Unit 9 Suspension and Steering System
- 格式:ppt
- 大小:2.17 MB
- 文档页数:15
汽车维修保养养护专业英语词汇Automotive Maintenance Professional English VocabularyAutomobile maintenance is an essential aspect of owning a vehicle. Regular upkeep and care can help ensure the longevity and performance of your car. In order to properly communicate with mechanics and technicians during maintenance and repairs, it is important to have a good understanding of professional English vocabulary related to automotive maintenance. In this article, we will explore some key terms and phrases that are commonly used in the field of automotive maintenance.1. Engine ComponentsOne of the most crucial aspects of automotive maintenance is the engine. Here are some important terms related to engine components:- Spark plug: A device that ignites the air-fuel mixture in the combustion chamber- Piston: A cylindrical component that moves up and down in the cylinder- Crankshaft: Converts the linear motion of the piston into rotational motion- Camshaft: Controls the opening and closing of the engine valves- Fuel injector: Delivers fuel into the combustion chamber2. Electrical SystemThe electrical system in a vehicle is responsible for providing power to various components. Here are some key terms related to the electrical system:- Battery: Stores electrical energy for starting the engine and powering electrical components- Alternator: Converts mechanical energy into electrical energy to charge the battery- Starter motor: Turns the engine to start the combustion process- Fuse: Protects the electrical system from overloads by breaking the circuit3. Suspension and SteeringThe suspension and steering systems are vital for ensuring a smooth and stable ride. Here are some important terms related to suspension and steering:- Shock absorber: Dampens the impact of road irregularities to provide a smooth ride- Strut: Structural component that supports the suspension system- Tie rod: Connects the steering rack to the steering knuckle- Power steering: Assists the driver in turning the steering wheel4. Brake SystemThe brake system is essential for stopping the vehicle safely. Here are some key terms related to the brake system:- Brake pads: Friction materials that press against the brake rotors to stop the vehicle- Brake caliper: Holds the brake pads and applies pressure to them- Brake rotor: Rotating disc that the brake pads press against to stop the vehicle- ABS (Anti-lock Braking System): Prevents wheel lock-up during sudden braking5. Maintenance and ServicingRegular maintenance and servicing are necessary to keep a vehicle running smoothly. Here are some common terms related to maintenance and servicing:- Oil change: Replacing the engine oil and oil filter- Tune-up: Adjusting or replacing ignition components for optimal engine performance- Wheel alignment: Adjusting the angles of the wheels to ensure proper contact with the road- Fluid flush: Replacing old fluids in the transmission, brakes, and cooling systemBy familiarizing yourself with these professional English vocabulary terms related to automotive maintenance, you will be better equipped to communicate with mechanics and technicians, as well as understand the work being done on your vehicle. Proper communication and understandingof automotive maintenance terminology can help ensure that your vehicle receives the care and attention it needs to stay in good condition.。
外文文献(二)外文原文Abstract:To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of -10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle. Keywords:vehicle suspension; vehicle steering; riding qualities; independent double-wishbone suspension; kinematic characteristic parameter; wheel-center distance; front-wheel sideways slippage1 IntroductionThe function of a suspension system in a vehicle is to transmit all forces and moments exerted on the wheels to the girder frame of the vehicle, smooth the impact passing from the road surface to the vehicle body and damp the impact-caused vibration of the load carrying system. There are many different structures of vehicle suspension, of which the independent double-wishbone suspension is most extensively used. An independent double-wishbone suspension system is usually a group of space RSSR (revolute joint - spherical joint -spherical joint - revolute joint) four-bar linkage mechanisms. Its kinematic relations are complicated, its kinematic visualization is poor, and performance analysis is very difficult. Thus, rational settings of the position parameters of the guiding mechanism are crucial to assuring good performance of the independent double-wishbone suspension. The kinematic characteristics of suspension directly influence the service performance of the vehicle, especially steering stability, ride comfort, turning ease, and tire life.In this paper, we used ADAMS software to build a kinematic analysis model of an independent double-wishbone suspension, and used the model to calculate and optimize the kinematic characteristic parameters of the suspension mechanism. The optimization results are helpful for improving the kinematic performance of suspension.2 Modeling independent double-wishbone suspensionThe performance of a suspension system is reflected by the changes of wheel alignment parameters when the wheels jump. Those changes should be kept within rational ranges to assure the designed vehicle running performance. Considering the symmetry of the left and right wheels of a vehicle, it is appropriate to study only the left or the right half of the suspension system to understand the entire mechanism, excluding the variation of WCD (wheel center distance). We established a model of the left half of an independent double-wishbone suspension system as shown in Figure 1.3 Kinematic simulation analysis of suspension modelConsidering the maximum jump height of the front wheel, we positioned the drives on the translational joints between the ground and the test platform, and imposed random displacement excitations on the wheels to simulate the operating conditions of a vehicle running on an uneven road surface.The measured road-roughness data of the left and right wheels were converted into the relationship between time and road roughness at a certain vehicle speed. The spline function CUBSPL in ADAMS was used to fit and generate displacement-time history curves of excitation. The simulation results of the suspension system before optimization are illustrated in Figure 2.The camber angle, the toe angle, the caster angle and the inclination angle change only slightly within the corresponding designed ranges with the wheel jumping distance. This indicates an under-steering behavior together with an automatic returnability, good steering stability and safety in a running process. However, WCD decreases from 1 849.97 mm to 1 896.98 mm and FWSS from 16.48 mm to -6.99 mm, showing remarkable variations of 47.01 mm and 23.47 mm, respectively. Changes so large in WCD and FWSS are adverse to the steering ease and straight-running stability, and cause quick wear, thus reducing tire life.For independent suspensions, the variation of WCD causes side deflection of tires and then impairs steering stability through the lateral force input. Especially when the right and the left rolling wheels deviate in the same direction, the WCD-caused lateral forces on the right and the left sides cannot be offset and thus make steering unstable. Therefore, WCD variation should be kept minimum, and is required in suspension design to be within the range from -10 mm to 10 mm when wheels jump. It is obvious that the WCD of non-optimized structure of the suspension system goes beyond this range. The structure needs modifying to suppress FWSS and the change of WCD with the wheel jumping distance.ADMAS software is a strong tool for parameter optimization and analysis. It creates a parameterization model by simulating with different values of model design variables, and then analyzes the parameterization based on the returned simulation results and the final optimization calculation of all parameters. During optimization, the program automatically adjusts design variables to obtain a minimum objective function [8-10]. To reduce tire wear and improve steering stability, the T able 1 V alues of camber angle α , toe angle θ , caster angle γ and inclination angle β before and after optimizationTable 1 The data tables of optimize the results4 ConclusionsThe whole kinematic simulation model of an independent double-wishbone suspension system built by using ADAMS software with the left and the right suspension parts under random excitations can improve the calculation precision by addressing the mutual impacts of kinematic characteristic parameters of the left and the right suspension parts under random excitations. The optimization can overcome the problem of the too large variation of WCD and overly large FWSS with the wheel jumping distance. The kinematic characteristic parameters of the suspension system reach an ideal range, demonstrating that the optimization protocol is feasible. From a practical perspective, the optimization is expected to reduce tire wear, and remarkably improve suspension performance and vehicle steering stability.Figure 1 simple picture of suspensionFigure 2 Curve with the parameters of the suspension译文摘要:为了提高轻型车辆性能和行驶稳定,我们使用ADAMS 软件建立一个独立双横臂悬架系统运动仿真模型,并建立随机激励的测试平台,根据车辆实际运行条件,探讨悬架的运动学特征参数的变化。
汽车专业英语读译教程(第3版)TEXT B课后练习题(EXERCISES)参考答案UNIT 1 AUTOMOTIVE BASICSTEXT B Automobile's History/ ・ Translate the following English names of car makers into Chinese:1.General Motors Corporation 通用汽车公司2.Ford Motor Co.福特汽车公司3.Chrysler Motors Corporation 克莱斯勒汽车公司4.Toyota Motor Corporation 丰田汽车公司5.Nissan Motor Co. Ltd.日产汽车公司6.Honda Motor Co. Ltd.本田汽车公司7.Mitsubishi Motors Corporation 三菱汽车公司8.Mercedes-Benz AG梅赛德斯-奔驰汽车公司9.BMW AG宝马汽车公司10.Volkswagen AG群众汽车公司11.Audi AG奥迪汽车公司12.Suzuki Motor Corporation 铃木汽车公司13.Isuzu Motors Ltd.五十铃汽车公司14.Mazda Motor Corporation 马自达汽车公司15.Volvo Car Corporation 沃尔沃轿车公司16.Volvo Bus Corporation 沃尔沃巴士公司17.Porsche AG保时捷汽车公司//. Translate the following English names of cars into Chinese:1.Chevrolet Corvette; Buick Century; Cadillac Deville 雪佛兰克尔维特;别克世纪;凯迪拉克德维尔2.Ford Mustang; Ford Mendeo; Lincoln Town Car 福特野马;福特蒙迪欧;林肯城市3.Dodge Caravan; Jeep Grand Cherokee; New Yorker 道奇捷龙;吉普大切诺基;纽约人ndcruiser; Camry; Crown; Lexus陆地巡洋舰;凯美瑞;皇冠;雷克萨斯1.What are the advantages of continuously variable transmission?Because there are no gears to tie a given road speed directly to a given engine speed, the CVT can vary the engine speed as needed to access maximum power as well as maximum fuel efficiency. This allows the CVT to provide quicker acceleration than a conventional automatic or manual transmission while delivering superior fuel economy.2.What are the main components of automated manual transmission?Transmission control ECU, clutch activator, transmission actuator, operators, and sensorsII. Translate the following paragraph into Chinese :The basic technical criteria for continuously variable transmissions are size, weight, transmission-ratio range, transfer efficiency, noise emissions and installation possibilities. With regard to these aspects, mechanical continuously variable transmissions, in the form of chain-driven transmission, have provided the best results so far.评判无级变速器的基本技术标准是尺寸、重量、传动比范围、传动效率、噪声排放和安装可能性。