上海市普陀区2016-2017学年八年级下学期期末考试数学试题
- 格式:doc
- 大小:313.39 KB
- 文档页数:8
2016-2017学年八年级下册期末数学试卷一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.56.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.707.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.510.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b211.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线12.不等式x≥2的解集在数轴上表示为()A.B.C.D.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a217.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于;等腰三角形的一个角为100°,则它的底角为.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=度.25.若,则=.26.已知=3,则=;分解因式:ab2﹣2ab+a=.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是.28.如果x<﹣2,则=;化简•的结果为.29.化简:÷(a﹣b)•=;计算:+﹣=.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为度.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.32.解分式方程:+=1.33.解不等式组:,并指出它的所有整数解.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.2016-2017学年八年级下册期末数学试卷参考答案与试题解析一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°【考点】平行线的性质.【分析】由AE∥BD,根据两直线平行,同位角相等,即可求得∠CBD的度数,又由对顶角相等,即可得∠CDB的度数,由三角形内角和定理即可求得∠C的度数.【解答】解:∵AE∥BD,∴∠CBD=∠1=120°,∵∠BDC=∠2=40°,∠C+∠CBD+∠CDB=180°,∴∠C=20°.故选B.【点评】此题考查了平行线的性质与三角形内角和定理.注意两直线平行,同位角相等.3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定与性质.【专题】作图题.【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【考点】角平分线的性质;全等三角形的判定与性质.【专题】计算题;压轴题.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.6.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.70【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠CAB的度数,再由直角三角形的性质求出∠PAB的度数,故可得出结论.【解答】解:∵直线l1∥l2被直线l3所截,∴∠CAB=180°﹣∠1﹣∠2=180°﹣35°﹣35°=110°,∵△ABP中,∠2=35°,∠P=90°,∴∠PAB=90°﹣35°=55°,∴∠3=∠CAB﹣∠PAB=110°﹣55°=55°.故选:B.【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同旁内角互补.7.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°【考点】平行线的性质.【专题】计算题.【分析】如图,过点D作c∥a.由平行线的性质进行解题.【解答】解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.5【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:中的分母含有字母是分式.故选A.【点评】本题主要考查分式的定义,π不是字母,不是分式.10.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用完全平方公式及平方差公式判断即可.【解答】解:A、原式=﹣(a﹣b)2,不合题意;B、原式=(a+)2,不合题意;C、原式=(﹣a+5b)(﹣a﹣5b),不合题意;D、原式不能用公式分解,符合题意,故选D【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.11.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.【解答】解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选B.【点评】本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.12.不等式x≥2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【考点】全等三角形的判定;矩形的性质.【专题】压轴题.【分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④【考点】作图—基本作图;线段垂直平分线的性质.【专题】几何图形问题.【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a2【考点】全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;压轴题.【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.17.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.【专题】推理填空题.【分析】全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.【点评】本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°【考点】翻折变换(折叠问题).【分析】根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【解答】解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于10或11;等腰三角形的一个角为100°,则它的底角为40°,40°.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.根据等腰三角形两底角相等列式计算即可得解.【解答】解:①3是腰长时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,②3是底边长时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,综上所述,这个等腰三角形的周长是10或11.∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°.故答案为:10或11;40°,40°.【点评】本题考查了等腰三角形的性质,第二问难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=31°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2=∠EFD.【解答】解:∵AB∥CD,∴∠EFD=∠1=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案为:31°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=60度.【考点】线段垂直平分线的性质.【专题】几何图形问题.【分析】根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.【解答】解:∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°,∵CE平分∠ACB,∴∠ACB=2∠BCE=80°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.25.若,则=.【考点】比例的性质.【专题】计算题.【分析】根据等比性质设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【解答】设=m,∴x=3m,y=4m,z=5m,代入原式得:==.故答案为.【点评】本题主要考查了等比性质,比较简单.26.已知=3,则=2;分解因式:ab2﹣2ab+a=a(b﹣1)2.【考点】比例的性质;提公因式法与公式法的综合运用.【分析】把=3化为a=3b,代入所求是式子计算即可;先提公因式,再运用完全平方公式进行分解即可.【解答】解:∵=3,∴a=3b,∴==2,ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2,故答案为:2;a(b﹣1)2.【点评】本题考查的是比例的性质和因式分解的方法,正确运用比例的性质把比例式进行变形和掌握因式分解的方法是解题的关键.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是m<2.【考点】解一元一次不等式.【分析】因为系数化为1时不等号改变了方向,所以系数为负数,得到不等式求解.【解答】解:根据题意得m﹣2<0,∴m<2.故答案为m<2.【点评】此题考查不等式的性质3:不等式两边都乘以(或除以)同一个负数时,不等号的方向发生改变.28.如果x<﹣2,则=﹣x﹣2;化简•的结果为..【考点】二次根式的性质与化简;分式的乘除法.【分析】(1)先求得x+2<0,然后利用绝对值进行化简即可;(2)先将分式的分子分母进行分解,然后再约分、计算即可.【解答】解:(1)∵x<﹣2,∴x+2<0.∴=|x+2|=﹣x﹣2;(2)原式==.故答案为:﹣x﹣2;.【点评】本题主要考查的是二次根式的性质和分式的化简,掌握二次根式的性质和分式化简的方法和步骤是解题的关键.29.化简:÷(a﹣b)•=;计算:+﹣=1.【考点】分式的乘除法;分式的加减法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果;原式变形后利用同分母分式的加减法则计算即可得到结果.【解答】解:原式=••=;原式===1,故答案为:;1【点评】此题考查了分式的乘除法,以及分式的加减法,熟练掌握运算法则是解本题的关键.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为15或75度.【考点】含30度角的直角三角形;等腰三角形的性质.【专题】分类讨论.【分析】分该三角形为钝角三角形和锐角三角形两种情况,再结合直角三角形的性质可求得等腰三角形的顶角,再根据等腰三角形的性质可求得底角.【解答】解:若该三角形为钝角三角形,如图1,AB=AC=4,过B作BD⊥AC,交AC的延长线于点D,∵BD=2,AB=4,∴∠BAD=30°,又AB=AC,∴∠ABC=∠C=15°,若该三角形为锐角三角形,如图2,AB=AC,过B作BD⊥AC交AC于点D,∵AB=4,BD=2,∴∠A=30°,又AB=AC,∴∠ABC=∠C==75°,综上可知该三角形的底角为15°或75°,故答案为:15或75.【点评】本题主要考查等有腰三角形、直角三角形的性质,求得顶角的度数是解题的关键.注意分类讨论思想的应用.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.【考点】因式分解-运用公式法.【专题】计算题.【分析】(1)原式利用平方差公式化简,再利用完全平方公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)原式=a2﹣a+1=(a﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.32.解分式方程:+=1.【考点】解分式方程.【专题】计算题.【分析】本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数项的不要漏乘常数项.33.解不等式组:,并指出它的所有整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x≥1,解②得:x<4.则不等式组的解集是:1≤x<4.则整数解是:1,2,3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.【考点】分式的化简求值.【专题】探究型.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=(﹣)×=×=取a=﹣1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
普陀区2016—2017学年八年级下学期考试数学试题(考试时间:90分钟,满分100分)2017、4一、选择题(本大题共6题,每题2分,满分12分)1。
一次函数21y x =-的图像经过………………………………………………。
.( ) (A )第一、二、三象限;(B)第一、三、四象限; (C )第一、二、四象限;(D )第二、三、四象限.2. 在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列式子中一定成立的是…。
……………………………………………………………………………………。
( ) (A)AC ⊥BD ; (B )OA =OC ; (C )AC =BD ; (D )OA =OD 。
3. 下列四边形中,是轴对称图形但不是中心对称图形的是……………………..( ) (A )等腰梯形; (B )平行四边形; (C )菱形; (D )矩形。
4. 已知一个多边形的内角和是900°,那么这个多边形的边数是…………….。
( ) (A ) 5; (B )6; (C ) 7; (D ) 8 .5. 如果点1122(,),(,)A x y B x y 都在一次函数3y x =-+的图像上,并且12x x <,那么1y 与2y 的大小关系正确的是………………………..。
…………………………。
( )(A )12y y > ; (B )12y y <; (C )12y y =; (D)无法判断 。
6。
下列命题中真命题是……………………………………………………………。
.( ) (A ) 对角线互相垂直的四边形是矩形; (B ) 对角线相等的四边形是矩形; (C ) 四条边都相等的四边形是矩形; (D ) 四个内角都相等的四边形是矩形 .二、填空题:(本大题共12题,每题3分,满分36分)7。
一次函数133y x =-的图像在y 轴上的截距是__________ . 8. 直线24y x =-与x 轴的交点坐标是__________ 。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
2016-2017学年上海中学八年级(下)期中数学试卷(含解析)2016-2017学年上海中学八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A. B.C.D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.(3分)下列计算正确的是()A.B. C. D.4.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.5.(3分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=56.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.59.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2410.(3分)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD11.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)12.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)13.(3分)= ,= .14.(3分)顺次连接矩形各边中点所得四边形为形.15.(3分)已知菱形的两条对角线长为8和6,那么这个菱形面积是,菱形的高.16.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF= 度.17.(3分)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点,则PB+PE的最小值是.三、解答题:(共66分)19.(8分)计算:(1)2﹣6+3(2)(﹣).20.(8分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.21.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.22.(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.23.(10分)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED 的形状,并说明理由.24.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.(10分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.2016-2017学年上海中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2014春•宁津县期末)下列二次根式中,属于最简二次根式的是()A. B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)(2016春•重庆期中)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.(3分)(2016春•津南区校级期中)下列计算正确的是()A.B. C. D.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能合并,错误;C、原式=2×=,错误;D、原式=5,正确,故选D【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.(3分)(2016春•津南区校级期中)正方形面积为36,则对角线的长为()A.6 B.C.9 D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.(3分)(2016春•庆云县期末)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.(3分)(2016春•津南区校级期中)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD【分析】利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【解答】解:A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)(2007•南通)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(3分)(2016春•津南区校级期中)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.5【分析】如下图所示:∠AOD=∠BOC=60°,即:∠COD=120°>∠AOD=60°,AD 是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA=OD=OC=OB=7.5,又因为∠AOD=∠BOC=60°,所以AD的长即可求出.【解答】解:如下图所示:矩形ABCD,对角线AC=BD=15,∠AOD=∠BOC=60°∵四边形ABCD是矩形∴OA=OD=OC=OB=×15=7.5(矩形的对角线互相平分且相等)又∵∠AOD=∠BOC=60°,∴OA=OD=AD=7.5,∵∠COD=120°>∠AOD=60°∴AD<DC所以该矩形较短的一边长为7.5,故选C.【点评】本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.9.(3分)(2016春•苏州期末)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.10.(3分)(2016春•津南区校级期中)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【分析】先根据平行四边形的判定得出四边形ABCD是平行四边形,再根据矩形的判定逐个判断即可.【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.【点评】本题考查了平行四边形和矩形的判定的应用,能熟记矩形的判定定理是解此题的关键.11.(3分)(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.12.(3分)(2016春•日照期中)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(每小题3分,共18分)13.(3分)(2016春•津南区校级期中)= ,= .【分析】根据二次根式的乘除法则以及二次根式的性质化简即可.【解答】解:==,=|﹣|=,故答案分别为,.【点评】本题考查二次根式的化简,二次根式的性质,解题的关键是掌握分母有理化的方法,记住公式=|a|,()2=a(a>0),属于中考常考题型.14.(3分)(2012•蓟县模拟)顺次连接矩形各边中点所得四边形为菱形.【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为:菱形.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.15.(3分)(2016春•津南区校级期中)已知菱形的两条对角线长为8和6,那么这个菱形面积是24 ,菱形的高.【分析】如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E,先利用勾股定理求出菱形边长,根据菱形的面积等于对角线乘积的一半等于底乘高,即可解决问题.【解答】解:如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E.∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴菱形的面积=•AC•BD=24,∵BC•AE=24,∴AE=,∴菱形的高为.故答案为24,.【点评】本题考查菱形的性质,记住菱形的面积的两种求法,①菱形面积等于三角形乘积的一半,②菱形的面积等于底乘高,属于基础题,中考常考题型.16.(3分)(2016春•津南区校级期中)如图,AD是△ABC的角平分线,DE∥AC 交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF= 90 度.【分析】先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.【点评】本题考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.17.(3分)(2004•郫县)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为20 .【分析】此题要能够根据三角形的中位线定理证明四边形A1B1C1D1是矩形,从而根据矩形的面积进行计算.【解答】解:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10∴A1D1是△ABD的中位线∴A1D1=BD=×10=5同理可得A1B1=AC=4根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形那么四边形A1B1C1D1的面积为A1D1×A1B1=5×4=20.【点评】本题考查了三角形的中位线定理,是经常出现的知识点.注意:顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.18.(3分)(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题:(共66分)19.(8分)(2016春•津南区校级期中)计算:(1)2﹣6+3(2)(﹣).【分析】(1)先把各个二次根式进行化简,合并同类二次根式即可;(2)先把各个二次根式进行化简,合并同类二次根式,再根据二次根式的除法法则计算即可.【解答】解:(1)2﹣6+3=4﹣2+12=14;(2)(﹣)=(5﹣2)÷=3÷=3.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质和二次根式的混合运算法则是解题的关键.20.(8分)(2015春•荣昌县期末)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【分析】因为x2=7﹣4直接代入,可构成两个平方差公式,计算比较简便.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.【点评】此题的难点在于将7+4写成(2+)2的形式.21.(10分)(2016春•津南区校级期中)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.【分析】如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.【解答】解:如图,连接BD.在Rt△ABD中,∵∠A=90°,AD=4,AB=3,∴BD===5,∵BD2+BC2=52+122=169,DC2=132=169,∴BD2+BC2=CD2,∴△BDC是直角三角形,∴S△DBC =•BD•BC=×5×12=30,S△ABD=•AD•AB=×3×4=6,∴四边形ABCD的面积=S△BDC +S△ADB=36.【点评】本题考查勾股定理、勾股定理的逆定理、三角形的面积等知识,解题的关键是把四边形问题转化为三角形问题解决,属于中考常考题型.22.(10分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【分析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【解答】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.23.(10分)(2013•济南模拟)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED 的形状,并说明理由.【分析】(1)提取公因式(a+b),然后整理即可得解;(2)根据矩形的对角线互相垂直平分求出OC=OD,然后求出四边形OCED是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.【解答】(1)解:2a(a+b)﹣(a+b)2,=(a+b)(2a﹣a﹣b),=(a+b)(a﹣b),=a2﹣b2;(2)解:四边形OCED菱形.理由如下:∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED是菱形.【点评】本题考查了菱形的判定,矩形的对角线互相垂直平分的性质,以及平行四边形的判定与一组邻边相等的平行四边形是菱形.24.(10分)(2013•南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.25.(10分)(2011•河池)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC 于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【分析】(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠AD B=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程(8﹣x)2=x2+(4)2,解此方程即可求得OG的长.【解答】(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB•cos30°=8×=4,AB=OB•sin30°=8×=4,∴点B的坐标为(4,4);(2)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)解:设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.【点评】此题考查了折叠的性质,三角函数的性质,平行四边形的判定,等边三角形的性质,以及勾股定理等知识.此题难度较大,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.。
2010-2011学年上海市普陀区八年级(下)期末数学试卷及答案2010-2011学年上海市普陀区八年级(下)期末数学试卷一.选择题(每题3分,共12分)2.(3分)下列方程没有实数根的个数是()(1)(2)(3)(4)x2﹣3x+5=0.二、填空题(每题2分,共28分)5.(2分)一次函数y=3x﹣1的截距是_________.6.(2分)(2009?德化县质检)将直线y=2x ﹣1向上平移2个单位得到直线_________.7.(2分)如果函数y=(2k﹣1)x+4中,y随着x的增大而减小,则k的取值范围是_________.8.(2分)化简:=_________.9.(2分)方程x3﹣3x2﹣10x=0的根是_________.10.(2分)若方程,设,则原方程可化为整式方程为_________.11.(2分)如果方程有增根,则m的值为_________.12.(2分)十边形的外角和是_________°.13.(2分)一个口袋内有10个标有1~10号的小球,它们的形状大小完全相同.从中任意摸取1球,则摸到球号是偶数的概率是_________14.(2分)已知平行四边形一组对角的和等于270°,那么在这个平行四边形中较小的一个内角等于_________度.15.(2分)菱形的边长为5,一条对角线长为8,另一条对角线长为_________.16.(2分)如果顺次连接四边形ABCD各边中点所得的四边形是菱形,那么对角线AC 与BD只需满足的条件是_________.17.(2分)(2012?许昌一模)某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月的增长率为x,则根据题意列出的方程应为_________.18.(2分)(2007?怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称_________.三、简答题(每题7分,共35分)19.(7分)已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x轴交点的坐标.20.(7分)解方程:.21.(7分)解方程组:.22.(7分)已知:如图,平行四边形ABCD ,E 、F 是直线AC 上两点,且AE=CF 求证:四边形EBFD 为平行四边形.23.(7分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB=CD ,AE ⊥BC 于E ,∠B=60°,∠DAC=45°,求梯形ABCD 的周长?四、解答题(每题8分,共16分) 24.(8分)(2007?虹口区一模)某学校库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后,已知甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套.甲、乙两个木工小组每天各修桌凳多少套?25.(8分)如图,在正方形ABCD 中,点E 、F 分别是边AB 、AD 的中点,DE 与CF 相交于G ,DE 、CB 的延长线相交于点H ,点M 是CG 的中点.求证:(1)BM ∥GH ;(2)BM ⊥CF .五、综合题(2′+3′+4′=9分)26.(9分)如图,直线与x 轴相交于点A ,与直线相交于点P .(1)求点P 的坐标.(2)请判断△OPA 的形状并说明理由.(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求S 与t 之间的函数关系式.2010-2011学年上海市普陀区八年级(下)期末数学试卷参考答案与试题解析一.选择题(每题3分,共12分)2.(3分)下列方程没有实数根的个数是()(1)(2)(3)(4)x 2﹣3x+5=0.)由∵)由x=x=x=)由二、填空题(每题2分,共28分) 5.(2分)一次函数y=3x ﹣1的截距是﹣1 . 6.(2分)(2009?德化县质检)将直线y=2x ﹣1向上平移2个单位得到直线y=2x+1 .7.(2分)如果函数y=(2k ﹣1)x+4中,y 随着x 的增大而减小,则k 的取值范围是 k <.<.8.(2分)化简:=.根据平行四边形法则,求得﹣=,又由互为相反向量的和为求得答案.=+=故答案为:.9.(2分)方程x 3﹣3x 2﹣10x=0的根是 x 1=0,x 2=5,x 3=﹣2 .10.(2分)若方程,设,则原方程可化为整式方程为y2﹣6y+5=0.把=6解:设,则原方程可化为整式方程为y+=611.(2分)如果方程有增根,则m的值为m=﹣1或m=2.,方程整理得解:方程整理得,12.(2分)十边形的外角和是360°.13.(2分)一个口袋内有10个标有1~10号的小球,它们的形状大小完全相同.从中任意摸取1球,则摸到球号是偶数的概率是..故答案为14.(2分)已知平行四边形一组对角的和等于270°,那么在这个平行四边形中较小的一个内角等于45度.15.(2分)菱形的边长为5,一条对角线长为8,另一条对角线长为 6 .16.(2分)如果顺次连接四边形ABCD 各边中点所得的四边形是菱形,那么对角线AC 与BD 只需满足的条件是 AC=BD .FG=BD AC EF=17.(2分)(2012?许昌一模)某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000 万元,如果平均每月的增长率为x ,则根据题意列出的方程应为200+200(1+x )+200(1+x )2=1000 .18.(2分)(2007?怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称平形四边形或等腰梯形或矩形.三、简答题(每题7分,共35分)19.(7分)已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x 轴交点的坐标.由已知得:解得:,20.(7分)解方程:.21.(7分)解方程组:.或解得:∴原方程组的解为22.(7分)已知:如图,平行四边形ABCD ,E 、F 是直线AC 上两点,且AE=CF 求证:四边形EBFD 为平行四边形.23.(7分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB=CD ,AE ⊥BC 于E ,∠B=60°,∠DAC=45°,,求梯形ABCD 的周长?∴AD+DC+BC+AB=1=4+2.4+2四、解答题(每题8分,共16分) 24.(8分)(2007?虹口区一模)某学校库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后,已知甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套.甲、乙两个木工小组每天各修桌凳多少套?25.(8分)如图,在正方形ABCD 中,点E 、F分别是边AB 、AD 的中点,DE 与CF 相交于G ,DE 、CB 的延长线相交于点H ,点M 是CG 的中点.求证:(1)BM ∥GH ;(2)BM ⊥CF .AB AD 五、综合题(2′+3′+4′=9分)26.(9分)如图,直线与x 轴相交于点A ,与直线相交于点P .(1)求点P 的坐标.(2)请判断△OPA 的形状并说明理由.(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求S 与t 之间的函数关系式.,解得:∵,时,时,。
2016-2017学年上海市普陀区玉华中学八年级(上)开学数学试卷一、填空题:(本大题共14题,每题2分,满分28分)1.的平方根是.2.计算:5﹣=.3.计算:=.4.计算:=.5.比较大小:﹣﹣.6.用幂的形式表示:=.7.如果用四舍五入法并精确到百分位,那么0.7856≈.8.点P(﹣2,)在第象限.9.经过点Q (2,﹣3)且平行y轴的直线可以表示为直线.10.点P(﹣2,3)关于x轴的对称点的坐标是.11.已知在△ABC中,∠A:∠B:∠C=2:3:4,那么∠A=度.12.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是cm.13.已知点A(﹣2,﹣1),点B(a,b),直线AB∥y轴,且AB=3,则点B的坐标是.14.已知:如图,在平面上将△ABC绕B点旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′为度.二、选择题:(本大题共4题,每题3分,满分12分)15.在实数、、、0.、π、2.1234567891011121314…(自然数依次排列)、中,无理数有()A.2个 B.3个 C.4个 D.5个16.如图,不能推断AD∥BC的是()A.∠1=∠5 B.∠2=∠4C.∠3=∠4+∠5 D.∠B+∠1+∠2=180°17.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个 B.2个 C.3个 D.4个18.下列结论正确的是()A.0.12349有六个有效数字B.0.12349精确到0.001为0.124C.12.349精确到百分位为12.35D.12.349保留两个有效数字为12.35三、计算题(本大题共有4题,每小题20分,满分20分)19.计算:(1)(﹣)2+3×.(2)﹣()2×÷.(3)(8×27)﹣(π﹣1)0﹣()﹣1;(4)××.四、解答题(第20题7分,第21-23题各8分,第24题9分)20.如图在直角坐标平面内,已知点A(﹣2,﹣3)与点B,将点A向右平移7个单位到达点C.(1)点B的坐标是;A、B两点之间距离等于;(2)点C的坐标是;△ABC的形状是;(3)画出△ABC关于原点O对称的△A1B1C1.21.完成下列证明过程.如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,说明ED=EF.解:∵∠DEC=∠B+∠BDE (),又∵∠DEF=∠B(已知),∴∠=∠(等式性质).在△EBD与△FCE中,∠=∠(已证),=(已知),∠B=∠C(已知),∴△EBD≌△FCE().∴ED=EF ().22.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.23.如图,BE=AD,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,若EC=5.求DB 的长.24.(1)如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.过D作EF∥BC 交AB于E,交AC于F,请说明EF=BE+CF的理由.(2)如图2,BD平分∠ABC,CD是△ABC中∠ACB的外角平分线,若仍然过点D作EF∥BC交AB于E,交AC于F,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF与BE、CF之间类似的数量关系?2016-2017学年上海市普陀区玉华中学八年级(上)开学数学试卷参考答案与试题解析一、填空题:(本大题共14题,每题2分,满分28分)1.的平方根是±.【考点】平方根;算术平方根.【分析】的平方根就是2的平方根,只需求出2的平方根即可.【解答】解:∵=2,2的平方根是±,∴的平方根是±.故答案为是±.2.计算:5﹣=.【考点】二次根式的加减法.【分析】先根据二次根式的加减法运算法则进行求解,然后合并同类二次根式即可.【解答】解:原式=(5﹣)=.故答案为:.3.计算:=7.【考点】二次根式的性质与化简.【分析】根据算术平方根的定义即可求解.【解答】解:==7.故答案是:7.4.计算:=4.【考点】二次根式的乘除法.【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解答】解:原式===4.故答案为:45.比较大小:﹣<﹣.【考点】有理数大小比较.【分析】先求出各数的绝对值,再根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.故答案为:<.6.用幂的形式表示:=.【考点】立方根.【分析】直接利用=(m、n为正整数)得出结果即可.【解答】解:====.故答案为:.7.如果用四舍五入法并精确到百分位,那么0.7856≈0.79.【考点】近似数和有效数字.【分析】根据近似数的精确度,把千分位上的数字5进行四舍五入即可.【解答】解:0.7856≈0.89(精确到百分位).故答案为0.79.8.点P(﹣2,)在第二象限.【考点】点的坐标.【分析】根据四个象限内点的坐标符号可判定P点所在象限.【解答】解:点P(﹣2,)在第二象限.故答案为:二.9.经过点Q (2,﹣3)且平行y轴的直线可以表示为直线x=2.【考点】坐标与图形性质.【分析】过点(2,﹣3)且平行于y轴的直线上的点的横坐标与点的横坐标2相同.【解答】解:经过点Q (2,﹣3)且平行y轴的直线可以表示为直线x=2,故答案为:x=2.10.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).11.已知在△ABC中,∠A:∠B:∠C=2:3:4,那么∠A=40度.【考点】三角形内角和定理.【分析】首先根据已知条件设出∠A=2x,再表示出∠B,∠C,根据三角形内角和定理为180°列方程即可.【解答】解:设∠A=2x,则∠B=3x,∠C=4x,根据三角形内角和为180°,可得2x+3x+4x=180°,解得x=20,则∠A=2x=40°,故答案为40.12.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是17cm.【考点】等腰三角形的性质;三角形三边关系.【分析】根据题意分两种情况:第一种是底边长为7时构不成三角形要排除,第二种情况是底边长为3,然后再将三边长相加即可求得答案.【解答】解:∵等腰三角形的两条边长分别是3cm、7cm,∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7cm,底边长为3cm,∴此等腰三角形的周长=7+7+3=17cm,故答案为:17.13.已知点A(﹣2,﹣1),点B(a,b),直线AB∥y轴,且AB=3,则点B的坐标是(﹣2,2)或(﹣2,﹣4).【考点】坐标与图形性质.【分析】由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的横坐标可能的情况.【解答】解:∵A(﹣2,﹣1),AB∥y轴,∴点B的横坐标为﹣2,∵AB=3,∴点B的纵坐标为﹣1+3=2或﹣1﹣3=﹣4,∴B点的坐标为(﹣2,2)或(﹣2,﹣4).故答案为:(﹣2,2)或(﹣2,﹣4).14.已知:如图,在平面上将△ABC绕B点旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′为40度.【考点】旋转的性质.【分析】此题结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【解答】解:∵AA′∥BC,∴∠A′AB=∠ABC=70°.∵BA′=AB,∴∠BA′A=∠BAA′=70°,∴∠ABA′=40°,又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',∴∠CBC′=∠ABA′,即可得出∠CBC'=40°.故答案为:40°.二、选择题:(本大题共4题,每题3分,满分12分)15.在实数、、、0.、π、2.1234567891011121314…(自然数依次排列)、中,无理数有()A.2个 B.3个 C.4个 D.5个【考点】无理数.【分析】根据无理数的定义:无限不循环小数叫做无理数可得答案.【解答】解:无理数有,π,2.1234567891011121314…(自然数依次排列,共3个,故选:B.16.如图,不能推断AD∥BC的是()A.∠1=∠5 B.∠2=∠4C.∠3=∠4+∠5 D.∠B+∠1+∠2=180°【考点】平行线的判定.【分析】根据平行线的判定方法分别进行分析即可.【解答】解:A、∠1=∠5可根据内错角相等两直线平行可得AD∥BC,故此选项不合题意;B、∠2=∠4可根据内错角相等两直线平行可得AB∥DC,故此选项符合题意;C、∠3=∠4+∠5可根据同位角相等两直线平行可得AD∥BC,故此选项不合题意;D、∠B+∠1+∠2=180°可根据同旁内角互补,两直线平行可得AD∥BC,故此选项不合题意;故选:B.17.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的判定.【分析】根据等边三角形的判定判断.【解答】解:第一个,三边相等的三角形是等边三角形,正确;第二个,有一个角为60度的等腰三角形为等边三角形,这是等边三角形的判定,正确;第三个,根据等边三角形的判定2,正确;第四个,三个角都是60度的三角形是等边三角形,正确;所以正确的有四个.故选D.18.下列结论正确的是()A.0.12349有六个有效数字B.0.12349精确到0.001为0.124C.12.349精确到百分位为12.35D.12.349保留两个有效数字为12.35【考点】近似数和有效数字.【分析】根据有效数字的定义对A、D进行判断;利用近似数的精确度对B、C 进行判断.【解答】解:A、0.12349有5个有效数字,所以A选项错误;B、0.12349≈0.123(精确到0.001),所以B选项错误;C、12.349确到百分位为12.35,所以C选项正确;D、12.349保留两个有效数字为12,所以D选项错误.故选C.三、计算题(本大题共有4题,每小题20分,满分20分)19.计算:(1)(﹣)2+3×.(2)﹣()2×÷.(3)(8×27)﹣(π﹣1)0﹣()﹣1;(4)××.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂.【分析】(1)先计算平方,再相乘;(2)先开方,因为1﹣<0,所以=﹣1,再乘除;(3)8×27的立方根据为2×3=6,零次幂为1;(4)都化成2和3的分数指数幂,再根据同底数幂相乘.【解答】解:(1)(﹣)2+3×,=5+3,=5+18,=23,(2)﹣()2×÷,=﹣1﹣3÷,=﹣1﹣3,=﹣2﹣1,(3)(8×27)﹣(π﹣1)0﹣()﹣1,=2×3﹣1﹣2,=6﹣3,=3,(4)××,=××××,=×,=2×,=2.四、解答题(第20题7分,第21-23题各8分,第24题9分)20.如图在直角坐标平面内,已知点A(﹣2,﹣3)与点B,将点A向右平移7个单位到达点C.(1)点B的坐标是(﹣2,4);A、B两点之间距离等于7;(2)点C的坐标是(5,﹣3);△ABC的形状是等腰直角三角形;(3)画出△ABC关于原点O对称的△A1B1C1.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用点的坐标的表示方法写出B点坐标,描出点A,从而得到AB 的长度;(2)利用点的坐标平移规律写出C点坐标,然后利用等腰直角三角形的判定方法进行判断;(3)先利用关于原点中心对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可.【解答】解:(1)点B的坐标是(﹣2,4);A、B两点之间距离等于7;(2)点C的坐标是(5,﹣3);△ABC的形状是等腰直角三角形;(3)画出△ABC关于原点O对称的△A1B1C1.故答案为(﹣2,4),7;(5,﹣3),等腰直角三角形.21.完成下列证明过程.如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,说明ED=EF.解:∵∠DEC=∠B+∠BDE (三角形外角的性质),又∵∠DEF=∠B(已知),∴∠BDE=∠CEF(等式性质).在△EBD与△FCE中,∠BDE=∠CEF(已证),BD=CE(已知),∠B=∠C(已知),∴△EBD≌△FCE(ASA).∴ED=EF (全等三角形的对应边相等.).【考点】全等三角形的判定与性质.【分析】由条件证明△EBD≌△FCE即可得到ED=EF,据此填空即可.【解答】解:∵∠DEC=∠B+∠BDE (三角形外角的性质),又∵∠DEF=∠B(已知),∴∠BDE=∠CEF(等式性质).在△EBD与△FCE中,∴△EBD≌△FCE(ASA).∴ED=EF (全等三角形的对应边相等).故答案为:三角形外角的性质;BDE;CEF;BDE;CEF;BD;CE;ASA;全等三角形的对应边相等.22.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】根据题中条件由SAS可得△ABC≌△DEF,即∠ACB=∠F,进而可得出结论.【解答】证明:∵AB∥DE,∴∠B=∠DEF∵BE=CF,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.23.如图,BE=AD,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,若EC=5.求DB 的长.【考点】全等三角形的判定与性质.【分析】根据垂直的定义可得∠ADB=∠BEC=90°,再根据同角的余角相等求出∠A=∠CBE,然后利用“HL”证明△ABD和△BCE全等,根据全等三角形对应边相等可得DB=EC.【解答】解:∵AD⊥BP,CE⊥PB,∴∠ADB=∠BEC=90°,在△ABD和△BCE中,,∴△ABD≌△BCE(HL),∴DB=EC=5.24.(1)如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.过D作EF∥BC 交AB于E,交AC于F,请说明EF=BE+CF的理由.(2)如图2,BD平分∠ABC,CD是△ABC中∠ACB的外角平分线,若仍然过点D作EF∥BC交AB于E,交AC于F,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF与BE、CF之间类似的数量关系?【考点】等腰三角形的判定与性质;平行线的性质;三角形的外角性质.【分析】(1)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE=ED,CF=FD即可.(2)与(1)方法相同.【解答】(1)∵在△ABC中,BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠DBC,∠DCB=∠FCD.又∵EF∥BC交AB于E,交AC于F,∴∠EDB=∠DBC,∠FDC=∠DCB∴∠EBD=∠EDB,∠FDC=∠FCD,∴BE=ED,CF=FD,∴EF=ED+DF=BE+CF.即:EF=BE+CF.(2)不成立.EF=BE﹣CF.理由如下(如图):∵BD平分∠ABC,CD是△ABC中∠ACB的外角平分线∠EBD=∠DBC,∠FCD=∠DCG∵EF∥BC交AB于E,交AC于F,∴∠EDB=∠DBC,∠FDC=∠DCG,∴∠EBD=∠EDB,∠FDC=∠FCD,∴BE=DE,DF=CF,∴EF=BE﹣CF.2017年2月17日。
2016学年上海市普陀区八年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列方程中,属于无理方程的是()A.B.C.D.2.(2分)解方程﹣=时,去分母方程两边同乘的最简公分母()A.(x+1)(x﹣1)B.3(x+1)(x﹣1)C.x(x+1)(x﹣1)D.3x(x+1)(x﹣1)3.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.矩形B.平行四边形C.直角梯形D.等腰梯形4.(2分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.5.(2分)布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是()A.摸出的球一定是白球B.摸出的球一定是黑球C.摸出的球是白球的可能性大D.摸出的球是黑球的可能性大6.(2分)顺次连接等腰梯形各边中点所得的四边形的形状是()A.等腰梯形B.平行四边形C.矩形D.菱形二、填空题(本大题共12题,每题3分,满分36分)7.(3分)如果一次函数y=(3m﹣1)x+m的函数值y随x的值增大而减少,那么m的取值范围是.8.(3分)将一次函数y=2x的图象向上平移3个单位,平移后,若y>0,那么x的取值范围是.9.(3分)一次函数的图象在y轴上的截距为3,且与直线y=﹣2x+1平行,那么这个一次函数的解析式是.10.(3分)方程(x+1)3=﹣27的解是.11.(3分)当m取时,关于x的方程mx+m=2x无解.12.(3分)在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.13.(3分)一个多边形的内角和是外角和的4倍,那么这个多边形是边形.14.(3分)在菱形ABCD中,对角线AC、BD相交于点O,P为AB边中点,菱形ABCD的周长为24,那么OP的长等于.15.(3分)直线y=k1x+b1(k1<0)与y=k2x+b2(k2>0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为6,那么b2﹣b1的值是.16.(3分)如图,在梯形ABCD中,AB∥CD,∠ABC=90°,如果AB=5,BC=4,CD=3,那么AD=.17.(3分)如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)18.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.三、简答题:(本大题共4题,每题6分,满分24分)19.(6分)解方程:.20.(6分)解方程组:21.(6分)解方程:.22.(6分)如图,在平行四边形ABCD中,点P是BC边的中点,设,(1)试用向量表示向量,那么=;(2)在图中求作:.(保留作图痕迹,不要求写作法,写出结果).四、解答题:(第23和24题,每题6分,第25和26题,每题8分,满分28分)23.(6分)如图,梯形ABCD中AD∥BC,AB=DC,AE=GF=GC(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.24.(6分)某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.25.(8分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).26.(8分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)是x轴上的一个点,点P是坐标平面内一点.若A、B、M、P四点能构成平行四边形,请写出满足条件的所有点P的坐标(不要解题过程).2016学年上海市普陀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列方程中,属于无理方程的是()A.B.C.D.【分析】根据无理方程的定义进行解答,根号内含有未知数的方程为无理方程.【解答】解:A项的根号内没有未知数,所以不是无理方程,故本选项错误,B项的根号内没有未知数,所以不是无理方程,故本选项错误,C项的根号内含有未知数,所以是无理方程,故本选项正确,D项的根号内不含有未知数,所以不是无理方程,故本选项错误,故选:C.【点评】本题主要考查无理方程的定义,关键在于分析看看哪一项符合无理方程的定义.2.(2分)解方程﹣=时,去分母方程两边同乘的最简公分母()A.(x+1)(x﹣1)B.3(x+1)(x﹣1)C.x(x+1)(x﹣1)D.3x(x+1)(x﹣1)【分析】找出各分母的最简公分母即可.【解答】解:解方程﹣=时,去分母方程两边同乘的最简公分母3x (x+1)(x﹣1).故选:D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.矩形B.平行四边形C.直角梯形D.等腰梯形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(2分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.【分析】根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.【解答】解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D正确;故选:D.【点评】考查反比例函数和一次函数图象的性质:(1)反比例函数y=:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;(2)一次函数y=kx+b:当k>0,图象必过第一、三象限,当k<0,图象必过第二、四象限.当b>0,图象与y轴交于正半轴,当b=0,图象经过原点,当b<0,图象与y轴交于负半轴.5.(2分)布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是()A.摸出的球一定是白球B.摸出的球一定是黑球C.摸出的球是白球的可能性大D.摸出的球是黑球的可能性大【分析】直接利用各小球的个数多少,进而分析得出得到的可能性即可.【解答】解:A、∵布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,∴摸出的球不一定是白球,故此选项错误;B、∵布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,∴摸出的球不一定是黑球,故此选项错误;C、摸出的球是白球的可能性大,正确;D、摸出的球是黑球的可能性小于白球的可能性,故此选项错误.故选:C.【点评】本题主要考查了可能性大小,利用小球个数多则得到的可能性大进而分析是解题关键.6.(2分)顺次连接等腰梯形各边中点所得的四边形的形状是()A.等腰梯形B.平行四边形C.矩形D.菱形【分析】顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:根据题意画出相应的图形,连接AC、BD,由等腰梯形的性质得到AC=BD,由E、H分别为AD与DC的中点,得到EH为△ADC的中位线,利用三角形的中位线定理得到EH 等于AC的一半,EH平行于AC,同理得到FG为△ABC的中位线,得到FG等于AC的一半,FG平行于AC,进而得到EH与FG平行且相等,利用一组对边平行且相等的四边形为平行四边形得到EFGH为平行四边形,再由EF为△ABD的中位线,得到EF等于BD的一半,进而由AC=BD得到EF=EH,根据一对邻边相等的平行四边形为菱形可得证.【解答】解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,求证:四边形EFGH为菱形.证明:连接AC,BD,∵四边形ABCD为等腰梯形,∴AC=BD,∵E、H分别为AD、CD的中点,∴EH为△ADC的中位线,∴EH=AC,EH∥AC,同理FG=AC,FG∥AC,∴EH=FG,EH∥FG,∴四边形EFGH为平行四边形,同理EF为△ABD的中位线,∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.故选:D.【点评】此题考查了三角形的中位线定理,等腰梯形的性质,平行四边形的判定,以及菱形的判定,熟练掌握三角形中位线定理是解本题的关键.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)如果一次函数y=(3m﹣1)x+m的函数值y随x的值增大而减少,那么m的取值范围是m<.【分析】根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(3m﹣1)x+m的函数值y随x的值增大而减少,∴3m﹣1<0,解得m<.故答案为:m<.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.(3分)将一次函数y=2x的图象向上平移3个单位,平移后,若y>0,那么x的取值范围是x>﹣.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移3个单位,∴平移后解析式为:y=2x+3,当y=0时,x=﹣,故y>0,则x的取值范围是:x>﹣.故答案为:x>﹣.【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.9.(3分)一次函数的图象在y轴上的截距为3,且与直线y=﹣2x+1平行,那么这个一次函数的解析式是y=﹣2x+3.【分析】设所求直线解析式为y=kx+b,先根据截距的定义得到b=3,再根据两直线平行的问题得到k=﹣2,由此得到所求直线解析式为y=﹣2x+3.【解答】解:设所求直线解析式为y=kx+b,∵一次函数的图象在y轴上的截距为3,且与直线y=﹣2x+1平行,∴k=﹣2,b=3,∴所求直线解析式为y=﹣2x+3.故答案为y=﹣2x+3.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.10.(3分)方程(x+1)3=﹣27的解是x=﹣4.【分析】直接根据立方根定义对﹣27开立方得:﹣3,求出x的值.【解答】解:(x+1)3=﹣27,x+1=﹣3,x=﹣4.【点评】本题考查了立方根的定义和性质,熟练掌握立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.11.(3分)当m取2时,关于x的方程mx+m=2x无解.【分析】先移项、合并同类项,最后再依据未知数的系数为0求解即可.【解答】解:移项得:mx﹣2x=﹣m,合并同类项得:(m﹣2)x=﹣m.∵关于x的方程mx+m=2x无解,∴m﹣2=0.解得:m=2.故答案为:2.【点评】本题主要考查的是一元一次方程的解,掌握方程无解的条件是解题的关键.12.(3分)在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.【分析】由在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9的形状、大小、质地完全相同的9个球,且标号能被3整除的有3,6,9;直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9的形状、大小、质地完全相同的9个球,且标号能被3整除的有3,6,9;∴从中取出一个球,标号能被3整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)一个多边形的内角和是外角和的4倍,那么这个多边形是十边形.【分析】先设这个多边形的边数为n,得出该多边形的内角和为(n﹣2)×180°,根据多边形的内角和是外角和的4倍,列方程求解.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形的边数是10.故答案为:十.【点评】本题主要考查了多边形内角和定理与外角和定理,多边形内角和=(n ﹣2)•180(n≥3且n为整数),而多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和始终为360°.14.(3分)在菱形ABCD中,对角线AC、BD相交于点O,P为AB边中点,菱形ABCD的周长为24,那么OP的长等于3.【分析】根据菱形的性质得出AD=DC=BC=AB,AC⊥BD,求出∠AOB=90°,AB=6,根据直角三角形斜边上中线性质得出OP=AB,即可求出答案.【解答】解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,AC⊥BD,∴∠AOB=90°,∵菱形ABCD的周长为24,∴AB=6,∵P为AB边中点,∴OP=AB=3,故答案为:3.【点评】本题考查了菱形的性质,直角三角形斜边上中线性质的应用,能灵活运用菱形的性质进行推理和计算是解此题的关键,注意:菱形的四条边都相等,菱形的对角线互相垂直.15.(3分)直线y=k1x+b1(k1<0)与y=k2x+b2(k2>0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为6,那么b2﹣b1的值是6.【分析】分类讨论:当k1<0,k2>0时,直线y=k1x+b1与y轴交于C点,则C(0,b1),直线y=k2x+b2与y轴交于B点,则C(0,b2),根据三角形面积公式即可得出结果.【解答】解:如图,当k1<0,k2>0时,直线y=k1x+b1与y轴交于C点,则C(0,b1),直线y=k2x+b2与y轴交于B点,则B(0,b2),∵△ABC的面积为6,∴OA(OB+OC)=6,即×2×(b2﹣b1)=6,∴b2﹣b1=6;故答案为:6.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.16.(3分)如图,在梯形ABCD中,AB∥CD,∠ABC=90°,如果AB=5,BC=4,CD=3,那么AD=.【分析】过点D作DE⊥AB于点E,后根据勾股定理即可得出答案.【解答】解:过点D作DE⊥AB于点E,如下图所示:则DE=BC=4,AE=AB﹣EB=AB﹣DC=2,AD==2.故答案为:2.【点评】本题考查了梯形及勾股定理的知识,难度不大,属于基础题.17.(3分)如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是①③.(填写一组序号即可)【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB 可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.18.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是3.【分析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE 全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.【解答】解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.【点评】本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.三、简答题:(本大题共4题,每题6分,满分24分)19.(6分)解方程:.【分析】首先移项,然后两边平方,再移项,合并同类项,即可.【解答】解:(2分)x2﹣2x+1=x+1(2分)x2﹣3x=0(2分)解得:x1=0;x2=3(2分)经检验:x1=0是增根,舍去,x2=3是原方程的根,(1分)所以原方程的根是x1=3(1分)【点评】本题主要考查解无理方程,关键在于掌握好方法,认真正确地进行运算,注意最后要把x的值代入原方程进行检验.20.(6分)解方程组:【分析】此方程组较复杂,不易观察,就先变形,因式分解得出两个方程,再用加减消元法和代入消元法求解.【解答】解:由①得x﹣2y=0或x+y=0(2分)原方程组可化为:和(2分)解这两个方程组得原方程组的解为:.(6分)【点评】注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元,消元的方法有代入法和加减法.21.(6分)解方程:.【分析】因为=3×,所以可设=y,然后对方程进行整理变形.【解答】解:设y=,则原方程化为:y﹣+2=0,整理,得y2+2y﹣3=0,解得:y1=﹣3,y2=1.当y1=﹣3时,=﹣3,得:3x2+2x+3=0,则方程无实数根;当y2=1时,=1,得:x2﹣2x+1=0,解得x1=x2=1;经检验x=1是原方程的根,所以原方程的根为x=1.【点评】此题考查的是换元法解分式方程,用换元法解分式方程,可简化计算过程,减少计算量,是一种常用的方法.要注意总结能用换元法解的分式方程的特点.22.(6分)如图,在平行四边形ABCD中,点P是BC边的中点,设,(1)试用向量表示向量,那么=;(2)在图中求作:.(保留作图痕迹,不要求写作法,写出结果).【分析】(1)求出,,根据=+,即可求出,(2)如图=﹣=.【解答】解:(1)在平行四边形ABCD中,,,∵点P是BC的中点,∴,∴,∴,(2)如图:=﹣=,就是所求的向量.故答案为:.【点评】本题是基础题,考查向量的加减法的运算,注意向量的和与差后仍然是一个向量.四、解答题:(第23和24题,每题6分,第25和26题,每题8分,满分28分)23.(6分)如图,梯形ABCD中AD∥BC,AB=DC,AE=GF=GC(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.【分析】(1)首先证明∠B=∠GFC=∠C,根据平行线的判定可得GF∥AB,再由GF=AE,可得四边形AEFG是平行四边形;(2)过G作GM⊥BC垂足为M,根据等腰三角形的性质可得∠FGC=2∠FGM,然后再证明∠EFG=90°,可得四边形AEFG是矩形.【解答】证明:(1)在梯形ABCD中,∵AB=CD,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠B=∠GFC,∴GF∥AB,∵GF=AE,∴四边形AEFG是平行四边形;(2)过G作GM⊥BC垂足为M,∵GF=GC,∴∠FGC=2∠FGM,∵∠FGC=2∠EFB,∴∠FGM=∠EFB,∵∠FGM+∠GFM=90°,∴∠EFB+∠GFM=90°,∴∠EFG=90°,∴平行四边形AEFG为矩形.【点评】此题主要考查了矩形的判定和平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形,一个角是直角的平行四边形是矩形.24.(6分)某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【分析】本题的相等关系是:原计划完成绿化时间﹣实际完成绿化实际=1.设原计划平均每年完成绿化面积x万亩,则原计划完成绿化完成时间年,实际完成绿化完成时间:年,列出分式方程求解.【解答】解:设原计划平均每年完成绿化面积x万亩,根据题意,可列出方程,去分母整理得:x2+60x﹣4000=0解得:x1=40,x2=﹣100…(2分)经检验:x1=40,x2=﹣100都是原分式方程的根,因为绿化面积不能为负,所以取x=40.答:原计划平均每年完成绿化面积40万亩.【点评】本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.25.(8分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).【分析】(1)根据已知和菱形的性质证明△CBE≌△CDF,得到BE=DF,证明△AEF是等边三角形,求出EF的长;(2)延长BM交DC于点N,连结FN,证明△CMN≌△EMB,得到NM=MB,证明△FDN≌△BEF,得到FN=FB,得到BM⊥MF;(3)延长BM交DC的延长线于点N,连结FN,与(2)的证明方法相似证明BM ⊥MF.【解答】(1)解:∵四边形ABCD是菱形,∴AB=AD=BC=DC,∠D=∠CBE,又∵∠BCE=∠DCF,∴△CBE≌△CDF,∴BE=DF.又∵AB=AD,∴AB﹣BE=AD﹣DF,即AE=AF,又∵∠A=60°,∴△AEF是等边三角形,∴EF=AF,∵AF=1,∴EF=1.(2)证明:如图1,延长BM交DC于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠D=180°,又∵∠A=60°,∴∠D=120°,∴∠D=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF;(3)结论BM⊥MF仍然成立.证明:如图2,延长BM交DC的延长线于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠FDC=180°,又∵∠A=60°,∴∠FDC=120°,∴∠FDC=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF.【点评】本题考查的是菱形的性质、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线、构造全等三角形是解题的关键.26.(8分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)是x轴上的一个点,点P是坐标平面内一点.若A、B、M、P四点能构成平行四边形,请写出满足条件的所有点P的坐标(不要解题过程).【分析】(1)由A、B两点的坐标利用待定系数法可求得直线AB的解析式;(2)过A分别作x轴和y轴的垂线,垂足分别为E、F,可证明△AEC≌△AFD,可得到EC=FD,从而可把OC﹣OD转化为FD﹣OD,再利用线段的和差可求得OC ﹣OD=OE+OF=8;(3)可分别求得AM、BM和AB的长,再分AM为对角线、AB为对角线和BM 为对角线,分别利用平行四边形的对边平行且相等可求得P点坐标.【解答】解:(1)设直线AB的解析式为:y=kx+b(k≠0).∵点A(﹣4,4),点B(0,2)在直线AB上,∴,解得,∴直线AB的解析式为:y=﹣x+2;(2)不变.理由如下:过点A分别作x轴、y轴的垂线,垂足分别为E、F,如图1.则∠AEC=∠AFD=90°,又∵∠BOC=90°,∴∠EAF=90°,∴∠DAE+∠DAF=90°,∵∠CAD=90°,∴∠DAE+∠CAE=90°,∴∠CAE=∠DAF.∵A(﹣4,4),∴OE=AF=AE=OF=4.在△AEC和△AFD中∴△AEC≌△AFD(ASA),∴EC=FD.∴OC﹣OD=(OE+EC)﹣(FD﹣OF)=OE+OF=8.故OC﹣OD的值不发生变化,值为8;(3)∵A(﹣4,4),B(0,2),M(﹣4,0),∴AM=4,BM==2,AB==2,①当AM为对角线时,连接BP交AM于点H,连接PA、PM,如图2,∵四边形ABMP为平行四边形,且AB=BM,∴四边形ABMP为菱形,∴PB⊥AM,且AH=HM,PH=HB,∴P点坐标为(﹣8,2);②当BM为对角线时,∵AM⊥x轴,∴BC在y轴的负半轴上,∵四边形ABPM为平行四边形,∴BP=AM=4,∴P点坐标为(0,﹣2);③当AB为对角线时,同②可求得P点坐标为(0,6);综上可知满足条件的所有点P的坐标为(0,6)、(0,﹣2)和(﹣8,2).【点评】本题为一次函数的综合应用,涉及知识点有待定系数法、全等三角形的判定和性质、平行四边形的性质、菱形的判定和性质及分类讨论思想等.在(1)中注意待定系数法的应用步骤,在(2)中构造三角形全等是解题的关键,在(3)中确定出P点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
普陀区2016-2017学年八年级下学期考试数学试题(考试时间:90分钟,满分100分)2017、4一、选择题(本大题共6题,每题2分,满分12分)1. 一次函数21y x =-的图像经过………………………………………………...( ) (A )第一、二、三象限;(B )第一、三、四象限; (C )第一、二、四象限;(D )第二、三、四象限.2. 在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列式子中一定成立的是….…………………………………………………………………………………….( ) (A )AC ⊥BD ; (B )OA =OC ; (C )AC =BD ; (D )OA =OD .3. 下列四边形中,是轴对称图形但不是中心对称图形的是……………………..( ) (A )等腰梯形; (B )平行四边形; (C )菱形; (D )矩形.4. 已知一个多边形的内角和是900°,那么这个多边形的边数是……………...( ) (A ) 5; (B )6; (C ) 7; (D ) 8 .5. 如果点1122(,),(,)A x y B x y 都在一次函数3y x =-+的图像上,并且12x x <,那么1y 与2y 的大小关系正确的是………………………...…………………………..( )(A )12y y > ; (B )12y y <; (C )12y y =; (D )无法判断 .6. 下列命题中真命题是……………………………………………………………..( )(A ) 对角线互相垂直的四边形是矩形; (B ) 对角线相等的四边形是矩形; (C ) 四条边都相等的四边形是矩形; (D ) 四个内角都相等的四边形是矩形 .二、填空题:(本大题共12题,每题3分,满分36分)7. 一次函数133y x =-的图像在y 轴上的截距是__________ . 8. 直线24y x =-与x 轴的交点坐标是__________ .9. 已知直线y kx b =+与直线112y x =-平行,且经过点(0,3),那么该直线的表达式 是________________ .10. 已知()2f x =,那么(1)f -=________ . 11. 如图,已知四边形ABCD 是菱形,点E 在边BC 的 延长线上,且CE =BC ,那么图中与AD 相等的向量 有:__________________. 12. 四边形ABCD 中,AB //CD ,要使四边形ABCD 为平行四边形,则可添加的条件为___________ (填一个即可).13. 顺次联结等腰梯形各边中点所得到的四边形是__________ .14. 已知一个菱形的两条对角线长分别为6cm 和8cm ,那么这个菱形的边长为_______cm. 15. 在梯形ABCD 中,AD //BC ,若BC =14cm ,中位线EF =10cm ,那么AD =______cm .EDCBA(第11题图)DCB A EO DCB AD C B A 16. 已知,在梯形ABCD 中,AD //BC ,AD =4,AB =CD =6,∠B =60°,那么下底BC 的长 为___________.17. 在平面直角坐标系xOy 中,已知点(4,0)A 、(1,2)B -、(2,3)C ,如果四边形ABCD 是平行四边形,那么点C 的坐标是___________ .18. 将矩形ABCD (如图)绕点A 旋转后, 点D 落在对角线AC 上的点D ’,点C 落到C ’,如果AB =3,BC=4,那么CC ’ 的长为 .三、解答题(本大题共7题,满分52分)19. (本题6分)已知在平面直角坐标系xOy 中,已知一次函数y kx b =+(0)k ≠ 的图像经过点(2,1)A -、(4,4)B . 求这个一次函数的解析式 .20. (本题6分)已知:如图,矩形ABCD 的对角线交于点O ,DE //AC ,CE //BD . 求证:四边形OCED 是菱形 .21. (本题6分)已知:如图,在梯形ABCD 中,DC ∥AB ,AD =BC =2,BD 平分∠ABC ,∠A =60°. 求:梯形ABCD 的周长.(第18题图)温度通常有两种表示方法:华氏度(单位:F ︒)与摄氏度(单位:C ︒),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域); (2)已知某天的最低气温是-5C ︒,求与之对应的华氏度数 .23. (本题8分,第(1)小题4分,第(2)小题4分)(1)已知:如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,D 是边BC 延长线上的一点,且CD =12BC ,联结CM 、DN . 求证:四边形MCDN 是平行四边形;(2) 已知:如图,在△ABC 中,M 是边AB 的中点, D 是边BC 延长线上的一点,且CD =12BC , 作DN //CM 交AC 于点N .求证:四边形MCDN 是平行四边形.(图1) (图2)如图,在平面直角坐标系xOy 中,直线AB :2y kx =-与y 轴相交于点A ,与反比例函数8y=在第一象限内的图像相交于点B (,2)m . (1)求直线AB 的表达式;(2)将直线AB 向上平移后与反比例函数图像 在第一象限内交于点C ,且△ABC 的面积 为18,求平移后的直线的表达式 .25. (本题12分,第(1)小题6分,第(2)小题6分)已知:在矩形ABCD 中,AB =8,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别 在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形时,设BF = x ,△GFC 的面积为S ,求S 关于x 的函数关系式,并写出函数的定义域 .HGFEDCBAHGFEDCBAEODCBA2016-2017学年第二学期八年级数学学科期中考试卷参考答案一.选择题(本大题共6题,每题2分,满分12分)1.(B ); 2.(B ); 3.(A ); 4.(C ); 5.(A ); 6.(D ).二、填空题:(本大题共12题,每题3分,满分36分) 7.3-; 8.(2,0); 9.132y x =+; 10. 2; 11. BC ,CE ; 12.AD //BC 或AB =CD 、∠A=∠C 、∠B =∠D 、∠A+∠B =180°、∠C+∠D =180°等; 13.菱形; 14.5; 15.6; 16.10; 17.(7,1); 18.三、解答题(本大题共7题,满分52分)19.(本题满分6分)解:(1)∵ 一次函数y kx b =+的图像经过点(2,1)A -、(4,4)B . ∴ 2144k b k b -+=⎧⎨+=⎩, …………………………(2分)解得:122k b ⎧=⎪⎨⎪=⎩ . …………………………(2分)∴ 这个一次函数的解析式为:122y x =+. …………(2分)20.(本题满分6分)证明:∵ DE //AC ,即DE //OC , CE //BD ,即CE //OD .∴ 四边形OCED 是平行四边形. ……(2分) 又 四边形ABCD 是矩形, ∴ OC =12AC ,OD =12BD , …………(1分) 且 AC =BD . ……………………(1分) ∴ OC =OD . …………………………(1分) ∴ 四边形OCED 是菱形. ……………(1分) 【说明:其他解法,酌情给分】D CBA21.(本题满分6分)解:在梯形ABCD 中,∵DC //AB ,AD =BC =2,∠A =60°. ∴ ∠ABC =∠A =60°. ………………………(2分) ∵ BD 平分∠ABC ,∴ ∠ABD =∠CBD =30°. ∴ ∠ADB =90°,∴ AD =12AB . ∴ AB =2AD =4 . …………(1分) 又 DC //AB ,∴ ∠CDB =∠ABD , 又 ∠ABD =∠CBD , ∴ ∠CDB =∠CBD .∴ CD =BC =2 . ………………………(1分) ∴ 梯形ABCD 的周长= AB + BC + CD + AD = 4+2+2+2=10 . ……………(2分) 【说明:其他解法,酌情给分】22.(本题满分6分)解:(1)设y 关于x 之间的函数解析式为:y kx b =+()0k ≠,………(1分)把0,32x y ==;35,95x y ==代入,得: 323595b k b =⎧⎨+=⎩ , ……(1分) 解得:9532k b ⎧=⎪⎨⎪=⎩ . ………(1分)∴ 9325y x =+. …………………………………………………(1分) (2)当5x =-时,9(5)32235y =⨯-+=, ………………………(1分)∴ 与之对应的华氏度数为23°F . …………………………………(1分)23.(本题满分8分)(1)证明:∵ 点M 、N 分别是AB 、AC 的中点, ∴ MN //BC ,且MN =12BC . ……………(2分) 即:MN //CD . 又 CD =12BC ,∴ MN =CD . ………(1分)∴ 四边形MCDN 是平行四边形 . ……(1分)(2)解:取BC 的中点E ,联结ME . ………(1分) ∵ 点M 是AB 的中点,点E 是BC 的中点, ∴ ME //AC . ……………………(1分) ∴ ∠1=∠2 . 又 EC =12BC , CD =12BC . ∴ EC =CD .又 DN //CM , ∴ ∠3=∠D .∴ △MEC ≌△NCD . ……………(1分) ∴ MC =ND . ……………………(1分) 又 MC //ND .∴ 四边形MCDN 是平行四边形 . 【说明:其他解法,酌情给分】24.(本题满分8分) 解:(1)∵点B (,2)m 在8y x=的图像上, ∴ 82m=,∴ 4m =. ∴ 点B (4,2) . ………………(1分) 把点B (4,2)代入2y kx =-, 得:422k -=,∴ 1k = . ………………………(1分)∴ 直线AB 的表达式为:2y x =-. ………………………(1分) (2)设平移后的直线表达式为:y x b =+. ………………………(1分) 记它与y 轴的交点为D ,则点D (0,)b .又 点A (0,2)- . ∴ AD =2b + . ………………………(1分) 联结BD . ∵ CD //AB .∴ S △ABD = S △ABC = 18 . …………………………………………(1分) 即:1(2)4182b +⋅= .∴ 7b =. …………………………………………(1分) ∴平移后的直线表达式为:7y x =+. ………………………(1分) 【说明:其他解法,酌情给分】25.(本题满分12分)解:(1)如图1,过点G 作GM ⊥BC ,垂足为M . ………(1分) 由矩形ABCD 可知:∠A =∠B =90°. …………(1分) 由正方形EFGH 可知:∠HEF =90°,EH =EF . …………………(1分)∴ ∠1+∠2=90°, 又 ∠1+∠3=90°. ∴ ∠3=∠2 .∴ △AEH ≌△BFE .∴ BF =AE =2 . …………………………………(1分) 同理可证:△MGF ≌△BFE . ∴ △MGF ≌△AEH .∴ GM =AE =2 . …………………………………(1分) 又 FC =BC -BF =12-2 = 10 . ∴ S △GFC =12FC ·GM =12×10×2=10 . ……(1分)(2)如图2,过点G 作GM ⊥BC ,垂足为M , 联结HF . …………………………(1分) 由矩形ABCD 得:AD //BC ,∴ ∠AHF =∠HFM . ……………(1分) 由菱形EFGH 得:EH //FG ,EH =FG .∴ ∠1=∠2 . ……………(1分) ∴ ∠3=∠4 .又 ∠A =∠M =90°,EH =FG .∴ △MGF ≌△AEH . ……………(1分) ∴ GM =AE =2 .又 BF =x ,∴FC =12-x . ∴ S △GFC =12FC ·GM =12(12-x )·2=12-x . 即:S =12-x . …………………………(1分)定义域:0x ≤≤. ………………(1分)【说明:第(1)题也可用第(2)题的解法求解;其他解法,酌情给分】HGFEDCBA (图1)┌ M 1 23HGFEDCBA (图2)┌ M1234。