的掌握。
2.逻辑推理能力的培养,如何将问题转化为几何图形进行证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生思考和探索勾股定理的证明过程。
2.运用几何图形和数学逻辑,进行直观演示和推理,帮助学生理解和掌握勾股定理。
3.分组讨论和合作探究,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学材料,如PPT、黑板、几何图形等。
2.设计好教学问题和活动,准备好相关的解答和反馈。
七. 教学过程1.导入(5分钟)通过引入古希腊人证明勾股定理的故事,激发学生的学习兴趣,引导学生思考和探索勾股定理的证明过程。
2.呈现(10分钟)呈现勾股定理的证明过程,运用几何图形和数学逻辑进行直观演示和推理。
在此过程中,关注学生的学习反馈,适时给予引导和帮助。
3.操练(10分钟)学生分组讨论和合作探究,运用几何图形和数学逻辑尝试证明勾股定理。
教师巡回指导,解答学生的问题,并提供反馈。
4.巩固(10分钟)针对学生的证明过程,进行总结和点评,帮助学生巩固所学内容。
1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
课题1、1探索勾股定理教材义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发 展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理 数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发 现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
授课教师:刘洋 教学目标1、 知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历 用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻 辑推理过程。
2、 能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际 问题中掌握勾股定理的应用技能。
3、 情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。
使学生从经历定理探索的过程中,感受数学之美,探究之趣。
教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。
难点:计算以斜边为边长的大正方形 C 面积及割补思想的理解与应用 教学方法选择引导探索法,采用 问题情境----建立模型----解释、应用与拓展”的模式进行教学教具准备多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张 教学过程仓U 设情境,弓I 入新课(师)请同学们观察动画,我国科学家曾向太空发射勾股图 试图与外星人沟通,在2002年的国际数学家大会上采用弦图 作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的 奥妙呢?这节课我就带领大家一起探索勾股定理。
(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以 景激情,以情激思,引领学生进入学习情境。
) 师生互动,探究新知活动1:(观察图1)你知道正方形C 的面积是多少吗? 你是怎样得出上面结果的呢?(生)独立思考后交流,采用直接数方格的办法,或者是 分割成几个等腰直角三角形的方法计算正方形 C 的面积。
新版数学北师大版精品资料勾股定理一、内容及其分析本节课要学的内容是探索勾股定理,指的是在实际问题中探究出直角三角形的三边关系,其核心是直角三角形的三边关系,理解它关键就是要直角三角形的形成。
学生已经学过直角三角形的两边之和大于第三边,本节课的内容三边关系就是在此基础上的发展的。
由于它还与代数的联系,所以在本学科有很重要的地位,是本学科某部分内容)的核心内容。
教学的重点是探索勾股定理,解决重点的关键是从实际问题中寻找出直角三角形的三边关系。
二、目标及其解析1、了解勾股定理的内容;2、了解勾股定理的简单运用;三、问题诊断与分析在本节课的教学中,学生可能遇到的问题是难以理解三边关系,产生这一问题的原因是对图形的认识还不到位。
要解决这一问题,就要在实际问题中探究(如数格子、计算的方法),其中关键是要懂得计算的方法。
四、教学支持条件分析在本节课在问题1的教学中使用图片,准备使用课件。
因为使用幻灯片,有利于学生直观的理解直角三角形的三边关系及凝聚他们的注意力。
五、教学过程设计:本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.问题一:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.设计意图:紧扣课题,自然引入,同时渗透爱国主义教育.问题2:探索发现勾股定理1.探究活动一:问题二:(1)投影显示如图1地板砖示意图,让学生初步观察:(2)以图2引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.设计意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 问题二:问题1:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图2 图3(4)分析填表的数据,你发现了什么?结论 2 : 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.设计意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2.问题三:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?如果直角三角形两直角边长分别为a 、b ,弦股勾斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.设计意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.通过作图培养学生的动手实践能力.问题三:勾股定理的简单应用例1: 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少? 练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 设计意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容. 问题四:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法. 3.思想:① 特殊—一般—特殊;② 数形结合思想.设计意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识. 问题五:布置作业作业: 1.教科书习题1.1;2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是 否满足222c b a =+.设计意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件,学生进一步加强对本课知识的理解和掌握. 六、本课小节本节课主要探究了勾股定理的证明过程,让学生回答总结。
1.1探索勾股定理(第一课时)一、教学内容教材:北师大版九年制义务教育课程标准实验教科书八年级数学上册第一章第一节探索勾股定理第一课时二、教材分析教材所处的地位勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课选择引导探索法,发现法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
学法分析:采用自主探索、合作交流的研讨式学习方式,通过数格子、拼图等方法探索、验证勾股定理,使学生在经历观察、归纳、猜想的过程中,体会获取知识的途径。
借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、根据课程标准,本课的教学目标●知识与技能1.体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理.2.会利用勾股定理解释生活中的简单现象.●过程与方法1.在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想.2.在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力.●情感与价值观要求1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气.3.通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
四、教学重点:探索勾股定理五、教学难点:在方格纸上通过计算面积的方法探索勾股定理.●教学重点探索和验证勾股定理.●教学难点在方格纸上通过计算面积的方法探索勾股定理.●教学方法交流—探索—猜想.---验证——发现等教学法通过数格子、拼图等方法探索验证勾股定理,使学生在经历观察、归纳、猜想的过程中,体会获取知识的途径。
北师大版八年级数学上册:1.1《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是北师大版八年级数学上册第一章《几何初步》的第一节内容。
本节内容通过探究直角三角形三边的关系,引入勾股定理,是学生学习几何的重要基础。
教材以我国古代数学家赵爽的弦图作为探究勾股定理的载体,让学生经历探究过程,感悟数学的证明过程,体会数形结合的数学思想。
二. 学情分析学生在七年级已经学习了相似三角形的性质,能够识别直角三角形,并了解其性质。
但对于证明勾股定理,他们可能还没有直观的感受。
因此,在教学过程中,需要引导学生通过实际操作,逐步理解并证明勾股定理。
三. 教学目标1.了解勾股定理的发现过程,感受数学家探索勾股定理的艰辛。
2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。
3.培养学生的观察能力、操作能力、推理能力,提升学生解决问题的能力。
四. 教学重难点1.重点:勾股定理的证明过程。
2.难点:理解并证明勾股定理。
五. 教学方法采用问题驱动法、合作学习法、数形结合法等教学方法,引导学生通过观察、操作、推理等过程,探索并证明勾股定理。
六. 教学准备1.准备相关的教学课件、视频等教学资源。
2.准备直角三角形模型、拼图等教具。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,为新课的学习做好铺垫。
例如:什么是直角三角形?直角三角形有哪些性质?2.呈现(10分钟)展示勾股定理的背景知识,介绍赵爽的弦图,让学生了解勾股定理的来源。
同时,提出探究问题:如何证明勾股定理?3.操练(15分钟)让学生分组进行讨论,每组尝试用拼图或者模型来证明勾股定理。
教师巡回指导,引导学生发现证明勾股定理的关键。
4.巩固(10分钟)学生汇报各自的证明过程,教师点评并总结。
同时,让学生回答一些与勾股定理相关的问题,加深对勾股定理的理解。
5.拓展(10分钟)让学生运用勾股定理解决实际问题,例如:计算一个直角三角形的两条直角边长。
探索勾股定理(第1课时)教学设计发布时间:2023-01-01T14:47:15.561Z 来源:《比较教育研究》2022年12月作者:李春枝[导读]李春枝中卫市第五中学宁夏中卫 755000中图分类号:G652.2 文献标识码:A 文章编号:ISSN1003-7667(2022)12-028-02一、教材分析(一)教材的地位与作用本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
(二)教学目标【知识与技能】:1、了解利用拼图验证勾般定理的方法,理解勾股定理反映的直角三角形的三边之间的数量关系。
2、会初步运用勾股定理进行简单的计算和实际运用。
【过程与方法】:让学生经历“观察—猜想—归纳—验证”,体会用数格子(或割、补、拼等)的办法体验勾股定理的探索过程。
【情感与态度】:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究激发学生热爱祖国悠久文化的情感,激励学生发奋学习。
2、在探素勾股定理的过程中,体验获得成功的快乐;锻炼克服困难的勇气,培养合作意识和探素精神。
3、在勾股定理的探素过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。
(三)数学重、难点【教学重点】:勾股定理的内容及应用。
【教学难点】:探索勾股定理。
二、学情分析八年级学生已经具备一定的观察、归纳、探索和推理的能力。
在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够。
部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”。
此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强。
第一章 勾股定理 1.1探索勾股定理一、问题引入:(1)观察下面下图,若每个小正方形的面积为1,则第①个图中,A S = ,B S = ,C S = . 第②个图中,A S = ,B S = ,C S = .三个正方形A 、B 、C 的面积之间有什么关系?以上结论与三角形三边有什么关系? 通过这种关系你发现了什么?勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么 即直角三角形 的平方和等于 的平方. 二、基础训练:1、如图(1),图中的数字代表正方形的面积,则正方形A 的面积为 .(1) (2)2、如图(2),三角形中未知边x 与y 的长度分别是x = ,y = .3、在Rt△ABC 中,∠C=90°,若AC =6,BC =8,则AB 的长为( )A.6B.8C.10D.12ABCCBA257三、例题展示:例1:在△ABC 中,∠C=90°,(1)若a =3,b=4,则c=_____________; (2)若a =9,c=15,则b=______________;例2:如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?(提示:用数学符号去表示线段的长)四、课堂检测:1、在Rt △ABC 中,∠C =90°,若AB =13,BC =5,则AC 的长为( )A.5B.12C.13D.182、已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( )A.24cm 2B.36cm 2C.48cm 2D.60cm 23、若△ABC 中,∠C=90°,(1)若a =5,b =12,则c = ;(2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4, c =10,则a= ,b = .4、如图,阴影部分是一个半圆,则阴影部分的面积为 . (π不取近似值)第4题图5、一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长.6、(选做题)一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端向外滑动了多少米?第一章勾股定理1.2 一定是直角三角形吗一、问题引入:1、分别以下列每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?(1)3, 4, 5 (2)6, 8, 102、以上每组数的三边平方存在什么关系?结合上题你能得到什么结论?3、如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.4、满足a2+b2=c2的三个,称为勾股数.二、基础训练:1、在下列长度的各组线段中,能组成直角三角形的是()A. 5,6,7B. 1,4,9C. 5,12,13D. 5,11,122、下列几组数中,为勾股数的是()A. 4,5,6B. 12,16,20C. 10,24,26D. 2.4,4.5,5.13、若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是()A.42B.52C.7D.52或74、将直角三角形的三边扩大同样的倍数,得到的三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .都有可能三、例题展示:例1:一个零件的形状如下左图所示,按规定这个零件中∠A和∠DBC都是直角,工人师傅量得某个零件各边尺寸如下右图所示,这个零件符合要求吗?例2:如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形?请说出你的判断理由.四、课堂检测:1、三角形的三边分别等于下列各组数,所代表的三角形是直角三角形的是()A. 7,8,10B. 7,24,25C. 12,35,37D. 13,11,102、若△ABC的三边a、b、c满足(a-b)(2a+2b-2c)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3、满足下列条件的△ABC,不是直角三角形的是()A. b2 =c2-a2B. a∶b∶c=3∶4∶5C.∠C =∠A+∠BD.∠A∶∠B∶∠C =2∶3∶44、若三角形的三边之比为3﹕4﹕5,则此三角形为三角形.5、已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为 .6、如图所示,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,∠B与∠C相等吗?为什么?7、(选做题)若△ABC的三边长为a,b,c满足a2+b2+c2+200=12a+16b+20c根据条件判断△ABC的形状.第一章勾股定理1.3 勾股定理的应用一、问题引入:1、勾股定理:直角三角形两直角边的 等于 .如果用a ,b 和c 表示直角三角形的两直角边和斜边,那么 .2、勾股定理逆定理:如果三角形三边长a ,b ,c 满足 ,那么这个三角形是直角三角形. 二、基础训练:1、在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积等于( )A.108cm 2B.90cm 2C.180cm 2D.54cm 22、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)三、例题展示:例1:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?π的值取3)。
第一章勾股定理研学案 §1.1探索勾股定理(1)
备课时间:第一周 上课时间:第一周
学习目标:
体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之 间的数量关系,会初步运用勾股定理进行简单的计算和实际运用. 重点:体验勾股定理的探索过程。
难点:理解勾股定理反映的直角三角形的三边之间的数量关系 学习过程: 课前热身:
2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.
自主学习:探究活动一: (1)引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以
斜边为边长的正方形的面积.
探究活动二:
由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:
(2)填表:
(3)你是怎样得到正方形C 的面积的?与同伴交流.
(4)分析填表的数据,你发现了什么?
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 3.议一议:
(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?
(3
)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理
如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么
222c b a =+.
即直角三角形两直角边的平方和等于斜边的平方.
例 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?
练习:1、基础巩固练习:
弦股
勾
(口答)求下列图形中未知正方形的面积或未知边的长度:
2、生活中的应用:
小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什吗? 归纳总结:
1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?
知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,
那么222c b a =+.
方法:① 观察—探索—猜想—验证—归纳—应用;
② 面积法; ③ “割、补、拼、接”法. 思想: 特殊—一般—特殊; 一分钟记忆:勾股定理 反馈检测:
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为__________米.
2.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离为__________m .
C
B
?
225
100
x
17
3
( 不取近似值)
4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为____________ 布置作业
A组:本学案检测题
B组、C组:教材11页习题1.2 1、2
教学反思
教师反思:
勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.
学生反思:。