行程问题、追及问题
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间〞。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和〔差〕及相遇〔追及〕时间确实定第一:相遇时间和追及时间是指甲乙在完成相遇〔追及〕任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离〔追及距离〕分为:相遇距离——甲与乙在一样时间走的距离之和;S=S1+S2 甲︳→S1→∣←S2←︳乙A C B追及距离——甲与乙在一样时间走的距离之差甲︳→S1←∣乙→S2 ︳A B C在一样时间S甲=AC,S乙=BC距离差AB=S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何.走的距离是多少.都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开场相距的距离中加减。
简单的有以下几种情况:三、例题:〔一〕相遇问题〔1〕A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
假设两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T=1000/〔120+80〕。
甲︳→S1 →∣←S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000/〔120+80〕解析二:甲乙相距的距离是由甲乙在一样的时间共同走完的。
相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T〔2〕A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
知识点一、追及问题常用的公式:追及时间=追及路程÷(快的速度-慢的速度)追及路程=(快的速度-慢的速度)×追及时间追及时间=两者距离差÷两者速度差两者距离差=两者速度差×追及时间两者速度差=两者距离差÷追及时间快的速度=两者速度差+慢的速度慢的速度=快的速度-两者速度差二、简单的追及问题的解决方法:(1) 根据问题的类型,找到问题适合的方法公式。
(2) 除了未知数外,要梳理清楚追及问题里的其余两个条件。
(3)代入已知的路程公式,从而进行求解。
练习题1、放学后,贺礼和刘超同时从学校出发去往公车站,两人同向而行,贺礼行走的速度是85米/分,刘超的行走速度是70米/分,10分钟后他们两人相距多少米?2、秦叔叔刚好看到前方有一个跑步者掉落了东西,他距离秦叔叔大概135米远。
跑步者正在以每秒2.3米的速度跑步,秦叔叔此时赶紧以每秒3.2米的速度朝他追去,请问秦叔叔多少秒后可以追上跑步者?3、学校有一条长800米的环形跑道,李俊和石林同时从起点出发,朝同一方向比赛跑步。
李俊每分钟跑240米,石林每分钟跑200米。
当李俊追上石林的时候,李俊一共跑了多少米?4、爸爸以每分钟50米的速度步行去公司上班,6钟后,吴雅发现爸爸忘记带一份文件了,赶紧以每分钟75米的速度从家里出发去给爸爸送文件。
请问吴雅出发后,经过多少分钟可以追上爸爸?5、一辆小汽车和一辆大客车在相距96千米的甲、乙两地同时出发,同向而行。
小汽车每小时行驶90千米,大客车每小时速度是小汽车的图片,几小时后小汽车可以追上大客车?6、李欣和何佳同时从学校出发去往艺术中心,李欣以每分钟走75米的速度步行前往,何佳则是以每分钟195米的速度骑自行车前往艺术中心,她们二人相背而行5分钟后,何佳立即调头来追李欣,再经过多少分钟何佳可追上李欣?7、卢叔叔和刘叔叔两人同时以每小时12千米的速度从长菁镇骑车出发去东吴镇,1小时后卢叔叔发现手机忘带了立即掉头以每小时18千米的速度返回长菁镇取手机,刘叔叔保持每小时骑行12千米继续前行。
行程问题——追及问题【知识引入】追及问题也是行程问题的一种情况,这类应用题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
【知识要点讲解】解答这类问题时,关键是要明确速度差的含义(即单位时间内快者追上慢者的路程)。
其常用公式有:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷追及时间=速度差速度差=快者速度-慢者速度快者速度=速度差+慢者速度慢者速度=快者速度-速度差【基本例题】1、一辆汽车和一辆摩托车同时从甲乙两城出发,向同一个方向前进。
汽车在前,每小时行40千米;摩托车在后,每小时行75千米。
经过3小时摩托车追上汽车。
甲乙两城相距多少千米?2、弟弟出门购物,出行的速度是每小时6千米,2小时后,妈妈有事要通知弟弟,所以安排哥哥骑车去追弟弟。
已知哥哥骑车的速度是每小时30千米,那么,多少个小时后,哥哥能追上弟弟?3、一辆慢车在上午9点钟以每小时49千米的速度由甲城开往乙城,另外有一辆快车在上午11点钟每小时67千米的速度也从甲城开往乙城,铁路部门规定,同时行驶的两列火车之间的距离不能小于8千米,问:这列慢车最迟应该在什么时候停下让快车超过?4、一个人步行平均每秒行1.5米。
一列货车从他后面开过来,从车头遇到他到车尾离开他一共用了9秒钟,已知列车长153米,求列车速度。
5、一架敌机侵犯我领空,我机立即起飞迎击。
若两机相距50千米时,敌机扭转机身以每分钟14千米的速度逃跑,我机以每分钟20千米的速度追击。
当我机追至距敌机2千米时,与敌机激战,结果用1分钟将敌机击落。
问我机从起飞到击落敌机共用了多少分钟?6、甲乙两人以每分钟60米的速度同时同地同向步行出发,走了12分钟以后,甲返回取东西,而乙继续前进,甲取东西用了6分钟,然后改骑自行车以每分钟360米的速度去追乙,甲骑多少分钟才能追上乙?【巩固提高】7、甲乙二人同时从相距10千米的AB两地出发,同向而行,乙在前,甲在后。
行程问题之追及问题知识要点:追及 指速度快的追速度慢的,追及问题中的路程,时间速度这三要素主要体现在路程差(或追及时间)、速度差、追及时间上,三者之间的关系如下:速度差×追击时间=路程差 路程差÷追及时间=速度差 路程差÷速度差=追及时间 切记追击问题中追击者速度一定要大于被追者速度,否则不能追上,反而两人间距会越来越远。
例题讲解:例1. 小华与小伟从学校到江滩看神六航展,小伟以每分钟60千米的速度向江滩走去,5分钟后小华以每分钟80米得速度向江滩走去,结果两人同时到达航展的现场,问学校到航展现场之间的距离是多少?分析:解决这个问题关键是要求求出追及时间,由于小华晚出发5分钟,结果两人同时到达航展现场,说明小华追上小伟时间正好到目的地,由此可根据路程差÷速度差=追及时间,求出追及时间:(60×5)÷(80-60)=15分。
追及时间就是小华从学校到航展现场所用的时间。
解:80×[]米)(1200158060-80560=⨯=÷⨯ 答学校到航展现场的距离是1200米。
例2. 一辆卡车上午9时出发,以每小时40千米的速度向乙城驶去,2小时候,一辆小轿车以每小时70千米的速度也从甲城出发向乙城行驶,当小轿车到达乙城,大卡车距离乙城还有100千米,问小轿车是什么时候到达乙城市的?分析:有题目可知,小轿车在从甲城市行驶到乙城市的过程中,不仅要追上大卡车40×2=80千米。
还要超过100千米。
解:在相同的时间里,小轿车比大卡车多行的路程,即路程差为:40×2+100=180千米小轿车从甲城市行驶到乙城市需要时间:180÷(70-40)=6小时小轿车到达乙城市的时刻:9+2+6=17时答:小轿车是在17时到达乙城市的。
例3某城市举行“万人申奥”长跑活动,长跑队伍以每小时6千米的速度前进,长跑开始时,两名电视记者小张和小王分别从排尾、拍头同时向队伍中间进行,报道这次活动,小张和小王都乘摩托车每小时行10千米,他们离队伍中点900米处相遇,长跑队伍有多长?分析:本题是一个行进队伍中的相遇问题,相遇地点是在离队伍中点900米处,因此相对中点而言,小张的速度是摩托车速度+队伍速度,小王的速度是摩托车速度-队伍速度,两者相对速度为(10+6)-(10-6)=12千米/时,而相对中点的路程差为:(108面)900×2=1800米=1.8千米,理解这一点,问题就好解决了。
行程问题之追及问题知识要点:追及指速度快的追速度慢的,追及问题中的路程,时间速度这三要素主要体现在路程差(或追及时间)、速度差、追及时间上,三者之间的关系如下:速度差×追击时间=路程差路程差÷追及时间=速度差路程差÷速度差=追及时间切记追击问题中追击者速度一定要大于被追者速度,否则不能追上,反而两人间距会越来越远。
例题讲解:1、甲、乙两人分别从相距24千米的两地同时向东行驶,甲骑自行车每小时行13千米,乙步行每小时走5千米,几小时后甲可以追上乙?2、甲、乙两人骑自行车从A地到B地,甲每小时行13千米,乙每小时行11千米,如果乙先出发2小时,则甲追上乙需要多少小时?3、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发几小时追上第一辆汽车?4、甲乙两辆列车同时从相距150千米的A、B两城向C城驶出,乙车在前,甲车在后,行驶10小时后甲车才能追上乙车,乙车每小时行45千米,甲车每小时行多少千米?5、甲、乙两人骑自行车,甲每小时行13千米,乙每小时行11千米,如果甲乙分别从A、B两地同时出发,相向而行,则0.5小时相遇;如果同向而行,则甲追上乙需要多少小时?6、两城相距400千米。
甲、乙两车同时从两地相向而行,5小时相遇,如果甲乙同时向相同的方向行驶,20小时后甲车可追上乙车,求甲、乙两车每小时各行多少千米?1、甲乙两辆列车同时从A、B两城向C城驶出,甲车每小时行60千米,乙车每小时行45千米,乙车在前,甲车在后,行驶10小时后甲车追上乙车,问A、B两城相距多少千米?2、甲、乙两人分别从A、B两城同向而行,乙在甲的前面,甲每小时行15千米,乙每小时行6千米,5小时后甲可以追上乙,问A、B两城相距多少千米?3、甲、乙两人分别从A、B两城同向而行,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,8分钟乙追上甲,问A、B两城相距多少千米?4、双胞胎姐妹在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?5、哥哥和弟弟在同一所学校读书,哥哥每分钟走60米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时,哥哥正好追上弟弟也到达学校,问他们家离学校有多远?6、甲、乙两车同时从A地向B地开出,甲每小时行36千米,乙每小时行30千米,开出1小时后,甲车因有紧急任务返回A地,到达A地后又立即向B地开出追上乙车,当甲追上乙车时,两车正好都到达B地,求AB两地的距离?7、小明以每分钟80米的速度步行上学,他走后20分钟爸爸发现忘带作业本,立即骑摩托车去送,爸爸骑摩托车每分钟行驶480米,追上小明时距离学校还有200米的路程,求学校离小明家的路程。
追及问题知识点梳理追及问题也是行程问题中的一类。
这类问题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于追上。
解答这类问题时,要理解速度差的含义(即单位时间内快者追上慢者的路程,也就是快者速度减去慢者速度)。
要解决追及问题,要掌握以下几个基本公式:路程差=速度差×追及时间追及时间=路程差÷速度差速度差=路程差÷追及时间快者速度=速度差+慢者速度慢者速度=快者速度-速度差例题精讲例1 甲、乙两人在相距16千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲?【分析】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。
解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。
例2 名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【分析】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:甲乙的速度差:300-250=50(米)甲追上乙所用的时间: 400÷50=8(分钟)答:经过8分钟两人相遇。
例3 甲、乙两人分别从A、B两地同时出发,相向而行,4小时可以相遇。
如果两人每小时都少行1.8千米,那么要6小时才能相遇,问AB两地的距离?【分析】按原速行走,4小时相遇,如果每小时都减少1.8千米,就要6小时,多用了2小时,假如两人减速后先行4小时,则不可能相遇,这时两人应该相距(1.8×2×4)千米,这段路两人再共行2小时,这样就可以求出减速后的速度和,再乘以减速后的时间,就可以求出两地路程。
行程问题之相遇问题和追及问题知识简析:行程问题是反映物体匀速运动状况的应用题,它研究的是物体运动速度、时间和路程三者之间的关系。
基本数量关系式为:路程=速度×时间;路程÷时间=速度;路程÷速度=时间行程问题根据运动物体的个数可分为:一个物体的运动、两个物体的运动或三个物体的运动。
这里主要研究两个物体的运动,根据两个物体运动的方向,可分为:相遇问题(相向运动)、追及问题(同向运动)、相离问题(相背运动)三种情况。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体相向运动或相背运动时,以两个运动物体速度的和作为运动速度(简称速度和),当两个物体同向运动时,追击的速度就变为了两个运动物体速度的差(简称速度差)。
一、相遇问题。
两个物体在同一直线或环形路线上,同时或不同时由两地出发相向而行,在途中相遇,此类行程问题被称为相遇问题。
两个物体同时或不同时从同一地点出发,相背而行,此类行程问题被称为相离问题。
相离问题就相当于相遇问题的逆过程,这两类问题解题方法相同。
常用数量关系式为:甲的路程+乙的路程=相遇(或相离)路程速度和×相遇(或相离)时间=相遇(或相离)路程相遇(或相离)路程÷速度和=相遇(或相离)时间相遇(或相离)路程÷相遇(或相离)时间=速度和二、追及问题。
两物体在同一直线或环形路线上运动,速度慢的在前,速度快的在后,经过一段时间,速度快的追上速度慢的,此类问题通常被称为追及问题。
常用数量关系式为:路程差=追及者所行路程-被追者所行路程追及时间×速度差=路程差追及时间=路程差÷速度差速度差=路程差÷追及时间相遇问题例1、甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。
相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。
问第一次相遇点距B地多少千米?练习一:1、甲、乙两人分别从两地同时相向而行,8小时后可以相遇。
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度X时间2、相遇问题:相遇路程=速度和X相遇时间3、追及问题:相差路程=速度差X追及时间行程问题(一)相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
追及问题含义:两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
数量关系: 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间例题1 当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先 米.解析1:依题意,画出线段图如下:1)相同时间内,速度之比等于路程之比2)乙到终点还有 米,所以,根据上述速度之比,乙到达终点还需 时间。
3)乙到达时,丙离终点 米。
解析2:相同时间内,速度之比等于路程之比,乙丙的速度之比相同时间,路程之比等于速度之比,乙到达终点时,丙的行程为 例题2 从时针指向4点开始,再经过 分钟,时钟与分针第一次重合.解析:1 设钟面一周的长度为1,则在4点时,分钟落后与时针是钟面周长的 即为追及距离。
2 分针和时针的速度之差为3 两针第一次重合,即为分针第一次追上时针,所用时间 例题3 骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要多长时间,电车追上骑车人?解析:1 假设电车不停站时,电车追及距离为 ;骑车人和电车的速度之差为 米/分钟,则追及时间为2 实际上,电车要停站,那么电车要停 站,共停 分钟。
3 电车停的时间内,骑车人不停,继续前进,前进 米,这便是电车 还得追及的距离,这部分追及时间为4 电车追上骑车人的时间为 例题4甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速· · · · · 丙 乙 甲 起点 10 20 30 40 50 60度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?解析:1 甲追上乙一圈时,所用时间为;甲跑了2 甲第一次追上乙时,甲的速度米/秒;乙的速度为米/秒3 甲再次追上乙一圈时,所用时间为;此时甲跑了4 甲第二次追上乙时,甲的速度米/秒;乙的速度为米/秒5 乙第一次追上甲时,所用时间为;此时甲跑了乙跑了6 乙第一次追上甲时,甲的速度米/秒;乙的速度为米/秒7 乙跑到终点还需时间8 乙到达终点时,甲距终点的距离小试牛刀1小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒立即骑自行车以每分钟280米的速度去追小明。
专题十五行程问题——追及问题知识概要基本训练1.东西两镇相距54千米,一辆汽车从东镇出发,每小时行52千米;同时一辆农用小四轮从西镇出发,每小时行34千米。
两车同向行驶,汽车在农用车后面,经过几小时汽车可以追上农用车?2.一条长400米的环形跑道,欣欣在练习自行车,她每分钟行560米;彬彬在练长跑,他每分钟跑240米。
两人同时从同地同向出发,经过多少分钟两人可以相遇?3.在400米长的圆形跑道上,甲、乙两人同时从起跑线出发,甲每秒跑4米,乙每秒跑6米,如果两人同向而跑,那么出发后多少秒钟第一次相遇?4.好马每天走240千米,劣马每天走150千米,劣马先走12天,好马几天可以追上劣马?5.我骑兵以每小时22千米的速度追击敌兵,当到某站时,得知敌人已于2小时前逃跑,已知敌人逃跑的速度是每小时12千米,问我骑兵几小时可追上逃兵?6.有一条长80米的圆形走廊,兄弟两人同时从同一处同一方向出发,沿着走廊弟弟以每秒1米的速度步行,哥哥以每秒5米的速度奔跑。
哥哥在第2次追上弟弟时,所用的时间是多少秒?7.队伍以每小时6千米的速度前进,2小时后,通讯员骑自行车以每小时12千米的速度去追,他需多少时间才能追上队伍?8.甲、乙二人分别在相距50千米的地方同向出发,乙在甲的前面,甲每小时走16千米,乙每小时走18千米,问甲走多少小时后二人相距60千米?9.兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?10.师徒二人制作机器零件,师傅每小时制作20个,徒弟每小时制作15个,师傅有事外出时徒弟已制作了10个,再共同制作几小时,师徒二人制作的零件数相等?11.小明步行去学校,速度是每小时6千米,他离家半小时后,哥哥骑自行车追他,速度是小明的2倍,哥哥几小时能追上小明?12.一艘敌舰在离我海防哨所6千米处,以每分钟400米的速度逃走,我快艇立即从哨所出发,11分钟后在离敌舰500米处开炮击沉敌舰。
行程问题之追及问题1、追及问题的基本等量关系:追及时间=追及路程÷速度差速度差=追及路程÷追及时间追及路程=追及时间×速度差2、追及问题分类:(1)同时不同地(假设甲的速度快)甲的时间=乙的时间;原来甲乙相距路程(路程差)=甲走的路程-已走的路程(2)同地不同时(假设甲的速度快)甲的时间=乙的时间-时间差;甲的路程=乙的路程例1、小彬与小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米、如果小明站在百米跑道的起点处,小彬站在她前面10米处,两人同时同向起跑,几秒后小明能追上小彬?练习:1、甲乙两人赛跑,甲的速度就是8米/秒,乙的速度就是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙?2.两辆汽车相距120千米,甲车在乙车前面,甲车每小时行70千米,乙车每小时行90千米,乙车追上甲车需要几个小时?3.甲车每小时行50千米,走3小时后,乙车以每小时80千米的速度去追,几小时能追上?例2. 一辆汽车与一辆摩托车同时从甲乙两城出发,向一个方向前进,汽车在前,每小时40千米;摩托车在后,每小时75千米。
经过3小时摩托车追上了汽车。
甲乙两地相距多少千米?练习1、已知甲骑自行车追赶前面步行的乙,乙的速度就是每分钟60米,甲的速度就是每分钟150米,甲出发8分钟追上乙,甲乙最初相距多少米?例3、小兰与小松同时从学校去少年宫,小兰每分钟走60米,小松每分钟走70米,小松比小兰早到2分钟,学校到少年宫一共有多少米?练习1.甲、乙两人由A地到B地,甲每分钟走60米,乙每分钟走45米,乙比甲早走4分钟,两人同时到达B地,A、B两地相距多少米?2.小明与小华从学校到电影院去瞧电影,小明每分钟行40米,她出发3分钟后小华才以每分钟行50米的速度出发,结果在学校与电影院的中点处小华追上了小明,学校到电影院有多少米?例4、甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间行程问题(一)-----相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5 小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
行程问题公式如下:
1、相遇问题:路程和=速度和×相遇时间。
2、追及问题:路程差=速度差×追及时间。
3、流水行船:顺水速度=船速+水速逆水速度=船速—水速。
船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2。
4、多次相遇:线型路程:甲乙共行全程数=相遇次数×2-1。
环型路程:甲乙共行全程数=相遇次数。
其中甲共行路程=甲在单个全程所行路程×共行全程数。
5、环形跑道。
6、行程问题:中正反比例关系的应用。
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7、列车过桥问题:车长+桥长=速度×时间。
车长甲+车长乙=速度和×相遇时间。
车长甲+车长乙=速度差×追及时间。
列车与人或骑车人或另一列车上的司机的相遇及追及问题。
车长=速度和×相遇时间车长=速度差×追及时间。
行程问题辶追及问题解题方法摘要:一、行程问题概述二、追及问题解题方法1.基本公式2.分类讨论a.直线追及b.曲线追及c.多人追及3.解题步骤4.实例分析正文:一、行程问题概述行程问题是指在一定时间内,物体之间的相对位置和速度发生变化的问题。
它主要包括直线行程问题和曲线行程问题两大类。
行程问题中的关键是理解速度、时间和距离之间的关系,以及掌握恰当的解题方法。
二、追及问题解题方法1.基本公式在追及问题中,常用的基本公式有:(1)追及时间= 追及距离/ 相对速度(2)追及距离= 追及时间× 相对速度2.分类讨论(1)直线追及当两个物体在同一直线上运动时,追及问题的解题思路如下:a.判断追及情况:若初始位置满足追及条件,则追及成功;否则,追及失败。
b.计算追及时间:根据公式计算追及时间。
c.计算追及距离:根据公式计算追及距离。
(2)曲线追及当两个物体在曲线轨道上运动时,追及问题的解题思路如下:a.分析物体运动轨迹,找出相对速度最大和最小的位置。
b.在相对速度最大和最小的位置,分别计算追及时间。
c.根据追及时间,计算追及距离。
(3)多人追及当多个物体之间发生追及时,解题方法如下:a.分析各物体之间的相对速度和位置关系。
b.确定第一个追及对象,按照直线追及或曲线追及的方法计算追及时间。
c.计算第一个追及距离,然后依次计算其他追及距离。
三、解题步骤1.分析题目,确定物体运动类型(直线或曲线)。
2.计算相对速度:分析物体间的速度关系,找出相对速度。
3.判断追及情况:根据相对速度和初始位置,判断追及可能性。
4.计算追及时间:根据公式计算追及时间。
5.计算追及距离:根据公式计算追及距离。
6.实例分析:将解题步骤应用于具体问题,进行实例分析。
通过以上方法,我们可以轻松解决行程问题中的追及问题。
在实际解题过程中,关键是掌握基本公式,灵活运用分类讨论方法,并遵循解题步骤。
【知识要点屋】1.行程问题三要素:路程,速度,时间。
2.基本公式:①路程=速度×时间;②速度=路程÷时间;③时间=路程÷速度。
A、B两城相距240千米,摩比原计划用6小时从A城到B城,那么摩比每小时应该行驶_____千米;实际上摩比行驶了一半路程后发生故障,在途中停留了1小时。
如果要按照原定的时间到达B城,汽车在后一半路程上每小时应该行驶_____千米。
大宽在摩比前面120米,摩比和大宽同时同向出发。
已知大宽的速度是每分钟35米,摩比的速度是每分钟45米,那么经过_____分钟摩比可以追上大宽。
行程问题之追及问题(★★)(★★)(★★★)摩比步行上学,每分钟行75米,摩比离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米,那么,请问爸爸需要多长时间才能追上摩比?(★★★)学校操场周长400米,大宽和摩比分别同时从A、B两处按如图方向起跑。
已知大宽每分钟跑65米,摩比每分钟跑85米,请问:摩比经过多长时间能够追上大宽?(★★★★)摩比和大宽分别从相距720米的两地出发同向而行,且大宽比摩比先出发2分钟,已知摩比的速度是每分钟60米,大宽的速度为每分钟50米,试问:当摩比追上大宽的时候,大宽已经走了多少米?【趣味大挑战】(★★)狗狗赛跑,一只斗牛犬和一只牧羊犬赛跑。
牧羊犬跑的快,斗牛犬跑的慢,请问:跑到终点时,哪只狗狗会出汗多一点?【知识大总结】行程问题1.行程问题三要素:路程,速度,时间。
2.基本公式:路程÷速度=时间路程÷时间=速度速度×时间=路程追及问题1.新三要素:路程差,速度差,追及时间。
2.新基本公式:路程差÷速度差=追及时间路程差÷追及时间=速度差速度差×追及时间=路程差3.注意:⑴特点,两人的时间相同;⑵难点,是找到两人的路程差。
在开始追及之前,沿着追及方向的距离。
【今日讲题】例2,例4,例5,【讲题心得】________________________________________________________________________________ ____________________________________________________________________。
相遇和追及问题一.行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。
基本公式: 路程=速度×时间 速度=路程÷时间时间=路程÷速度关键问题:确定行程过程中的位置二.相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.相向运动相遇问题的 速度和×相遇时间=总路程,即=t S V 和和数量关系 总路程÷速度和=相遇时间总路程÷相遇时间=速度和三.追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地追击问题的 追及路程=速度差×追及时间,即=t S V 差差数量关系 速度差=追及路程÷追及时间追及时间=追及路程÷速度差【分段提速 】 环路周长(路程差)÷速度差=相遇时间环路上【同向运动】追击问题 环路周长÷相遇时间=速度差数量关系 速度差×相遇时间=环路周长速度和×相遇时间=环路周长 路程差÷速度差=相同走过的时间往返平均速度=往返总路程÷往返总时间 平均速度=总路程÷总时间1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。
行程问题习题
1、甲乙两人从相距60千米的两地同时想向而行,甲速大于乙速,6小时相遇,如果每小时各多走1千米,那么相遇地点离前1次相遇地点1千米,求甲、乙原来每小时各行多少千米???
2、 A、B、C三辆车同时从甲出发到乙地去,A、B两车速度分别为每小时50km和38km,有一辆迎面开来的卡车分别在他们出发后4小时、5小时、6小时先后与A、B、C三车相遇。
求C车的速度。
3、甲乙两地相距258千米。
一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。
已知汽车的速度是拖拉机速度的2倍。
相遇时,汽车比拖拉机多行多少千米?
追及问题是指两个物体同向运动,后一个速度快的物体追前一个慢的物体的一种行程问题。
它的基本特点是两个物体在相同时间内所走路程一个比一个多。
这其中运动时间相同是一个重要特征,一般我们从追及时间、速度差、路程差等环节入手。
他们之间的关系是:路程÷速度差=追及时间。
1、货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在离中点18千米处相遇,求东西两地相距多少千米?
2、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
求全程长多少千米?
3、甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙每小时行56千米。
两车距中点16千米处相遇。
求东西两城相距多少千米?
4、快车和慢车同时从东西两地相向开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米。
这时与慢车还相距7千米。
慢车每小时行多少千米?
5、一条环形跑道长400米,小明每分钟跑300米,小红每分钟跑250米,两人同时同地同向出发,经过多长时间小明第一次追上小红?
6、光明小学有一条长200米的环形跑道,小明和小红同时从起跑线起跑,小明每秒跑6米,小红每秒跑4米。
小明第一次追上小红时两人各跑了多少米?
7、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。
如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
8、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?
9、甲、乙两人分别从相距24千米的两地同时向东行驶,甲骑自行车每小时行13千米,乙步行每小时走5千米,几小时后甲可以追上乙?
10、甲、乙两人分别从相距36千米的A、B两城同向而行,乙在甲的前面,甲每小时行15千米,乙每小时行6千米,几小时后甲可以追上乙?
11、解放军某部队从营地出发,以每小时6千米的速度向目的地前进,8
小时后,部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络,多长时间后,通讯员能赶上队伍?
12、小明和小红的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小明每分钟走65米,小红每分钟走55米。
3分钟后两人可能相距多少米?
13、甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇。
A、B两地相距多少米?
14、甲、乙两人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回A地,在离B地180米处与甲相遇。
A、B两地相距多少米?
15、甲骑自行车每小时行15千米,乙步行每小时行5千米,如果两人同时同地同一方向出发,甲行30千米到达某地,马上从原路返回,在途中与乙相遇。
从出发到相遇,共经过几小时?
16、甲、乙两人同时从A地去B地,甲每分钟行12米,乙每分钟行9米,甲行至18千米处又回去取东西,因此比乙迟到1小时到B地。
A、B两地相距多少米?
17、甲、乙、丙三人行的速度分别是每分钟30米、40米和50米。
甲、乙在A地,而丙在B地同时相向而行,丙遇到乙后10分钟和甲相遇。
求A、B两地相距多少米?
18、甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙从西镇,同时相向而行,丙遇到乙后3分钟再遇到甲。
求两镇之间相距多少米?
19、有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米,丙车遇到甲车后20分钟后又遇到乙车。
求东西两站相距多少米?
20、甲、乙、丙三人,甲每分钟行60米,乙每分钟行67米,丙每分钟行73米,甲、乙从南镇,丙从北镇同时相向而行,丙遇到乙后10分钟又遇到甲。
求两镇之间相距多少米?
21.小红从家到火车站赶乘火车,如果每小时行5千米,那么火车开时,她还离车站1千米;如果每小时行6千米,那么她就早到车站20分钟。
问,小红家离车站多少米?
22.小明从家到学校去上学,如果每分钟走60米,那么将迟到5分;如果每分钟走80米,那么将提前3分。
问,小明家距离学校多远?
23、一个学生从家到学校,先用每分钟50米的速度走2分钟后,感到如果这样走下去,他上课就要迟到8分钟。
后来他改用每分钟60米的速度前进,结果早到5分钟,这个学生家到学校的距离是多少?
24、某人从A地到B地如果每分钟90米的速度走,那么要迟到5分钟;如果每分钟走100米,那么仍迟到3分钟。
他应以每分钟多少米的速度走才能准时到达?。