第7章(热力学与统计物理) 玻耳兹曼统计解析
- 格式:ppt
- 大小:1.05 MB
- 文档页数:87
第七章玻⽿兹曼统计教案分析热⼒学与统计物理课程教案第七章玻⽿兹曼统计 7.1 热⼒学量的统计表达式⼀、定域系统的内能、⼴义⼒和熵统计表达式在§6.8说过,定域系统和满⾜经典极限条件的玻⾊系统都遵从玻⽿兹曼分布。
本章根据玻⽿兹曼分布讨论这两类系统的热⼒学性质。
本节⾸先推导热⼒学量的统计表达式。
内能是系统中粒⼦⽆规则运动总能量的统计平均值.所以 ∑∑--==lβεαl l ll l l e ωεεa U ①引⼊函数1Z :∑-=lβεl l e εZ 1 ②名为粒⼦配分函数。
由式∑--=lβεαl l e ωN ②,得:1Z e e ωe N αlβεl αl ---==∑ ③上式给出参量α与N 和1Z 的关系,可以利⽤它消去式①中的α。
经过简单的运算,可得:11ln Z βZ N e ωβe e ωεe U l βεl αl βεl l αll ???? ????-=???? ????-==∑∑---- ④式④是内能的统计表达式。
在热⼒学中讲过,系统在程中可以通过功和热量两种⽅法与外界交换能量。
在⽆穷⼩过程中,系统在过程前后内能的变化dU 等于在过程中外界对系统所作的功W d 及系统从外界吸收的热量Q d 之和:Q d W d dU +=。
如果过程是准静态的, W d 可以表达为Ydy 的形式,其中dy 是外参量的改变量,Y 是外参量y 相应的外界对系统的⼴义作⽤⼒。
粒⼦的能量是外参量的函数。
由于外参量的改变,外界施于处于能级l ε的⼀个粒⼦的⼒为yεl。
因此,外界对系统的⼴义作⽤⼒Y 为: 11ln 11Z y βN Z y βe e ωy βe e ωy εa y εY αl βεl αβεαl ll l ll l l ??-=-= -===-----∑∑∑⑤式⑤是⼴义作⽤⼒的统计表达式。
它的⼀个重要例⼦是:1ln Z VβN P ??=在⽆穷⼩的准静态过程中,当外参量有dy 的改变时,外界对系统所作的功是:l ll l llεd a a y εdy Ydy ∑∑=??= 将内能∑=ll l εa U 求全微分,有:l ll ll l da εεd a dU ∑∑+=上式指出,内能的改变可以分成两项,第⼀项是粒⼦分布不变时由于能级改变⽽引起的内能变化,第⼆项是粒⼦能级不变时由于粒⼦分布改变所引起的内能变化。
《第七章 玻耳兹曼统计》小结一、基本概念: 1、1>>αe 的非定域系及定域系遵守玻耳兹曼统计。
2、经典极限条件的几种表示:1>>αe ;12232>>⎪⎭⎫ ⎝⎛⋅h m kT NVπ;m kTh N V π231>>⋅⎪⎭⎫⎝⎛;()λ>>⋅31n3、热力学第一定律的统计解释:Q d W d dU +=l ll l ll da d a dU ∑∑+=εεl ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能量引起内能变化;传热:通过改变粒子分布引起内能变化。
二、相关公式1、非定域系及定域系的最概然分布l e a l l βεαω--=2、配分函数:量子体系:∑-=ll leβεω1Z∑---==ll l l l ll le e e a βεβεβεωωωNZ N 1半经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,1Z ⎰⎰⎰==-βεβεω 经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,01Z ⎰⎰⎰==-βεβεω 3、热力学公式(热力学函数的统计表达式) 内能:β∂∂=1lnZ -NU物态方程:VlnZ N 1∂∂=βp定域系:自由能:1-NkTlnZ F = 熵:B M k .ln S Ω=或⎪⎪⎭⎫ ⎝⎛∂∂-=ββ11lnZ ln Nk S Z1>>αe 的非定域系(经典极限条件的玻色(费米)系统): 自由能:!ln -NkTlnZ F 1N kT += 熵:!ln kln S .N k BM Ω=Ω=或!ln lnZ ln Nk S 11N k Z -⎪⎪⎭⎫⎝⎛∂∂-=ββ三、应用: 1、求能量均分定理①求平均的方法要掌握:()dx x xp ⎰=x②能量均分定理的内容---能量均分定理的应用:理想气体、固体、辐射场。
第七章 玻耳兹曼统计教学内容:1、玻尔兹曼统计中粒子配分函数的量子和经典表达式、热力学量的统计表达式;2、由玻尔兹曼统计求理想气体的物态方程;3、由玻尔兹曼分布推求麦克斯韦速度、速率分布律,碰壁数;4、爱因斯坦固体热容量理论的假设和结论。
教学目的:1、理解玻耳兹曼分布是近独立粒子孤立系统在统计平衡态下处于热力学几率最大的宏观分布时粒子数按能量分布的规律。
粒子的配分函数是由和外参量等决定的状态函数。
理解玻耳兹曼关系式。
理解经典的能量均分定理应用于固体和双原子分子理想气体系统求热容量严重偏离实验结果的原因,并由能量的量子化定性解释实验结果。
2、简单应用:由玻耳兹曼分布律求其它分布律,由配分函数求理想气体(单原子分子)系统的热力学函数。
3、综合运用:应用压强的微观实质思想计算分子的碰壁数,用量子玻耳兹曼分布律求理想固体(爱因斯坦模型)的热容量。
玻耳兹曼统计:假设系统由大量定域的全同近独立粒子组成,具有确定的粒子数N ,能量E ,体积V 。
N 个粒子的在各能级的分布可以描述如下: 能 级 12,,,,l εεε … 简 并 度 12,,,,l ωωω … 粒 子 数 12,,,,l a a a … 约束条件:l la N =∑,l l la E ε=∑定域系统和满足经典极限条件的玻色和费米系统都遵从玻耳兹曼分布:l l l a e αβεω--=。
其中系数α与β由l la N =∑与l l la E ε=∑确定。
总能量是系统在某平衡态下的全部能量,包括系统作整体运动时的宏观动 能,在重力场中的势能,以及与系统整体运动和重力场存在无关的内能,是系统内部分子无规则热运动的全部能量。
因此在这里我们所说的总能量E 即总的内能U 。
§7.1 热力学量的统计表达式在§6.8说过,定域系统以及满足经典极限条件的玻色系统和费米系统都遵从玻耳兹曼分布。
本章根据玻耳兹曼分布讨论这两类系统的热力学性质。
本节首先推导热力学量的统计表达式。
第七章 玻耳兹曼统计7.1 试根据公式lllp a Vε∂=-∂∑证明,对于非相对论粒子 ()222221222x y z p n n n m m L πε⎛⎫==++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±±有2.3U p V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立. 解: 处在边长为L 的立方体中,非相对论粒子的能量本征值为()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±± (1)为书写简便起见,我们将上式简记为23,l aV ε-= (2)其中3V L =是系统的体积,常量()()222222xy z a nn n mπ=++,并以单一指标l 代表,,x y z n n n 三个量子数.由式(2)可得511322.33aV V Vεε-∂=-=-∂ (3) 代入压强公式,有22,33l ll l llUp a a V VVεε∂=-==∂∑∑ (4) 式中l l lU a ε=∑是系统的内能.上述证明示涉及分布{}l a 的具体表达式,因此式(4)对玻耳兹曼分布、玻色分布和费米分布都成立.前面我们利用粒子能量本征值对体积V 的依赖关系直接求得了系统的压强与内能的关系. 式(4)也可以用其他方法证明. 例如,按照统计物理的一般程序,在求得玻耳兹曼系统的配分函数或玻色(费米)系统的巨配分函数后,根据热力学量的统计表达式可以求得系统的压强和内能,比较二者也可证明式(4).见式(7.2.5)和式(7.5.5)及王竹溪《统计物理学导论》§6.2式(8)和§6.5式(8). 将位力定理用于理想气体也可直接证明式(4),见第九章补充题2式(6).需要强调,式(4)只适用于粒子仅有平衡运动的情形. 如果粒子还有其他的自由度,式(4)中的U 仅指平动内能.7.2 试根据公式lllp a Vε∂=-∂∑证明,对于相对论粒子 ()122222xyzcp cnn nLπε==++, (),,0,1,2,,x y z n n n =±±有1.3Up V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立.解: 处在边长为L 的立方体中,极端相对论粒子的能量本征值为()122222x y zn n nxyzcnn nLπε=++ (),,0,1,2,,x y z n n n =±± (1)用指标l 表示量子数,,,x y z n n n V 表示系统的体积,3V L =,可将上式简记为13,l aV ε-= (2)其中()122222.xyza c n n nπ=++由此可得4311.33l l aV V Vεε-∂=-=-∂ (3) 代入压强公式,得1.33l ll l llUp a a V V V εε∂=-==∂∑∑ (4) 本题与7.1题结果的差异来自能量本征值与体积V 函数关系的不同. 式(4)对玻耳兹曼分布、玻色分布和费米分布都适用.7.3 当选择不同的能量零点时,粒子第l 个能级的能量可以取为l ε或*.l ε以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在以下关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别.解: 当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆显然能级的简并度不受能量零点选择的影响. 相应的配分函数分别为1,ll lZ e βεω-=∑ (1) **1l ll ll lZ eeeβεβεβωω---∆==∑∑1,e Z β-∆= (2) 故*11ln ln .Z Z β=-∆ (3)根据内能、压强和熵的统计表达式(7.1.4),(7.1.7)和(7.1.13),容易证明*,U U N =+∆ (4)*,p p = (5)*,S S = (6)式中N 是系统的粒子数. 能量零点相差为∆时,内能相差N ∆是显然的. 式(5)和式(6)表明,压强和熵不因能量零点的选择而异. 其他热力学函数请读者自行考虑.值得注意的是,由式(7.1.3)知*,ααβ=-∆所以l l l a e αβεω--=与***l l l a e αβεω--=是相同的. 粒子数的最概然分布不因能量零点的选择而异. 在分析实际问题时可以视方便选择能量的零点.7.4 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为ln ,s s sS Nk P P =-∑式中s P 是粒子处在量子态s 的概率,1,s ss e e P N Z αβεβε---==s∑是对粒子的所有量子态求和.对于满足经典极限条件的非定域系统,熵的表达式有何不同? 解: 根据式(6.6.9),处在能量为s ε的量子态s 上的平均粒子数为.s s f e αβε--= (1)以N 表示系统的粒子数,粒子处在量子态s 上的概率为1.s ss e e P N Z αβεβε---== (2)显然,s P 满足归一化条件1,s sP =∑ (3)式中s∑是对粒子的所有可能的量子态求和. 粒子的平均能量可以表示为.s s sE P ε=∑ (4)根据式(7.1.13),定域系统的熵为()()1111ln ln ln ln s s sS Nk Z Z Nk Z Nk P Z βββεβε⎛⎫∂=- ⎪∂⎝⎭=+=+∑ln .s s sNk P P =-∑ (5)最后一步用了式(2),即1ln ln .s s P Z βε=-- (6)式(5)的熵表达式是颇具启发性的. 熵是广延量,具有相加性. 式(5)意味着一个粒子的熵等于ln .s s sk P P -∑ 它取决于粒子处在各个可能状态的概率s P . 如果粒子肯定处在某个状态r ,即s sr P δ=,粒子的熵等于零. 反之,当粒子可能处在多个微观状态时,粒子的熵大于零. 这与熵是无序度的量度的理解自然是一致的. 如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息,粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息. 所以,也可以将熵理解为信息缺乏的量度. 第九章补充题5还将证明,在正则系综理论中熵也有类似的表达式. 沙农(Shannon )在更普遍的意义上引进了信息熵的概念,成为通信理论的出发点. 甄尼斯(Jaynes )提出将熵当作统计力学的基本假设,请参看第九章补充题5. 对于满足经典极限条件的非定域系统,式(7.1.13′)给出11ln ln ln !,S Nk Z Z k N ββ⎛⎫∂=-- ⎪∂⎝⎭上式可表为0ln ,s s sS Nk P P S =-+∑ (7)其中()0ln !ln 1.S k N Nk N =-=--因为,s s f NP =将式(7)用s f 表出,并注意,ssfN =∑可得ln .s s sS k f f Nk =-+∑ (8)这是满足玻耳兹曼分布的非定域系统的熵的一个表达式. 请与习题8.2的结果比较.7.5 因体含有A ,B 两种原子. 试证明由于原子在晶体格点的随机分布引起的混合熵为()()()()!ln!1!ln 1ln 1,N S k Nx N x Nk x x x x =-⎡⎤⎣⎦=-+--⎡⎤⎣⎦其中N 是总原子数,x 是A 原子的百分比,1x -是B 原子的百分比. 注意1x <,上式给出的熵为正值.解: 玻耳兹曼关系给出物质系统某个宏观状态的熵与相应微观状态数Ω的关系:ln .S k Ω= (1)对于单一化学成分的固体(含某种元素或严格配比的化合物),Ω来自晶格振动导致的各种微观状态. 对于含有A ,B 两种原子的固体,则还存在由于两种原子在晶体格点上的随机分布所导致的Ω。
《第七章 玻耳兹曼统计》(期末复习)、热力学第一定律的统计解释:比较可知: 即:从统计热力学观点看, 做功:通过改变粒子能级引起内能变化;传热:通过改变粒子分布引起内能变化、相关公式 1、非定域系及定域系的最概然分布ai2、配分函数:3、热力学公式(热力学函数的统计表达式)内能:U 曲竽 物态方程:定域系:自由能:—熵®k"B 或s = Nk (inZ 」詈]dU =6W dQU 八 a i ;i 二 dUdQ - ';i da iI 量子体系:乙八代八I半经典体系:Z-'td-... e 1;q,pdq i dq 2 dq 「dp i dp 2 dp r1-厂h r应用:a i乙二 NI-—i^J经典体系: 乙二e_打 土 = ... e 1;q,P dqgdq r dpg dp「 齐h1、用玻耳兹曼分布推导单原子分子的理想气体物态方程并 说明所推导的物态方程对多原子分子的理想气体也适用。
2、能量均分定理 ① 能量均分定理的内容 ② 能量均分定理的应用:A 、 熟练掌握用能量均分定理求理想气体(单原子分子,多 原子分子)内能、热容量。
知道与实验结果的一致性及存在 的问题。
B 、 知道经典的固体模型,熟练掌握用能量均分定理求经典 固体的内能及定容热容量。
知道与实验结果的一致性及存在 的问题。
3、定域系的量子统计理论:①、爱因斯坦固体模型;②、熟练掌握用量子统计理论求爱因斯坦固体的内能及其热容 量;③、知道爱因斯坦固体模型成功之处及其不足和原因。
四、应熟练掌握的有关计算 1、求配分函数Z i 进而求系统的热力学性质 2、用S 二kln"的证明及相关应用 四、解题指导例1 :根据公式p = - | a*电=cp =(n XX +n : +n ;)1/2 , n * =n 厂 n z =0,±1,二2,…1、求广义力的基本公式丫八a i 」的应用;i:yT ,证明:对于极端相对论粒子,s sIi AiA I一V _ 3V 4/3 _ 3V V 1/3 _ 3V论对玻尔兹曼、玻色、费米分布均存立。