北京市2018年中考数学二模试题汇编选择第8题无答案_174
- 格式:doc
- 大小:3.74 MB
- 文档页数:6
门头沟区2018年初三年级综合练习(二)数 学 试 卷 2018.6一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在2018政府工作报告中,总理多次提及大数据、人工智能等关键词, 经过数年的爆发式发展,我国人工智能在2017年迎来发展的“应用元年”,预计2020年中国人工智能核心产业规模超1500亿元,将150 000 000 000用科学计数法表示应为A .1.5×102B .1.5×1010C .1.5×1011D .1.5×1012 2.如果代数式221x x -+的结果是负数,则实数x 的取值范围是 A .2x > B .2x < C .1x ≠- D .21x x <≠-且3. 下列各式计算正确的是A .3423a a a +=B .236a a a ⋅=C .624a a a ÷= D .238()a a =4.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO 的度数为A .24︒B .48︒C . 60︒D . 72︒5.右图所示的图形,是下面哪个正方体的展开图 A . B .C .D .6.数轴上分别有A 、B 、C 三个点,对应的实数分别为a 、b 、c 且满足,a c >,0b c ⋅<,则原点的位置A .点A 的左侧B .点A 点B 之间C .点B 点C 之间D .点C 的右侧7. 如图,已知点A ,B ,C ,D 是边长为1的正方形的顶点,连接任意两点均可得到一条线段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,取到长度为1的线段的概率为B OA cb a A B CC ABE DOA .14 B .13C .12D .23 8.某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,下图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x 代表的是最快的选手全程的跑步时间,y 代表的是这两位选手之间的距离,下列说不合理的是 A .出发后最快的选手与最慢的选手相遇了两次;B .出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短;C .最快的选手到达终点时,最慢的选手还有415米未跑;D .跑的最慢的选手用时446′″.二、填空题(本题共16分,每小题2分) 9.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是______. 10. 写出一个不过原点,且y 随x 的增大而增大的函数_________. 11. 如果23410a a +-=,那么2(21)(2)(2)a a a +--+的结果是 .12.某生产商生产了一批节能灯,共计10000个,为了测试节能灯的使用寿命(使用寿命大于等于6000小时为合格产品),从中随机挑选了100个产品进行测试,有5个不合格产品,预计这批节能灯有_________个不合格产品.13. 如图,⊙O 的直径CD 垂直弦AB 于点E , 且CE =2,AB =8,则OB 的长为________.14. 某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元? 设西游记每套x 元,可列方程为_____________________.15. 如图:已知Rt ABC ∆,对应的坐标如下, 请利用学过的变换(平移、旋转、轴对称)知识 经过若干次图形变化,使得点A 与点E 重合、 点B 与点D 重合,写出一种变化的过程_____.16. 以下是通过折叠正方形纸片得到等边三角形的步骤 取一张正方形的纸片进行折叠,具体操作过程如下: 第一步:如图,先把正方形ABCD 对折,折痕为MN ;y xC OAB 446(′″, 15)yxED CBA OE PM AD第二步:点E 在线段MD 上,将△ECD 沿EC 翻折,点D 恰好落在MN 上,记为点P ,连接BP 可得△BCP 是等边三角形问题:在折叠过程中,可以得到PB=PC ; 依据是________________________.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26、27题7分,第28题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:()0323232cos30π-+-+-+︒.18. 解不等式组:30229+2.xx x ⎧-⎪⎨⎪+⎩≤,≤4()19.已知:如图,在Rt △ABC 中,∠C =90°,点D 在CB 边上,∠DAB =∠B ,点E 在AB 边上且满足∠CAB =∠BDE . 求证: AE =BE .20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x=(k ≠0)的图象相交于点(2,2)M .(1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例 函数ky x=的图象相交于点1(,)A x b 、2(,)B x b , 当12x x <时,画出示意图并直接写出a 的取值范围.21.如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥ BC ,DE ∥AC ,延长GE 至点F ,使得BF =BE .(1)求证:四边形BDEF 为平行四边形;(2)当∠C =45°,BD =2时,求D ,F 两点间的距离.22.已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且212y ax x =-,求这个函数的表达式.DECBA F D GCA B E yxM (2,2)O23.如图,BC 为⊙O 的直径,CA 是⊙O 的切线,连接AB 交⊙O 于点D ,连接CD ,∠BAC 的平分线交BC 于点E ,交CD 于点F . (1)求证:CE =CF ; (2)若BD =43DC ,求DF CF的值.24. 在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。
北京市西城区2018年初三二模试卷数 学 2018. 6下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2018年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数 D.方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y与时间x的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 . 11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =,作EF AB ⊥,交BA 的延长线于点F .(1)求tan ABD ∠的值; (2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点, AD 交BC 于点E ,连结AB . (1)求证:2AB AE AD =⋅; (2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB , E 为AC 的中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF 和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1;当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).北京市西城区2018年初三二模试卷数学答案及评分标准 2018.6二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解:原式=112- ……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1. 在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分解得2k <. ……………………………………………………………………2分(2)∵2k<,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x =,得2x ==-±.…………5分 ∴ 1222x x =-+=-16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分 点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分)19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分 ∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分 答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3) ∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB , ∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形.∵4CD =,∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==,∴ ∠DAB =∠CBA ,DM=CN .∴ △ADM ≌△BCN .又∵10AB =,∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3,∴4DM =.∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒,∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF .∵ DE BD =,∴ 12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分 ∴ AB AD AE AB=. ∴ 2AB AE AD =⋅.………………………………………………………3分(2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠===, ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒.∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒.∴ ∠F =18060DEF EDF ︒-∠-∠=︒.∴ △DEF 是等边三角形.∴ EF = DE 5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分23.解:(1)=,>,<.……………………………………………………………………3分(2)2c a.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2y ax bx c =++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2c a ,B (2,0) 两点. ∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2c a<0<2,即点A 在点B 左侧.………………………5分 设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数.∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22c m a <<.∴5572c m a +<+<,即572N c x a+<<. 以下判断52c a +与B x 的大小关系: ∵ 42a b c ++=0,a >b ,a >0,∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a +-+-+-=+-===>. ∴B x ac >+52. ∴ 52N B c x x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大,∴B N y y >,即0y >.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………3分 ∵ BF=t ,PF=2t ,DF =8,∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD .即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形. (3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=,384D H D F F H t =-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG ∵ 2DP DF t +=,∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合. (4)当0<t ≤4时,点P 在DF 边上运动(如图6),t a n 2PF PBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS ∠=. 可得10(28)182PE DE DP t t =-=--=-.此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS . ∴ 728tan 1124PS t PBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨<≤⎪-⎩ (以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C.………………………………………………………3分(2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +, C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G ,两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE= ∴ m=4. ……………………………4分∵ D恰为抛物线212y x m k =-++的顶点, 它的顶点横坐标为, ∴=.解得k=1.此时抛物线的解析式2143y x x =-+. …………………………………5分 此时D ,E两点的坐标分别为D,E . ∴OD =OE =∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为1E ,E3. 设直线13E E 的解析式为y ax b =+(a ≠0).则1,3.a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E的解析式为2m y =-. ……………………………………7分 可得直线13E E 与y 轴正方向的夹角为60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +, 由勾股定理得13D D =4,13E E =4.∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛- ∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅= ∴1331134D D E E S D D AQ =⨯==四边形.…………………………8分。
数学试卷 2018.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 如图所示,a ∥b ,直线a 与直线b 之间的距离是 A .线段P A 的长度 B .线段PB 的长度C .线段PC 的长度D .线段CD 的长度2. 将某不等式组的解集1-≤x <3表示在数轴上,下列表示正确的是3. 下列运算中,正确的是A .22456x x x +=B .326x x x ⋅=C . 236()x x =D .33()xy xy = 4.下列实数中,在2和3之间的是A . πB .π2-C .D .5. 一副直角三角板如图放置,其中∠C =∠DFE = 90︒,∠A = 45︒, ∠E = 60︒,点F 在CB 的延长线上.若DE ∥CF , 则∠BDF 等于A .35︒B .30︒C .25︒D .15︒ 6. 中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距 离AB 的示意图中,记照板“内芯”的高度为 EF . 观测者的眼睛(图中用点C 表示)与BF 在同一水 平线上,则下列结论中,正确的是A .EF CF AB FB = B .EF CFAB CB=C .CE CFCA FB = D .CE CF EA CB=7. 在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:A .这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 8.如图1所示,甲、乙两车沿直路同向行驶, 车速分别为20 m/s 和v (m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲 车时,两车都停止行驶.设x (s)后两车相距y (m),y 与x 的函数关系如图2所示.有以下 结论:①图1中a 的值为500; ②乙车的速度为35 m/s ;③图1中线段EF 应表示为5005x +;④图2中函数图象与x 轴交点的横坐标为100.其中所有的正确结论是A .①④B.②③ C.①②④ D .①③④二、填空题(本题共16分,每小题2分)9. x 的取值范围是 .10.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为 .11. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .12.某校“百变魔方”社团为组织同学们参加学校科技节的 “最强大脑”大赛,准备购买A ,B 两款魔方.社长发现 若购买2个A 款魔方和6个B 款魔方共需170元,购买 3个A 款魔方和购买8个B 款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B 款魔方的单 价为y 元,依题意可列方程组为 .抛物线232y x =+.请你写出一种平移方法. 答: .15. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.16. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,(3,0)A -,(4,0)B ,边AD 长为5. 现固定边AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为D '),相应地,点C 的对应点C '的坐标为 .三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)17.计算:06cos60(π2)2︒-.18.解方程:1322x x x+=--.19. 如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,66A ∠=︒,90ABC ∠=︒,BC= AD ,求∠C 的度数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷⎪++⎝⎭,其中5x =-.21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE . (1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.22.阅读下列材料: 材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23.如图,在平面直角坐标系xOy中,函数myx=(0x<)的图象经过点(4,)A n-,AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8. (1)求m,n的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.24.如图,AB 是⊙O 的直径,C 是圆上一点,弦CD ⊥AB 于点E ,且DC=AD .过点A 作⊙O 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G . (1)求证:FG 与⊙O 相切; (2)连接EF ,求tan EFC ∠的值.25.阅读下面材料:已知:如图,在正方形ABCD 中,边1AB a =.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:① ;② ; ③ ;④ ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.27. 如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α (0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明; (2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”QL 的取值范围是.0≤L Q D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)北京市西城区2018年九年级模拟测试数学试卷答案及评分标准 2018.5二、 填空题(本题共16分,每小题2分) 9. x ≤2. 10.38. 11. 4π3. 12.26170,38.x y x y +=⎧⎨=⎩13. 20. 14.答案不唯一,例如,将抛物线23(2)1y x =+-先向右平移2个单位长度,再向上平移3个单位长度得到抛物线232y x =+. 15. 54. 16. (7,4).三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)17.解: 06cos60(π2)2︒--161(22=⨯-- ……………………………………………………… 4分313=-+-2=-. ……………………………………………………………………………5分18.解方程:1322x x x+=--. 解:去分母,得13(2)x x -=-.……………………………………………………… 1分去括号,得136x x -=-. ……………………………………………………… 2分 移项,得 361x x -=-.合并同类项,得 25x =.………………………………………………………… 3分系数化为1,得52x =.…………………………………………………………… 4分 经检验,原方程的解为52x =.……………………………………………………5分19. 解:如图1,连接BD .∵ E 为AB 的中点,DE ⊥AB 于点E ,∴ AD= BD , …………………………………………… 1分∴ 1A ∠=∠. ∵ 66A ∠=︒,∴ 166∠=︒.………………………………………………2分 ∵ 90ABC ∠=︒,∴ 2124ABC ∠=∠-∠=︒. …………………………… 3分∵ AD=BC ,∴ BD=BC .…………………………………………………………………………4分 ∴ 3C ∠=∠.∴1802==782C ︒-∠∠︒. …………………………………………………… 5分20.解: 2569122x x x x -+⎛⎫-÷⎪++⎝⎭2322(3)x x x x -+=⨯+- ………………………………………………………………… 3分 13x =-.……………………………………………………………………………… 4分 当5x =-时,原式18=-.……………………………………………………………5分21. (1)证明:如图2.∵ CD ⊥AB 于点D ,BE ⊥AB 于点B , ∴ 90CDA DBE ∠=∠=︒.∴ CD ∥BE .………………………………… 1分 又∵ BE=CD ,∴ 四边形CDBE 为平行四边形.……………2分 又∵90DBE ∠=︒,图1 图2∴ 四边形CDBE 为矩形. ……………………………………………… 3分(2)解:∵ 四边形CDBE 为矩形,∴ DE=BC .………………………………………………………………… 4分 ∵ 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB , 可得 1ACD ∠=∠.∵ 1tan 2ACD ∠=, ∴ 1tan 1tan 2ACD ∠=∠=. ∵ 在Rt △ABC 中,90ACB ∠=︒,AC =2,1tan 12∠=, ∴ 4tan 1ACBC ==∠. ∴ DE=BC=4.…………………………………………………………… 5分22.解:(1)补全统计图如图3.………………………………………………………………… 4分(2)答案不唯一,预估理由合理,支撑预估数据即可. ……………………… 6分 23. 解:(1)如图4.∵ 点A 的坐标为(4,)A n -,点C 与点A 关于原点O 对称, ∴ 点C 的坐标为(4,)C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为(4,0)B -,(4,0)D . ∵ △ABD 的面积为8,11()8422ABDSAB BD n n =⨯=⨯-⨯=-, ∴ 48n -=.解得 2n =-. …………………………………………………………… 2分∵ 函数my x=(0x <)的图象经过点(4,)A n -, ∴ 48m n =-=.…………………………………………………………… 3分 (2)由(1)得点C 的坐标为(4,2)C .① 如图4,当0k <时,设直线y kx b =+与x 轴, y 轴的交点分别为点1E ,1F . 由 CD ⊥x 轴于点D 可得CD ∥1OF .图3∴ △1E CD ∽△1E 1F O . ∴1111E CDC OF E F =. ∵ 112CF CE =, ∴113DC OF =. ∴ 136OF DC ==.∴ 点1F 的坐标为1(0,6)F .②如图5,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为 点2E ,2F . 同理可得CD ∥2OF ,2222E CDC OF E F =. ∵ 222CF CE =,∴ 2E 为线段2CF 的中点,222E C E F =. ∴ 22OF DC ==.∴ 点2F 的坐标为2(0,2)F -.…………6分综上所述,点F 的坐标为1(0,6)F ,2(0,2)F -.24. (1)证明:如图6,连接OC ,AC .∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴ CE=DE ,AD=AC .∵ DC=AD ,∴ DC=AD= AC .∴ △ACD 为等边三角形. ∴ ∠D =∠DCA=∠DAC =60︒.∴ 11302DCA ∠=∠=︒.∵ FG ∥DA ,∴ 180DCF D ∠+∠=︒. ∴ 180120DCF D ∠=︒-∠=︒. ∴ 190OCF DCF ∠=∠-∠=︒. ∴ FG ⊥OC .图4图6图5∴ FG 与⊙O 相切.……………………………………………………… 3分(2)解:如图6,作EH ⊥FG 于点H .设CE= a ,则DE= a ,AD=2a . ∵ AF 与⊙O 相切, ∴ AF ⊥AG . 又∵ DC ⊥AG , 可得AF ∥DC . 又∵ FG ∥DA ,∴ 四边形AFCD 为平行四边形. ∵ DC =AD ,AD=2a , ∴ 四边形AFCD 为菱形.∴ AF=FC=AD=2 a ,∠AFC=∠D = 60︒.由(1)得∠DCG= 60︒,sin60EH CE =⋅︒=,1cos602CH CE a=⋅︒=. ∴52FH CH CF a=+=. ∵ 在Rt △EFH 中,∠EHF= 90︒,∴2tan 52EH EFC FH a ∠===. …………………………………… 5分25.解:(1)①斜边和一条直角边分别相等的两个直角三角形全等 .………………… 1分②11)a .………………… 2分③211)a .…………………3分 ④111)n a -.……………… 4分 (2)所画正方形CHIJ 见图7.……………………………6分26.解:如图8.(1)2x =.…………………………… 1分(2)∵ 抛物线241y ax ax a =-+-的对称轴为直线2x =,抛物线M 与x 轴的 交点为点A ,B (点A 在点B 左侧),AB =2,∴ A ,B 两点的坐标分别为(1,0)A ,(3,0)B .……………………………… 2分 ∵ 点A 在抛物线M 上,∴ 将(1,0)A 的坐标代入抛物线的函数表达式,得410a a a -+-=. 解得 12a =-. ………………………………………………………………… 3分 ∴ 抛物线M 的函数表达式为213222y x x =-+-. ………………………… 4分(3)54k >. …………………… 6分27. 解:(1)当0°<α<30°时,①画出的图形如图9所示.…………… 1分∵ △ABC 为等边三角形,∴ ∠ABC=60°.∵ CD 为等边三角形的中线,Q 为线段CD 上的点,由等边三角形的对称性得QA=QB . ∵ ∠DAQ =α,∴ ∠ABQ =∠DAQ=α,∠QBE =60°-α.∵ 线段QE 为线段QA 绕点Q 顺时针旋转所得, ∴ QE = QA .∴ QB=QE .可得 1802BQE QBE ∠=︒-∠1802(60)602αα=︒-︒-=︒+.……… 2分②CE AC +=.……………………………………………………… 3分 证法一:如图10,延长CA 到点F ,使得AF=CE ,连接QF ,作QH ⊥AC于点H .∵ ∠BQE =60°+2α,点E 在BC 上, ∴ ∠QEC =∠BQE+∠QBE =(60°+2α)+( 60°-α)=120°+α.∵ 点F 在CA 的延长线上,∠DAQ =α, ∴ ∠QAF =∠BAF +∠DAQ=120°+α. ∴ ∠QAF=∠QEC . 又∵ AF =CE ,QA=QE , ∴ △QAF ≌△QEC . ∴ QF=QC .∵ QH ⊥AC 于点H , ∴ FH=CH ,CF=2CH .∵ 在等边三角形ABC 中,CD 为中线, 点Q 在CD 上,图9图8∴ ∠ACQ=12ACB∠=30°,即△QCF 为底角为30°的等腰三角形.∴cos cos30CH CQ HCQ CQ =⋅∠=⋅︒=.∴ CE AC AF AC CF +=+=2CH =.即CE AC +=. ………………………………………… 6分思路二:如图11,延长CB 到点G ,使得BG=CE ,连接QG ,可得△QBG ≌△QEC ,△QCG 为底角为30°的等腰三角形,与证法一同理可得CE AC BG BC CG +=+=.(2)如图12,当30°<α<60°时,AC CE -............................... 7分 28.解:(1)①3-. (1)分② 0≤QL……………………………………………………………… 2分(2)设直线+3y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=︒. 由0≤QLy .①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大图10图11 图12值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO =. ∵ ⊙D 的半径为1, ∴ 111D E =.∴1AE11OE OA AE =-= ∴1D x =②如图14,当⊙D与直线y 相切时, 相应的圆心2D 满足题意,其横坐标取到 最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y与直线+3y x =的交点为F .可得60AOF ∠=︒,OF ⊥AB .则9cos 2AF OA OAF =⋅∠==.∵ ⊙D 的半径为1, ∴ 21D F =.∴2272AD AF D F =-=.∴ 22cos AE AD OAF=⋅∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x的取值范围是≤D x≤.图13…………………………………………5分(3)画图见图15.图15。
北京市西城区2018年九年级模拟测试数 学 试 卷 2018.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 如图所示,a ∥b ,直线a 与直线b 之间的距离是 A .线段P A 的长度 B .线段PB 的长度 C .线段PC 的长度 D .线段CD 的长度2. 将某不等式组的解集≤x 3表示在数轴上,下列表示正确的是3. 下列运算中,正确的是A .B .C .D .4.下列实数中,在2和3之间的是A .B .C .D .5. 一副直角三角板如图放置,其中∠C =∠DFE = 90︒, ∠A = 45︒, ∠E = 60︒,点F 在CB 的延长线上. 若DE ∥CF ,则∠BDF 等于A .35︒B .30︒C .25︒D .15︒ 6. 中国古代在利用“计里画方”(比例缩放和直角坐 标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距 离AB 的示意图中,记照板“内芯”的高度为 EF . 观测者的眼睛(图中用点C 表示)与BF 在同一水 平线上,则下列结论中,正确的是A .EF CF AB FB = B .EF CFAB CB=C .CE CFCA FB = D .CE CF EA CB=1-<22456x x x +=326x x x ⋅=236()x x =33()xy xy =π π2-7. 在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:A .这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好8.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s 和v (m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲 车时,两车都停止行驶.设x (s)后两车相距y (m),y 与x 的函数关系如图2所示.有以下 结论:①图1中a 的值为500; ②乙车的速度为35 m/s ; ③图1中线段EF 应表示为5005x +;④图2中函数图象与x 轴交点的横坐标为100. 其中所有的正确结论是A .①④B .②③C .①②④D .①③④ 二、填空题(本题共16分,每小题2分)9. 有意义,那么x 的取值范围是 .10.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为 .11. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .12.某校“百变魔方”社团为组织同学们参加学校科技节的 “最强大脑”大赛,准备购买A ,B 两款魔方.社长发现 若购买2个A 款魔方和6个B 款魔方共需170元,购买 3个A 款魔方和购买8个B 款魔方所需费用相同. 求每 款魔方的单价.设A款魔方的单价为x 元,B款魔方的单价为y 元,依题意可列方程组为 .13. 如图,在矩形ABCD 中,顺次连接矩形四边的中点得到四边形EFGH . 若AB=8,AD=6,则四边形EFGH 的周长等于 .14.在平面直角坐标系xOy 中,将抛物线23(2)1y x =+-平移后得到抛物线232y x =+.请你写出一种平移方法. 答: .15. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.16. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,,,边AD 长为5. 现固定边AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为),相应地,点C 的对应点的坐标为 .三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分) 17.计算:06cos60(π2)2︒-.18.解方程:1322x x x+=--.19. 如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,66A ∠=︒,90ABC ∠=︒,BC= AD ,求∠C 的度数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷⎪++⎝⎭,其中5x =-.21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE . (1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.(3,0)A -(4,0)B D 'C'22.阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.”尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23.如图,在平面直角坐标系xOy中,函数myx=(0x<)的图象经过点(4,)A n-,AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8.(1)求m,n的值;(2)若直线y kx b=+(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当2CF CE=时,求点F的坐标.24.如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.(1)求证:FG与⊙O相切;(2)连接EF,求tan EFC∠的值.25.阅读下面材料:已知:如图,在正方形ABCD 中,边1AB a .按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:① ;② ; ③ ;④ ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.27. 如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α (0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明; (2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.3x 30x >2-1-28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”QL 的取值范围是 .(2)点D 在直线+3y =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)北京市西城区2018年九年级模拟测试数学试卷答案及评分标准 2018.5二、 填空题(本题共16分,每小题2分) 9. x ≤2. 10.. 11. .12.13. 20. 14.答案不唯一,例如,将抛物线先向右平移2个单位长度,再向上平移3个单位长度得到抛物线232y x =+. 15. 54. 16. .三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分) 17.解:161(22=⨯-- ……………………………………………………… 4分313=-+-2=-. ……………………………………………………………………………5分18.解方程:. 解:去分母,得.……………………………………………………… 1分去括号,得.……………………………………………………… 2分 移项,得.合并同类项,得 .………………………………………………………… 3分系数化为1,得.…………………………………………………………… 4分 经检验,原方程的解为.……………………………………………………5分19. 解:如图1,连接BD .∵ E 为AB 的中点,DE ⊥AB 于点E ,∴ AD= BD , ……………… ………… 1分∴ . ∵ ,∴ .………………………… ……2分 ∵ ,384π326170,38.x y x y +=⎧⎨=⎩23(2)1y x =+-(7,4)06cos60(π2)2︒-1322x x x+=--13(2)x x -=-136x x -=-361x x -=-25x =52x =52x =1A ∠=∠66A ∠=︒166∠=︒90ABC ∠=︒∴ . …………………………… 3分 ∵ AD=BC ,∴ BD=BC .…………………………………………………………………………4分 ∴ .∴1802==782C ︒-∠∠︒. …………………………………………………… 5分20.解: ………………………………………………………………… 3分 .……………………………………………………………………………… 4分 当时,原式.……………………………………………………………5分21. (1)证明:如图2.∵ CD ⊥AB 于点D ,BE ⊥AB 于点B , ∴ 90CDA DBE ∠=∠=︒.∴ CD ∥BE .………………………………… 1分 又∵ BE=CD ,∴ 四边形CDBE 为平行四边形.……………2分 又∵90DBE ∠=︒,∴ 四边形CDBE 为矩形. ……………………………………………… 3分(2)解:∵ 四边形CDBE 为矩形,∴ DE=BC .………………………………………………………………… 4分 ∵ 在Rt △ABC 中,,CD ⊥AB , 可得 .∵ , ∴ . ∵ 在Rt △ABC 中,,AC =2,, ∴ . ∴ DE=BC=4.…………………………………………………………… 5分22.解:(1)补全统计图如图3.2124ABC ∠=∠-∠=︒3C ∠=∠2569122x x x x -+⎛⎫-÷⎪++⎝⎭2322(3)x x x x -+=⨯+-13x =-5x =-18=-90ACB ∠=︒1ACD ∠=∠1tan 2ACD ∠=1tan 1tan 2ACD ∠=∠=90ACB ∠=︒1tan 12∠=4tan 1ACBC ==∠图2………………………………………………………………… 4分(2)答案不唯一,预估理由合理,支撑预估数据即可. ……………………… 6分23. 解:(1)如图4.∵ 点A 的坐标为,点C 与点A 关于原点O 对称,∴ 点C 的坐标为.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为,.∵ △ABD 的面积为8,, ∴ .解得 . …………………………………………………………… 2分 ∵ 函数()的图象经过点, ∴ . …………… 3分(2)由(1)得点C 的坐标为. ① 如图4,当时,设直线与x 轴,y 轴的交点分别为点,.由 CD ⊥x 轴于点D 可得CD ∥.∴ △CD ∽△O .∴ . ∵ ,∴.∴ . ∴ 点的坐标为.②如图5,当时,设直线与x 轴,y 轴的交点分别为(4,)A n -(4,)C n -(4,0)B -(4,0)D 11()8422ABD S AB BD n n =⨯=⨯-⨯=- 48n -=2n =-m y x=0x <(4,)A n -48m n =-=(4,2)C 0k <y kx b =+1E 1F 1OF 1E 1E 1F 1111E C DC OF E F =112CF CE =113DC OF =136OF DC ==1F 1(0,6)F 0k >y kx b =+图4点,.同理可得CD ∥,. ∵ ,∴ 为线段的中点,.∴ 22OF DC ==.∴ 点的坐标为.…………6分综上所述,点F 的坐标为,.24. (1)证明:如图6,连接OC ,AC .∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴ CE=DE ,AD=AC .∵ DC=AD ,∴ DC=AD= AC .∴ △ACD 为等边三角形.∴ ∠D =∠DCA=∠DAC =60︒.∴ . ∵ FG ∥DA ,∴ 180DCF D ∠+∠=︒. ∴ .∴ .∴ FG ⊥OC .∴ FG 与⊙O 相切.……………………………………………………… 3分(2)解:如图6,作EH ⊥FG 于点H .设CE= a ,则DE= a ,AD=2a .∵ AF 与⊙O 相切,∴ AF ⊥AG .又∵ DC ⊥AG ,可得AF ∥DC .又∵ FG ∥DA ,∴ 四边形AFCD 为平行四边形.∵ DC =AD ,AD=2a ,∴ 四边形AFCD 为菱形.∴ AF=FC=AD=2 a ,∠AFC=∠D = 60︒.由(1)得∠DCG= 60︒,sin60EH CE =⋅︒=,1cos602CH CE a =⋅︒=. ∴52FH CH CF a =+=. ∵ 在Rt △EFH 中,∠EHF= 90︒,∴2tan 52EH EFC FH a ∠===. …………………………………… 5分2E 2F 2OF 2222E C DC OF E F =222CF CE =2E 2CF 222E C E F =2F 2(0,2)F -1(0,6)F 2(0,2)F -11302DCA ∠=∠=︒180120DCF D ∠=︒-∠=︒190OCF DCF ∠=∠-∠=︒图6图525.解:(1)①斜边和一条直角边分别相等的两个直角三角形全等 .………………… 1分②11)a .………………… 2分③211)a .…………………3分④111)n a -.……………… 4分(2)所画正方形CHIJ 见图7.……………………………6分26.解:如图8.(1).…………………………… 1分 (2)∵ 抛物线241y ax ax a =-+-的对称轴为直线,抛物线M 与x 轴的 交点为点A ,B (点A 在点B 左侧),AB =2,∴ A ,B 两点的坐标分别为,.……………………………… 2分∵ 点A 在抛物线M 上,∴ 将的坐标代入抛物线的函数表达式,得.解得 . ………………………………………………………………… 3分 ∴ 抛物线M 的函数表达式为213222y x x =-+-. ………………………… 4分 (3)54k >. …………………… 6分27. 解:(1)当0°<α<30°时,①画出的图形如图9所示.…………… 1分∵ △ABC 为等边三角形,∴ ∠ABC=60°.∵ CD 为等边三角形的中线,Q 为线段CD上的点,由等边三角形的对称性得QA=QB .∵ ∠DAQ =α,∴ ∠ABQ =∠DAQ=α,∠QBE =60°-α.2x =2x =(1,0)A (3,0)B (1,0)A 410a a a -+-=12a =-∵ 线段QE 为线段QA 绕点Q 顺时针旋转所得,∴ QE = QA .∴ QB=QE .可得 1802(60)602αα=︒-︒-=︒+.……… 2分②.……………………………………………………… 3分证法一:如图10,延长CA 到点F ,使得AF=CE ,连接QF ,作QH ⊥AC于点H .∵ ∠BQE =60°+2α,点E 在BC 上,∴ ∠QEC =∠BQE+∠QBE =(60°+2α)+( 60°-α)=120°+α.∵ 点F 在CA 的延长线上,∠DAQ =α,∴ ∠QAF =∠BAF +∠DAQ=120°+α.∴ ∠QAF=∠QEC .又∵ AF =CE ,QA=QE ,∴ △QAF ≌△QEC .∴ QF=QC .∵ QH ⊥AC 于点H ,∴ FH=CH ,CF=2CH .∵ 在等边三角形ABC 中,CD 为中线,点Q 在CD 上,∴ ∠ACQ=12ACB ∠=30°,即△QCF 为底角为30°的等腰三角形. ∴cos cos30CH CQ HCQ CQ =⋅∠=⋅︒=.∴ CE AC AF AC CF +=+=2CH =.即. ………………………………………… 6分思路二:如图11,延长CB 到点G ,使得BG=CE ,连接QG ,可得△QBG ≌△QEC ,△QCG 为底角为30°的等腰三角形,与证法一同理可得CE AC BG BC CG +=+=.1802BQE QBE ∠=︒-∠CE AC +=CE AC +=图10(2)如图12,当30°<α<60°时,.………………………… 7分28.解:(1)①. ………………………………………………………………………… 1分② 0≤Q L ……………………………………………………………… 2分(2)设直线+3y =与x 轴,y 轴的交点分别为点A ,点B ,可得A ,(0,3)B .∴OA =,3OB =,30OAB ∠=︒.由0≤Q L ,作直线y .①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO =. ∵ ⊙D 的半径为1,∴ 111D E=.∴ 1AE11OE OA AE =-=∴ 1D x =②如图14,当⊙D 与直线y 相切时,相应的圆心2D 满足题意,其横坐标取到最小值.AC CE -=3-图11 图12作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的 交点为F .可得60AOF ∠=︒,OF ⊥AB .则9cos 2AF OA OAF =⋅∠==. ∵ ⊙D 的半径为1,∴ 21D F =.∴ 2272AD AF D F =-=.∴ 22cos AE AD OAF =⋅∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x的取值范围是≤D x≤.………………………………………… 5分(3)画图见图15.7分。
北京市各区2018 年初三下学期数学二模试题分类汇编2018 昌平二模8.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200 千米B.快车的速度是80 千米∕小时C.慢车的速度是60 千米∕小时D.快车到达甲地时,慢车距离乙地100 千米y(千米)600O410x(小时)2018 朝阳二模8.如图,矩形ABCD 中, AB= 4, BC= 3, F 是 AB 中点,以点 A 为圆心, AD 为半径作弧交AB 于点 E,以点 B 为圆心, BF 为半径作弧交BC 于点 G,则图中阴影部分面积的差S1-S2为13( A )129( B)12413( C)64( D) 62018 东城二模8.有一圆形苗圃如图 1 所示,中间有两条交叉过道AB,CD,它们为苗圃e O的直径,且 AB?⊥CD. 入口 K 位于AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进时间为 x,与入口 K 的距离为 y,表示 y 与 x 的函数关系的图象大致如图行进的路线可能是A. A→O→DB.C→ A→O→BC. D→O→CD. O→ D→ B→C.设该园丁行进的2所示,则该园丁2018 房山二模8.一列动车从 A 地开往 B 地,一列普通列车从 B 地开往 A 地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y (千米),如图中的折线表示 y 与x之间的函数关系 . 下列叙述错误的是..A. AB两地相距1000 千米B.两车出发后 3 小时相遇C.动车的速度为1000 km / h32000千米到达 A D.普通列车行驶t 小时后,动车到达终点 B 地,此时普通列车还需行驶3地2018 丰台二模8.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间 x(分)的对应关系如图所示:(主叫时间不到 1 分钟,按 1 分钟收费)下列三个判断中正确的是①方式一每月主叫时间为300 分钟时,月使用费为88 元②每月主叫时间为350 分钟和 600 分钟时,两种方式收费相同③每月主叫时间超过600 分钟,选择方式一更省钱( A )①②(B)①③( C)②③(D)①②③y/元138方式一方式二8858O200 400 600x/分2018 海淀二模8.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值 .右图描述了某次单词复习中M , N , S,T 四位同学的单词记忆效率y 与复习的单词个数 x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是A .M B.N C.S D .TyMNS TO x北京市各区2018 年初三下学期数学二模试题分类汇编2018 平谷二模8.右图所示是一个三棱柱纸盒 .在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是A. B. C. D.2018 石景山二模8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线 OBCD.则下列说法正确的是(A)两人从起跑线同时出发,同时到达终点(B)跑步过程中,两人相遇一次(C)起跑后 160 秒时,甲、乙两人相距最远(D)乙在跑前 300 米时,速度最慢S(米 ) A D800C600300Bt(秒)O70160200北京市各区2018 年初三下学期数学二模试题分类汇编2018 西城二模8.如图 1 所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s 和 v(m/s),起初甲车在乙车前 a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y(m),y 与 x 的函数关系如图 2 所示.有以下结论:①图 1 中 a 的值为 500;②乙车的速度为35 m/s;③图 1 中线段 EF 应表示为 500 5x ;④图 2 中函数图象与x 轴交点的横坐标为100.其中所有的正确结论是A .①④ B.②③C.①②④ D.①③④2018 怀柔二模A. ①B. ②④C.④D. ③④8.依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840 人,女生 800 人,他们的身高在150≤ x<175 范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多 2 人,利用所得数据绘制如下统计图表:根据统计图表提供的信息,下列说法中①抽取男生的样本中,身高在155≤ x< 165 之间的学生有18 人;②初一学生中女生的身高的中位数在 B 组;③抽取的样本中,抽取女生的样本容量是38;④初一学生身高在160≤ x< 170 之间的学生约有800 人 .其中合理的是A .①②B .①④C.②④ D .③④北京市各区2018 年初三下学期数学二模试题分类汇编2018 顺义二模A P8.已知正方形ABCD的边长为 4cm,动点 P 从 A 出发,沿 AD 边以1cm/s 的速度运动,动点 Q 从 B 出发,沿 BC, CD边以 2cm/s的速度运动,点 P, Q 同时出发,运动到点 D 均停止运动,设运动时间为 x(秒),△ BPQ的面积为 y( cm2),则 y 与 x 之间的函数图象大致是BQ2018 门头沟二模8. 某中学举办运动会,在1500 米的项目中,参赛选手在 200 米的环形跑道上进行,下图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中代表的是最快的选手全程的跑步时间, y 代表的是这两位选手之间的距离,下列说不合理的是A.出发后最快的选手与最慢的选手相遇了两次;B.出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短;C.最快的选手到达终点时,最慢的选手还有415 米未跑;D.跑的最慢的选手用时4′46″.D Cxy(4′46″,15 )O A B Cx。
统计综合题2018昌平二模23.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78867481757687707590 75798170748086698377九年级93738881728194837783 80817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).2018朝阳二模24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动. 小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.2018东城二模24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).2018房山二模24. 某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲 7.2 9.6 9.6 7.8 9.3 4 6. 5 8.5 9.9 9.6乙 5.8 9.7 9.7 6.8 9.9 6.9 8.2 6.7 8.6 9.7根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:结论(1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)2018丰台二模23.某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习. 学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史. 为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.2018海淀二模24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.2018平谷二模23.为了解2018年某校九年级数学质量监控情况,随机抽取40名学生的数学成绩进行分析.成绩统计如下.93 92 84 55 85 82 66 75 88 6787 87 37 61 86 61 77 57 72 7568 66 79 92 86 87 61 86 90 8390 18 70 67 52 79 86 71 61 892018年某校九年级数学质量监控部分学生成绩统计表:请根据所给信息,解答下列问题:(1)补全统计表中的数据;(2)用统计图将2018年某校九年级数学质量监控部分学生成绩表示出来;(3)根据以上信息,提出合理的复习建议.2018石景山二模23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图餐余情况剩大量不剩(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.2018西城二模22.阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.2018怀柔二模21.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法;D.撰写读后感法;E.其他方法.我区某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全表格中的a,b,c数据:a= ,b= ,c= ;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全区6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.值量计数统人 员甲乙丙平均数众数中位数方差(万元)(万元)(万元)88857.68 1.762.242018顺义二模24.某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:11599751065月3月4月2月额售份销月人 员甲乙丙1月99888510(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.2018门头沟二模24. 在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。
北京市东城区2018届中考数学二模试题学校______________班级______________姓名_____________考号____________一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为A. 205万B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:61以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >526. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD . 入口K 位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是A. A →O →DB. C→A→O→ BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC中,AB=AC,BC=8. Oe是△ABC的外接圆,其半径为5. 若点A 在优弧BC上,则tan ABC∠的值为_____________.第11题图第15题图12. 抛物线221y mx mx=++(m为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5 时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,30APO∠=︒ .34先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2--︒-18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.519. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.623. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:78描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点, 根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;9(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)10二、填空题(本题共16分,每小题 2分)9. x>0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250xx ++= 14. 120 ;3 000 15.16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)=3-217.解:原式--------------------------------------------------------------------4分-------------------------------------------------------------------------------------------------- 5分 18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5.--------------------------------------------------------------------3分--------------------------------5分 19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠, ∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =,11 ∴10AB =.∵DE 平分AB ,∴5AE =.∵ADE ABC △∽△,∴DE AEBC AC = . ∴568DE = .∴154DE = .---------------------------------------------------------------------5分20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>,解得k k ≠<9且0.----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=. 解得11=2x ,21=4x .---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠.∵ECF α=∠,∴ BCD ECF ∠=∠.∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到,∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,,12 ∴BEC △≌()SAS DFC △.∴=.BE DF----------------------------------------------------------------------2分(2) 解:∵四边形ABCD 是菱形,∴ACB ACD ∠=∠,AC BD ⊥.∴+90ACB EBC ∠=︒∠.∵=EB EC ,∴=EBC BCE ∠∠.由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠.∴90ACF =︒∠.∴AC CF ⊥.---------------------------------------------------------------------5分22. 解:(1)12k =,P,或P ⎛ ⎝⎭;---------------------------3分(2) 1k ≥.---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒.∵ AB 是O 的直径,MB AB ⊥, ∴MB 是O 的切线. ∵CF 是O 的切线,∴FC FB =.∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ ,∴=CDB DCF ∠∠.13 ∴=CF DF .---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC , 根据勾股定理求得=8AC .在Rt ABC △和Rt ADB △中,A A ACB ABD ∠=∠⎧⎨∠=∠⎩,,∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB=. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF ,∴=DF BF .∵=AO BO ,∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分24. 解:(1)四;---------------------------------------------------------------------1分(2)如图:14 ---------------------------------------------------------------------3分(3)5432000a b.------------------------------------------------------5分 25. 解:42y x x ⎛⎫=+ ⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分 如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,1 5 得 0--35164-3a b a b =⎧⎨=+⎩,, 解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+,把点(10)-,和(45)-,分别代入y mx n =+,得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--.--------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ',则 'PN PN =.∵PM PN <,∴'PM PN <.∴点M 在线段'NN 上(不含端点).16∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--, 可求得点C 的横坐标为2.又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°.---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒,∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,,∴()SAS ACD BCP △≌△.∴.AD BP =17 ∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=︒,∴=60.ADB CDB ∠∠=︒∴=60.ADB CDB ∠∠=︒∴=2BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CDBN =+)2ADCD =+2==----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF dCF ≤≤∵=4AF CF,∴d 4≤ ---------------------------------------------------------------------------------- 5分t≤② 1. ------------------------------------------------------------------------8分18。
北京市西城区2018年九年级模拟测试数学试卷 2018.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 如图所示,a ∥b ,直线a 与直线b 之间的距离是 A .线段P A 的长度 B .线段PB 的长度C .线段PC 的长度D .线段CD 的长度2. 将某不等式组的解集≤x 3表示在数轴上,下列表示正确的是3. 下列运算中,正确的是A .B .C .D .4.下列实数中,在2和3之间的是A .B .C .D .5. 一副直角三角板如图放置,其中∠C =∠DFE = 90︒,∠A = 45︒, ∠E = 60︒,点F 在CB 的延长线上.若DE ∥CF , 则∠BDF 等于A .35︒B .30︒ C .25︒D .15︒ 6. 中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、 水准仪和照板来测量距离.在如图所示的测量距 离AB 的示意图中,记照板“内芯”的高度为 EF . 观测者的眼睛(图中用点C 表示)与BF 在同一水 平线上,则下列结论中,正确的是A .EF CF AB FB = B .EF CFAB CB=C .CE CFCA FB = D .CE CF EA CB=1-<22456x x x +=326x x x ⋅=236()x x =33()xy xy =π π2-7. 在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:A .这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 8.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s 和v (m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲 车时,两车都停止行驶.设x (s)后两车相距y (m),y 与x 的函数关系如图2所示.有以下 结论:①图1中a 的值为500; ②乙车的速度为35 m/s ;③图1中线段EF 应表示为5005x +;④图2中函数图象与x 轴交点的横坐标为100. 其中所有的正确结论是A .①④B .②③C .①②④D .①③④二、填空题(本题共16分,每小题2分)9. 有意义,那么x 的取值范围是 .10.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为 .11. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .12.某校“百变魔方”社团为组织同学们参加学校科技节的 “最强大脑”大赛,准备购买A ,B 两款魔方.社长发现 若购买2个A 款魔方和6个B 款魔方共需170元,购买 3个A 款魔方和购买8个B 款魔方所需费用相同. 求每 款魔方的单价.设A 款魔方的单价为x 元,B 款魔方的单 价为y 元,依题意可列方程组为 .13. 如图,在矩形ABCD 中,顺次连接矩形四边的中点得到四边形EFGH . 若AB=8,AD=6,则四边形EFGH 的周长等于 . 14.在平面直角坐标系xOy 中,将抛物线23(2)1y x =+-平移后得到抛物线232y x =+.请你写出一种平移方法. 答: .15. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.16. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,,,边AD 长为5. 现固定边),相应地,点AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为C 的对应点的坐标为 .三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分) 17.计算:06cos6027(π2)32︒-.18.解方程:1322x x x+=--.19. 如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,66A ∠=︒,90ABC ∠=︒,BC= AD ,求∠C 的度数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷⎪++⎝⎭,其中5x =-.21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE . (1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.22.阅读下列材料: 材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012(3,0)A -(4,0)B D 'C'年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验. 材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题: (1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.24.如图,AB 是⊙O 的直径,C 是圆上一点,弦CD ⊥AB 于点E ,且DC=AD .过点A 作⊙O 的切线,过点C作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G . (1)求证:FG 与⊙O 相切; (2)连接EF ,求tan EFC ∠的值.25.阅读下面材料:已知:如图,在正方形ABCD 中,边1AB a =.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:① ;② ; ③ ;④ ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________;(2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.3x 30x >2-1-27. 如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线B C 上,连接B Q ,设∠D A Q =α (0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明; (2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 . (2)点D在直线+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有 0≤L QD 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q≤画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)图1 备用图北京市西城区2018年九年级模拟测试数学试卷答案及评分标准 2018.5一、二、 填空题(本题共16分,每小题2分) 9. x ≤2. 10.. 11. . 12.13. 20. 14.答案不唯一,例如,将抛物线先向右平移2个单位长度,再向上平移3个单位长度得到抛物线232y x =+.15. 54. 16. .三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分) 17.解:161(22=⨯-- ……………………………………………………… 4分313=-+-2=- ……………………………………………………………………………5分18.解方程:. 解:去分母,得.……………………………………………………… 1分去括号,得. ……………………………………………………… 2分 移项,得 .合并同类项,得 .………………………………………………………… 3分384π326170,38.x y x y +=⎧⎨=⎩23(2)1y x =+-(7,4)06cos60(π2)2︒-1322x x x+=--13(2)x x -=-136x x -=-361x x -=-25x =系数化为1,得.…………………………………………………………… 4分 经检验,原方程的解为.……………………………………………………5分19. 解:如图1,连接BD .∵ E 为AB 的中点,DE ⊥AB 于点E ,∴ AD= BD , …………………………………………… 1分∴ . ∵ ,∴ .………………………………………………2分 ∵ ,∴ . …………………………… 3分∵ AD=BC ,∴ BD=BC .…………………………………………………………………………4分 ∴ .∴1802==782C ︒-∠∠︒. …………………………………………………… 5分20.解: ………………………………………………………………… 3分 .……………………………………………………………………………… 4分 当时,原式.……………………………………………………………5分21. (1)证明:如图2.∵ CD ⊥AB 于点D ,BE ⊥AB 于点B , ∴ 90CDA DBE ∠=∠=︒.∴ CD ∥BE .………………………………… 1分 又∵ BE=CD ,∴ 四边形CDBE 为平行四边形.……………2分 又∵90DBE ∠=︒,∴ 四边形CDBE 为矩形. ……………………………………………… 3分(2)解:∵ 四边形CDBE 为矩形,∴ DE=BC .………………………………………………………………… 4分 ∵ 在Rt △ABC 中,,CD ⊥AB , 可得 .∵ , 52x =52x =1A ∠=∠66A ∠=︒166∠=︒90ABC ∠=︒2124ABC ∠=∠-∠=︒3C ∠=∠2569122x x x x -+⎛⎫-÷⎪++⎝⎭2322(3)x x x x -+=⨯+-13x =-5x =-18=-90ACB ∠=︒1ACD ∠=∠1tan 2ACD ∠=图1 图2∴ . ∵ 在Rt △ABC 中,,AC =2,, ∴ . ∴ DE=BC=4.…………………………………………………………… 5分22.解:(1)补全统计图如图3.………………………………………………………………… 4分(2)答案不唯一,预估理由合理,支撑预估数据即可. ……………………… 6分 23. 解:(1)如图4.∵ 点A 的坐标为,点C 与点A 关于原点O 对称, ∴ 点C 的坐标为.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为,. ∵ △ABD 的面积为8,, ∴ .解得 . …………………………………………………………… 2分∵ 函数()的图象经过点, ∴ .…………………………………………………………… 3分 (2)由(1)得点C 的坐标为.① 如图4,当时,设直线与x 轴,y 轴的交点分别为点,. 由 CD ⊥x 轴于点D 可得CD ∥. ∴ △CD ∽△O . ∴. 1tan 1tan 2ACD ∠=∠=90ACB ∠=︒1tan 12∠=4tan 1ACBC ==∠(4,)A n -(4,)C n -(4,0)B -(4,0)D 11()8422ABDSAB BD n n =⨯=⨯-⨯=-48n -=2n =-my x=0x <(4,)A n -48m n =-=(4,2)C 0k <y kx b =+1E 1F 1OF 1E 1E 1F 1111E CDC OF E F =图3∵ , ∴. ∴ .∴ 点的坐标为.②如图5,当时,设直线与x 轴,y 轴的交点分别为 点,. 同理可得CD ∥,. ∵ ,∴ 为线段的中点,. ∴ 22OF DC ==.∴ 点的坐标为.…………6分综上所述,点F 的坐标为,.24. (1)证明:如图6,连接OC ,AC .∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴ CE=DE ,AD=AC .∵ DC=AD ,∴ DC=AD= AC .∴ △ACD 为等边三角形. ∴ ∠D =∠DCA=∠DAC =60︒.∴ . ∵ FG ∥DA ,∴ 180DCF D ∠+∠=︒.∴ . ∴ . ∴ FG ⊥OC .∴ FG 与⊙O 相切.……………………………………………………… 3分(2)解:如图6,作EH ⊥FG 于点H .设CE= a ,则DE= a ,AD=2a . ∵ AF 与⊙O 相切, ∴ AF ⊥AG .112CF CE =113DC OF =136OF DC ==1F 1(0,6)F 0k >y kx b =+2E 2F 2OF 2222E CDC OF E F =222CF CE =2E 2CF 222E C E F =2F 2(0,2)F -1(0,6)F 2(0,2)F -11302DCA ∠=∠=︒180120DCF D ∠=︒-∠=︒190OCF DCF ∠=∠-∠=︒图4图6图5又∵ DC ⊥AG , 可得AF ∥DC . 又∵ FG ∥DA ,∴ 四边形AFCD 为平行四边形. ∵ DC =AD ,AD=2a , ∴ 四边形AFCD 为菱形.∴ AF=FC=AD=2 a ,∠AFC=∠D = 60︒.由(1)得∠DCG= 60︒,sin60EH CE =⋅︒=,1cos602CH CE a =⋅︒=.∴52FH CH CF a=+=. ∵ 在Rt △EFH 中,∠EHF= 90︒,∴ 2tan 52EH EFC FH a ∠===. …………………………………… 5分25.解:(1)①斜边和一条直角边分别相等的两个直角三角形全等 .………………… 1分②1(21)a -.………………… 2分③2121)a .…………………3分 ④11(21)n a -.……………… 4分 (2)所画正方形CHIJ 见图7.……………………………6分26.解:如图8.(1).…………………………… 1分(2)∵ 抛物线241y ax ax a =-+-的对称轴为直线,抛物线M 与x 轴的 交点为点A ,B (点A 在点B 左侧),AB =2,∴ A ,B 两点的坐标分别为,.……………………………… 2分 ∵ 点A 在抛物线M 上,∴ 将的坐标代入抛物线的函数表达式,得. 解得 . ………………………………………………………………… 3分 ∴ 抛物线M 的函数表达式为213222y x x =-+-. ………………………… 4分 (3)54k >. …………………… 6分2x =2x =(1,0)A (3,0)B (1,0)A 410a a a -+-=12a =-27. 解:(1)当0°<α<30°时,①画出的图形如图9所示.…………… 1分∵ △ABC 为等边三角形,∴ ∠ABC=60°.∵ CD 为等边三角形的中线,Q 为线段CD 上的点,由等边三角形的对称性得QA=QB . ∵ ∠DAQ =α,∴ ∠ABQ =∠DAQ=α,∠QBE =60°-α.∵ 线段QE 为线段QA 绕点Q 顺时针旋转所得, ∴ QE = QA .∴ QB=QE .可得 1802(60)602αα=︒-︒-=︒+.……… 2分 ②.……………………………………………………… 3分 证法一:如图10,延长CA 到点F ,使得AF=CE ,连接QF ,作QH ⊥AC 于点H . ∵ ∠BQE =60°+2α,点E 在BC 上, ∴ ∠QEC =∠BQE+∠QBE =(60°+2α)+( 60°-α)=120°+α.∵ 点F 在CA 的延长线上,∠DAQ =α, ∴ ∠QAF =∠BAF +∠DAQ=120°+α. ∴ ∠QAF=∠QEC . 又∵ AF =CE ,QA=QE , ∴ △QAF ≌△QEC . ∴ QF=QC .∵ QH ⊥AC 于点H , ∴ FH=CH ,CF=2CH . ∵ 在等边三角形ABC 中,CD 为中线, 点Q 在CD 上,∴ ∠ACQ=12ACB∠=30°,即△QCF 为底角为30°的等腰三角形.1802BQE QBE ∠=︒-∠CE AC +=图10图9图8∴cos cos30CH CQ HCQ CQ =⋅∠=⋅︒=.∴ CE AC AF AC CF +=+=2CH =.即. ………………………………………… 6分思路二:如图11,延长CB 到点G ,使得BG=CE ,连接QG ,可得△QBG ≌△QEC ,△QCG 为底角为30°的等腰三角形,与证法一同理可得CE AC BG BC CG +=+==.(2)如图12,当30°<α<60°时,.………………………… 7分28.解:(1)①. ………………………………………………………………………… 1分② 0≤QL2分(2)设直线3+3y =与x 轴,y 轴的交点分别为点A ,点B ,可得A , (0,3)B .∴ OA =,3OB =,30OAB ∠=︒. 由0≤QL ,作直线y =.圆心1D 满足题①如图13,当⊙D 与x 轴相切时,相应的意,其横坐标取到最大值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO =. ∵ ⊙D 的半径为1, ∴ 111D E =.∴1AE =11OE OA AE =-=.CE AC +=AC CE -=3-3图1图13∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆心2D 满足题意,其横坐标取到 最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=︒,OF ⊥AB .则9cos 2AF OA OAF =⋅∠==.∵ ⊙D 的半径为1, ∴ 21D F =.∴2272AD AF D F =-=.∴ 22cos AE AD OAF=⋅∠73732==,22OE OA AE =-=.∴2D x =.由①②可得,D x的取值范围是≤D x≤.………………………………………… 5分 (3)画图见图15..…………………………………………… 7分图15。
东城区 2017-2018 学年度第二学期初三年级统一测试(二)数学试卷2018.5学校 ______________班级 ______________姓名 _____________ 考号 ____________1.本试卷共8 页,共三道大题,28 道小题,满分100 分 .考试时间120 分钟 .考2.在试卷和答题卡上准确填写学校、班级、姓名和考号.生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.知5.考试结束,将本试卷、答题卡一并交回.一、选择题 ( 本题共 16 分,每小题 2 分 )下面各题均有四个选项,其中只有一个..是符合题意的1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11 省市,面积约 2 050 000 平方公里,约占全国面积的21% .将 2 050 000 用科学记数法表示应为A. 205 万B. 205 104C. 2.05 106D. 2.05 1072.在平面直角坐标系xOy 中,函数 y 3x 1 的图象经过A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是A. 圆锥B. 圆柱C.球D. 正方体4.七年级 1 班甲、乙两个小组的 14 名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是..A. 甲组同学身高的众数是160B.乙组同学身高的中位数是 161C. 甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大5. 在平面直角坐标系xOy中,若点P 3,4 在O内,则O的半径 r 的取值范围是A. 0< r < 3B. r>4C. 0< r < 5D. r>56. 如果3a25a 10,那么代数式5a 3a 23a+2 3a 2 的值是A. 6B. 2C. - 2D. - 617. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠ BAC 的是A. 图 2B. 图 1 与图 2C. 图 1与图 3D. 图 2 与图 38. 有一圆形苗圃如图 1 所示,中间有两条交叉过道AB,CD,它们为苗圃e O的直径,且 AB⊥ CD. 入口 K 位?.设该园丁行进的时间为x,与入口 K 的距离为 y,于 AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进表示 y 与 x 的函数关系的图象大致如图 2 所示,则该园丁行进的路线可能是图 2A. A→O→DB. C→ A→O→ BC. D→ O→CD. O→ D→ B→C二、填空题( 本题共 16 分,每小题 2 分 )9.若分式x的值为正,则实数x 的取值范围是__________________.x2210.在平面直角坐标系xOy中,点P到 x 轴的距离为,到y轴的距离为写出一个符合条件的点P的坐标1 2...________________.11. 如图,在△ ABC 中, AB=AC,BC=8.e O是△ABC的外接圆,其半径为 5.若点A在优弧BC上,则tan∠ABC 的值为_____________.2第 11 题图第15题图12. 抛物线y mx22mx 1 ( m 为非零实数)的顶点坐标为_____________.13.自 2008 年 9 月南水北调中线京石段应急供水工程通水以来,截至2018 年 5 月 8 日 5时 52 分,北京市累计接收河北四库来水和丹江口水库来水达50 亿立方米 . 已知丹江口水库来水量比河北四库来水量的 2 倍多 1.82 亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为;若该社区有10 000 人,估计爱吃鲜肉粽的人数约为.15. 如图,在平面直角坐标系xOy 中,点A,P分别在 x 轴、y 轴上,APO 30.先将线段 PA 沿 y 轴翻折得到线段PB ,再将线段 PA 绕点 P 顺时针旋转30°得到线段 PC ,连接 BC .若点 A 的坐标为1,0,则线段BC的长为.16.阅读下列材料:数学课上老师布置一道作图题:3小东的作法如下:老师说:“小东的作法是正确的 .”请回答:小东的作图依据是.三、解答题 ( 本题共 68 分,第17-24 题,每小题5 分,第 25 题 6 分,第 26-27,每小题7 分,第 28 题 8 分 )17.计算: 32sin 60 +2312 . +18.解不等式 1 2 x >4x2,并把它的解集表示在数轴上 . 319.如图,在 Rt△ABC 中, C 90 , AB 的垂直平分线交AC 于点 D ,交 AB 于点 E .(1)求证:△ ADE≌△ ABC ;(2)当 AC 8 , BC 6 时,求 DE 的长.20.已知关于 x 的一元二次方程 kx 2 6x 1 0 有两个不相等的实数根.(1)求实数 k 的取值范围;(2)写出满足条件的 k 的最大整数值,并求此时方程的根.21.如图,在菱形 ABCD 中,BAD,点E在对角线BD上.将线段CE绕点C顺时针旋转,得到CF,4连接 DF .(1)求证: BE=DF ;( 2)连接 AC,若 EB=EC ,求证:AC CF .1 的图象与函数y kx k 0的图象交于点P m, n .22. 已知函数yx( 1)若m2n ,求 k 的值和点P的坐标;( 2)当 m ≤ n 时,结合函数图象,直接写出实数k 的取值范围.23.如图, AB 为O 的直径,直线BM AB 于点 B .点C在O 上,分别连接BC , AC ,且 AC 的延长线交 BM 于点 D . CF 为O 的切线交 BM 于点F .(1)求证:CF DF;(2)连接OF . 若AB 10,BC 6,求线段 OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035 年美丽中国目标基本实现 .森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到 2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表 1全国森林面积和森林覆盖率5表 2北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第 ________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为 a,全国森林覆盖率 21.63% 记为 b,到 2018 年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含 a 和 b 的式子表示) .25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为 4 平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则 y 关于x的函数表达式为;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当 x =时, y 有最小值.由此,小强确定篱笆长至少为米 .26.在平面直角坐标系xOy中,抛物线2经过点 A1,0 和点 B 4,5.y ax bx 3 a 0( 1)求该抛物线的表达式;( 2)求直线 AB 关于x轴的对称直线的表达式;( 3)点 P 是x轴上的动点,过点 P 作垂直于x轴的直线l,直线l与该抛物线交于点M ,与直线 AB 交于点 N .当 PM <PN 时,求点 P 的横坐标x P的取值范围.27.如图所示,点 P 位于等边△ABC的内部,且∠ ACP=∠ CBP.(1)∠ BPC 的度数为 ________ °;(2)延长 BP 至点 D ,使得 PD=PC,连接 AD, CD.①依题意,补全图形;②证明: AD +CD =BD ;7(3) 在 (2)的条件下,若 BD 的长为 2,求四边形 ABCD 的面积.28. 研究发现, 抛物线 y1 x2 上的点到点 F(0,1)的距离与到直线 l : y 1的距离相等 .如图 1 所示, 若点 P14是抛物线 yx 2 上任意一点, PH ⊥l 于点 H ,则 PF PH .4基于上述发现,对于平面直角坐标系 x O y 中的点 M ,记点 M 到点 P 的距离与点 P 到点 F 的距离之和的最小值为 d ,称 d 为点 M 关于抛物线 y1 x2 的关联距离;当 2≤d ≤4 时,称点 M 为抛物线 y1 x2 的关联4 4点 .( 1)在点 M 1(2,0) , M 2 (1,2) , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关联点是 ______ ;4( 2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 A(t 1,3) C( t.①若 t=4 ,点 M 在矩形 ABCD 上,求点 M 关于抛物线 y1 x2 的关联距离 d 的取值范围;14②若矩形 ABCD 上的所有点都是抛物线 yx 2 的关联点,则 t 的取值范围是 __________.4东城区 2017-2018 学年度第二学期初三年级统一测试(二)数学试题卷 参考答案及评分标准2018.5一、选择题(本题共 16 分,每小题 2 分)题号 1 2 3 4 5 6 7 8 答案CACDDACB二、填空题(本题共 16 分,每小题 2 分)9. x > 0 10.21,,2, -1 , 21,, 2, -1 (写出一个即可)11. 212.1,1 m 13. x 2x1.825014. 120 ; 3 000 15. 2 2816.三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68 分, 17-24 题,每题 5 分,第 25 题 6 分, 26-27 题,每小题7 分,第 28 题 8 分)17. 解:原式 =3-23-8+2 3 --------------------------------------------------------------------4分2= 3 - 5--------------------------------------------------------------------------------------------------5分18. 解:移项,得1x 2 <1,3去分母,得x2<3 ,移项,得 x<5 .∴不等式组的解集为x<5 .--------------------------------------------------------------------3分--------------------------------5分19.证明:( 1)∵DE垂直平分AB ,∴AED 90 .∴AED C .∵A A ,∴△ ADE ∽△ ABC . --------------------------------------------------------------------2分(2) Rt△ABC中,AC8 , BC6,∴ AB 10 .∵ DE 平分 AB ,∴ AE 5.∵△ ADE∽△ ABC ,DE AE.∴ACBC∴ DE5.68∴ DE 15. ---------------------------------------------------------------------5分4k0,20. 解:(1)依题意,得264k>0,解得 k<9且k 0 . ----------------------------------------------------------------------2分(2)∵ k 是小于9的最大整数,∴ k =8 .9此时的方程为 8x 26x 1 0 .解得 x = 1 , x = 1.---------------------------------------------------------------------5分122421 . (1) 证明:∵四边形ABCD 是菱形,∴ BC =DC , ∠BAD∠BCD .∵ ∠ECF ,∴BCD ∠ECF .∴ BCE= DCF .∵线段 CF 由线段 CE 绕点 C 顺时针旋转得到, ∴ CE =CF .在 △BEC 和 △ DFC 中,BC DC , BCEDCF ,CE CF ,∴ △BEC ≌ △ DFC SAS .∴ BE=DF . ----------------------------------------------------------------------2 分(2) 解:∵四边形 ABCD 是菱形,∴ACB ∠ACD , AC BD .∴ ACB+∠ EBC 90 . ∵ EB=EC ,∴ EBC= BCE .由( 1)可知, ∵EBC= DCF ,∴ DCF +∠ACD EBCACB90 .∴ ∠ACF 90.∴ AC CF . ---------------------------------------------------------------------5 分1 , P ,2,或 P, 2 ;--------------------------- 3 分22. 解:(1) k222 22(2) k ≥1.---------------------------------------------------------------------5 分23. ( 1)证明:∵ AB 是 O 的直径,∴ ACB 90 .∴ DCB 90 .∴CDB FBC 90 .∵AB 是 O 的直径, MB ⊥AB ,10∴ MB 是O 的切线.∵ CF 是O 的切线,∴FC FB .∴FCB = FBC .∵FCB DCF 90,∴CDB = DCF .∴ CF =DF . ---------------------------------------------------------------------3分( 2)由( 1)可知,△ABC是直角三角形,在Rt△ABC 中, AB=10 , BC =6 ,根据勾股定理求得AC=8 .在 Rt△ ABC 和 Rt△ADB 中,,AA ACB,ABD∴Rt△ ABC ∽ Rt△ADB .∴AB AC .AD AB∴108 .AD 1025∴ AD.2由( 1)知,∵CF =DF ,CF =BF ,∴ DF =BF .∵AO=BO ,∴OF 是△ADB 的中位线.∴ OF1 AD 25.---------------------------------------------------------------------5分2424. 解: (1)四;---------------------------------------------------------------------1分( 2)如图:---------------------------------------------------------------------3分11(3) 543a.------------------------------------------------------5分2000b25. 解:y 2 x 4;----------------------------------------------1分x8 ,10 ;--------------------------------------------------------3分如图;----------------------------------------------------------4分2,8 .-----------------------------------------------------------5分26. 解:( 1)把点 ( 1,0) 和 (4,5)分别代入 y ax2bx 3(a 0) ,,0 a - b - 3得,5 16a 4b - 3解得 a 1, b 2.∴抛物线的表达式为y x22x 3 .-------------------------------------------------------------2分( 2)设点B 4,5关于x轴的对称点为 B ,则点 B 的坐标为 4, - 5 .∴直线 AB 关于x轴的对称直线为直线AB .设直线 AB 的表达式为y mx n ,把点 ( 1,0) 和 (4, 5) 分别代入y mx n,120m n,得5 4m n,解得 m1,n1.∴直线 AB 的表达式为y x 1.即直线 AB 关于x轴的对称直线的表达式为y x 1 . --------------------------------------4分( 3)如图,直线AB 与抛物线y x22x 3 交于点C.设直线 l 与直线AB 的交点为 N ,则PN ' PN .∵ PM PN ,∴PM PN ' .∴点 M 在线段NN '上(不含端点).∴点 M 在抛物线y x22x 3 夹在点C与点B之间的部分上.联立 y x22x 3 与y x 1 ,可求得点 C 的横坐标为2.又点 B 的横坐标为4,∴点 P 的横坐标x P的取值范围为 2 x P4.--------------------------------------------------7分27.解:(1)120°.--------------------------------------------------- 2 分(2)①∵如图 1 所示 .②在等边△ ABC 中,ACB60 ,∴ACPBCP 60 .∵ACP= CBP,∴CBPBCP 60 .∴BPC 180CBPBCP 120 .∴CPD 180BPC 60 .13∵ PD =PC ,∴ △CDP 为等边三角形 .∵ACD ACP ACPBCP 60 ,∴ ACD BCP.在 △ACD 和 △ BCP 中,AC BC , ACDBCP ,CD CP ,∴ △ACD ≌△ BCP SAS .∴ AD BP.∴ AD CDBP PD BD. ----------------------------------------------------------------- 4分( 3)如图 2,作 BM ⊥ AD 于点 M , BN ⊥DC 延长线于点 N .∵ ADB =ADC PDC 60 ,∴ ADB = CDB 60 .∴ ADB = CDB 60 .∴ BM =BN3BD3.2又由( 2)得, AD CD BD=2,S四边形 ABCD=S△ABD+S△BCD1AD BM1CD BN3AD CD2223 2 3.7 分228. (1) M 1, M 2 ;-----------------------------------------------------------------2 分( 2)①当 t 4 时, A 41, , B 51, , C 5,3 , D 4,3 , 此时矩形 ABCD 上的所有点都在抛物线 y1x 2 的下方,4∴ dMF .∴ AF ≤ d ≤ CF .14∵ AF =4, CF =29 ,∴ 4≤ d≤ 29.----------------------------------------------------------------------------------5分② -2 3≤ t ≤ 2 3 1. ------------------------------------------------------------------------8分15。