江苏省盐城市盐都区2014届九年级上学期期末考试数学试题
- 格式:doc
- 大小:498.00 KB
- 文档页数:9
江苏省盐城市九年级(上)期末数学试卷(含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .353.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数5.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .68.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .11.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+312.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 13.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣214.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .34二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 17.若53x y x +=,则yx=______. 18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 22.抛物线21(5)33y x =--+的顶点坐标是_______. 23.方程290x 的解为________.24.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.30.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.三、解答题31.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.33.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 34.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.35.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C (0,533). (1)求该函数的表达式;(2)设E 为对称轴上一点,连接AE 、CE ; ①当AE +CE 取得最小值时,点E 的坐标为 ;②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3, ∴2222AB AC BC 345=+=+=, ∵CD ⊥AB, ∴∠ADC=∠C=90°, ∴∠A+∠ACD=∠A+∠B, ∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.3.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.4.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx=得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.21.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 25.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AEAD AC=,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.30.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题31.(1)x=﹣3或x=1;(2)x=1或x=4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.32.(1)见解析;(2)14 5【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴2222345AE AB BE=+=+=.∵△ABF∽△EAD,BF ABAD EA∴=,4752BF∴=.145BF∴=.【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.33.(1)10700y x=-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,。
期末测试题【本测试题满分:120 分,时间: 120 分钟】一、选择题(每小题 3 分, 共 36 分)1.如图,将矩形沿对角线对折,使点落在处,C′交于点,下列不成立的是()A. B.∠∠A F D C. D.∠∠2.(2013·重庆中考)某特警部队为了选拔“神枪手”,举行了 1 000 米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶B 10 次,经过统计计算,甲、乙两名战士的总成绩都是99.68 环,甲的方差是0.28,乙的方差是确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定C第 1 题图0.21,则下列说法中,正3.顺次连接等腰梯形ABCD 各边的中点,所得的四边形一定是()A. 等腰梯形B. 矩形C.菱形D. 平行四边形4.若,则xx2)的结果是(xA.0B.- 2C.0 或- 2D.25.若实数满足,则x y的值是()3 y 2 x3A.1B.2 + 2C.3+2 2D.3 - 2 26.关于 x 的一元二次方程有一根为0,则 m 的值为()A.1B.- 1C.1 或- 1D.07.( 2013·四川宜宾中考)已知x=2 是一元二次方程x 2 mx 2 0 的一个解,则m的值是()A. - 3B.3C.0D.0 或 38.方程的解为()A. B. C. x1 1, x2 3 D.以上答案都不对9.△ ABC 内接于圆O,∠ 50°,∠ 60°,是圆的直径,交于点,连接,则∠等于()A. 70 °B. 110 °C. 90 °D. 120 °10.已知 P 为⊙ O 内一点, OP=2,如果⊙ O 的半径是3,那么过 P 点的最短弦长是()A.1B.2C. 5D. 2 5二、填空题(每小题 3 分, 共 30 分)11.在方格纸上有一个△ABC,它的顶点都在格点上,位置如图所示,则这个三角形是_____三角形 .12.(2013 ·湖北孝感中考)为了考察某种小麦的长势,从中抽取了 10 株麦苗,测得苗高(单位: cm)为: 16, 9, 14, 11, 12, 10, 16, 8,17, 19.则这组数据的中位数是,极差是 _____________ .13.已知一等腰梯形的周长是80 cm,它的中位线和腰长相等,梯形的高是12 cm,那么梯形的面积是cm2 .14.(山东德州中考)当x 2时, x2 11 =_____________.x2 x15.已知则 .16.(2013 ·上海中考 )在⊙ O中,已知半径长为 3,弦 AB长为 4,那么圆心 O到 AB的距离为._______.17.在 Rt△中,斜边是一元二次方程的两个实数根,则m 等于 _________.18.甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8 和 2,乙看错一次项系数,解得两根为和,则这个方程是.19.如图,⊙ O 的半径为 2,点 A 的坐标为(-2,2 3),直线AB为⊙O的切线, B 为切点.则 B 点的坐标为 __________.20.半径分别为 1 cm, 2 cm, 3 cm 的三圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为 __________.三、解答题(共 54 分)21.已知:实数,在数轴上的位置如图所示,化简:.a b x-3 -2 -1 0 1 2 3 42 3 2 3 第 21 题图22.已知x ,求值: 2x 22 3 , y 2 3 3xy 2 y 2.23.如图,矩形的对角线交于点 2 3 ,于点,求的长.AB AEOCEDB D第 23 题图第 24 题图24.如图,点是△中边上的中点,⊥,⊥,垂足分别为,且(1)求证:△是等腰三角形;(2)当∠ 90°时,试判断四边形是怎样的四边形,证明你的结论.25.已知x1 , x2是关于x的一元二次方程x2 6x k 0 的两个实数根,(1)求 k 的值;(2)求x12x228的值 .FCx12 x22 - x1 - x2115.26.如图,中的弦,圆周角,求图中阴影部分的面积.CEA BD O第 27 题图27.如图,是⊙的直径,是⊙的弦,以为直径的⊙与相交于点,,求的长 .28.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到万只.求该地区年到年高效节能灯年销售量的平均增长率.期末测试题参考答案一、选择题1.B2. B 解析 :本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵s 2 2> s乙,∴乙的成绩比甲的成绩稳定 .甲3.C 解析 : 因为等腰梯形的对角线相等,所以所得的四边形一定是菱形.4.D 解析 :因为,所以x2 x ,xx2 x ( x) 2 .x x5.C6.B 解析 : 将代入方程可求得或,但当时,方程不是一元二次方程,所以.7.A 解析 : 把 x=2 代入方程x2 mx 2 0 中,得到4+2 m +2=0,解得 m =-3.8.C9.B 解析 : 因为 BD 是圆 O 的直径,所以 .因为,所以 .又,所以 .10.D二、填空题11.等腰12.13 11 解析:把这组数据按照从小到大的顺序排列为:8,9,10,11,12,14,16,16,17,19.最大数是 19,最小数是8,所以极差为 11.因为有10 个数据,所以中位数是第五个数与第六个数的平均数,即 12 与 14 的平均数 .13.240 解析:设等腰梯形的中位线长为,则腰长为,上底加下底为,解得,所以这个梯形的面积 =20×12=240( cm2).14. 2 解析 : x2 1 1 ( x 1() x 1)1 x 1 1 12 x2 x x( x 1) x x 15.解析 : 因为所以所以,故 .16.5的和为,等腰梯形的周长2.217.4解析:设BC=a,AC =b,根据题意得,,由勾股定理可知,∴ ,解得 .∵,即,∴.18.解析:设这个一元二次方程的两根是α、,根据题意得,,那么以α、为两根的一元二次方程就是 .19.( 1,)解析:如图,过点作⊥轴于点,过点作⊥轴,∵ ⊙的半径为2,点的坐标为(-2,2 3),即,∴是圆的切线.∵, 3 ,即点的坐标为 (1, 3) .20.直角三角形解析 :根据两圆外切可知三角形的三边长分别为 3cm,4 cm, 5 cm,所以此三角形为直角三角形 .三、解答题21.解 :由数轴可知,所以, .所以 .22.解 :因为2 x2 3 xy 2 y 2 2x 2 4 xy 2 y 2 xy 2( x y) 2 xy ,2 3 2 3 ( 2 3 ) 2 ( 2 3 ) 2x y 8 3 ,2 3 2 3 ( 2 3 )( 2 3 ) ( 2 3 )( 2 3 )xy 2 3 2 31 ,( )(2)2 3 3所以2 x2 3xy 2 y2 2 (8 3) 2 1 385 .23.解:∵矩形的对角线相等且互相平分,∴.∵,∴△为等边三角形,则,∵ ⊥,∴为的中点,∴ .24.( 1)证明:因为⊥,⊥,且 ,所以△≌△ ,所以∠∠ .所以△是等腰三角形 .(2)解:当∠时,四边形是正方形.证明如下 :因为⊥,⊥,所以∠∠ .又∠ ,所以四边形是矩形 .由( 1)可知 ,所以四边形是正方形 .25.解 :( 1)因为x1 , x2 是关于 x 的一元二次方程x2 6x k 0 的两个实数根,所以 x1 x2 6 , x1x2 k .2- (x1 x2 ) k 2所以 k 2 121,k 11.所以( x1x2) 6 115,又由方程有两个实数根,可知36 - 4k 0 ,解得 k 9 .所以 k 11 .2x 2 (x1 2 - 2 x1 x2 8(2)因为x1 28 x2),且x1 x2 6,x1 x2 k 11,所以 x12 x22 8 36 22 8 66.26.解:连接,作于,则.∵,∴ .∵,∴ 为中点 .又,∴.∴,.∴ 阴影部分的面积为27.解:连接 ,∵ 为⊙的直径,为⊙的直径,∴ ∠∠ .∴ ∥ .又∵ ,∴ .∵,∴ .28. 解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴.∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴.答:该地区年到年高效节能灯年销售量的平均增长率为。
江苏省盐城市九年级上学期期末数学试卷 (解析版)一、选择题1.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)2.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DEBC的值为( )A .12B .13C .14D .194.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-2 5.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-6.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x 7.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100° 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°12.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 13.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③ 15.下列方程中,有两个不相等的实数根的是( )A .x 2﹣x ﹣1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=0二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.19.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.22.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+这个正方形的边长为_____________24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 26.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.27.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.28.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?32.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.33.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.34.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.四、压轴题36.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
江苏省盐城市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14 C .16 D .192.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤3.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.4.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .125.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 6.方程2x x =的解是( ) A .x=0 B .x=1 C .x=0或x=1 D .x=0或x=-1 7.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .68.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1210.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π- 11.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .112.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cm B .13.6cmC .32.386cmD .7.64cm13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=60015.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.一元二次方程290x 的解是__.17.二次函数23(1)2y x =-+图象的顶点坐标为________.18.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)20.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.21.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.22.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 24.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).25.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…26.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.27.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.28.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.29.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像; (2)直接写出不等式221x x x -->+的解集.32.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ; 33.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.34.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).35.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A ′恰好落在边AB 上,且AN =12AC ,求AM 的长; (2)如图2,若点A ′恰好落在边BC 上,且A ′N ∥AC . ①试判断四边形AMA ′N 的形状并说明理由; ②求AM 、MN 的长;(3)如图3,设线段NM 、BC 的延长线交于点P ,当35AN AB =且67AM AC =时,求CP 的长.四、压轴题36.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”.理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)37.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.38.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 39. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.40.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.2.B解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.3.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A、其图象的对称轴为过(3,1)且平行于y轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与x轴没有交点,说法正确,本选项不符合题意;x 时,y随x的增大而增大,说法错误,所以本选项符合题意.D、当3故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 4.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.5.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.6.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.7.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .9.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.10.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.12.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.13.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA∴==,∠=︒,90ACQ∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BADAFP ADB90∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∽,∴∆∆ACF ABC可得2=,AC AF AB∠=∠,ACQ ACB∠=∠,CAQ ABC∽,可得2CAQ CBA∴∆∆=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x-=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 18.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.19.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:5或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.20.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.21.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=故答案为4103.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,22.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】 解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD 3 ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为:33=3+π.故答案为.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 24.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.25.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.26.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC , 故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】 本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 27.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 28.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.29.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.30.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.32.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为 y =a (x -1)2-4把(0,-3)代入y =a (x -1)2-4得,a =1∴y =(x -1)2-4或y =x 2-2x -3(2)解:∵y= y =(x -1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y =x 2-2x -3关于x 轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y =-(x -1)2+4,故答案为:y =-(x -1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x 轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.33.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.34.(1)b =4,c =﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m ,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b 、c ;(2)利用描点法画出图象即可,根据图象得到C (0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0),∴抛物线为y =﹣(x ﹣2)2=﹣x 2+4x ﹣4,∴b =4,c =﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.35.(1)52;(2)①菱形,理由见解析;②AM=209,MN=109;(3)1.【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得'MAAB=CMCA,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB2222435AC BC+=+=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴ANAC=AMAB,。
2013—2014学年度第一学期期末考试 初三数学一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在答题纸上.)1▲ ) A .4 B .-4 C .±4 D2.函数y =2—1-x 中自变量x 的取值范围是( ▲ ) A .x >1B .x ≥1C .x ≤1D .1≠x3.下列图案既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .4.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是( ▲ ) A .极差是20B .中位数是91C .众数是98D .平均数是915.在平面几何中,下列命题为真命题的是( ▲ ) A .四边相等的四边形是正方形 B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形 D .对角线互相垂直的四边形是平行四边形6.已知圆锥的底面半径为2,母线长为4,则它的侧面积为( ▲ )A .4πB .16πC .43πD .8π7.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么( ▲ )A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥58.如图,已知:在边长为12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF =3,则BE 长为( ▲ )A .1B .2.5C .2.25D .1.59.如图,已知:在梯形ABCD 中,CD ∥AB ,AD 、BC 的延长线相交于点E ,AC 、BD 相交于点O ,连接EO 并延长交AB 于点M ,交CD 于点N .则S △AOE :S △BOE 等于( ▲ )A .1∶1B .4∶3C .3∶4D .3∶210.如图,在平面直角坐标系x O y 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (4n ,0)(n 为正整数),记△AOB 内部(不包括边界)的整点个数为m .则m 等于( ▲ ) A .3n B .3n -2C .6n+2D .6n -3二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)11.分解因式:x 2-2x = ▲ .12.3月20日,无锡市中级人民法院依法裁定,对无锡尚德太阳能电力有限公司实施破产重组.据调查,截至2月底,包括工行、农行、中行等在内的9家债权银行对无锡尚德的本外币授信余额折合人民币已达到7 100 000 000元,则7 100 000 000可用科学记数法表示为 ▲ .13.若双曲线xky =与直线13+=x y 的一个交点的横坐标为1-,则k 的值为 ▲ .14.六边形的内角和等于 ▲ .15.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E , OE =3cm ,则AD 的长为 ▲ . 16.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若CD =2EF =4,BC =4 2 ,则∠C 等于 ▲ .17.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm 2.(结果可保留根号) 18.在平面直角坐标系中,点A 、B 、C 的坐标分别为(2,0),(3,3),(1,3),点D 、E 的坐标分别为(m ,3m ),(n ,33n )(m 、n 为非负数),则CE +DE +DB 的最小值是 ▲ .三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.)第8题图第9题图F E DBA19.(本题满分8分)计算或化简:(1)计算:()01213332-+⨯---. (2)先化简,再求值:()()()x x x x +-+-333,其中x =-2.20.(本题满分8分)⑴ 解方程: . ⑵ 解不等式组:12512x x x +⎧⎪⎨->⎪⎩≤,,.21.(本题满分8分)在数学课上,陈老师在黑板上画出如图所示的图形,在△AEC 和△DFB 中,已知∠E =∠F ,点A ,B ,C ,D 在同一直线上,并写下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .请同学们从中再任意选取两个作为补充条件,剩下的那个关系式作为结论构造命题.小明选取了关系式①,②作为条件,关系式③作为结论。
2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。
2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。
3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。
2014届初三年级寒假作业验收考试 数 学 试 题同学们新年好!希同学们以崭新的面貌投入到决定自己一生幸福的学习生活之中,祝同学们心想事成!一、选择题(本大题共有8小题,每小题3分,共计24分)1.方程x 2= 2x 的解是 ( ) A .x =2 B .x 1=2,x 2=0 C . x 1=- 2 ,x 2=0 D .x = 02.抛物线3)2(2+-=x y 的顶点坐标是 ( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 3.已知两圆的圆心距为8cm ,半径分别为3cm ,5 cm ,则这两圆的位置关系是 ( ) A .内含 B .内切 C .相交 D .外切4.下列计算正确的是) A .20=102 B .632=⋅ C .224=- D .3=- 5.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是 ( )6.下列命题中是真命题的是 ( ) A .对角线互相垂直且相等的四边形是正方形 B .两边相等的平行四边形是菱形 C .两条对角线相等的梯形是等腰梯形 D .两条对角线相等的四边形是矩形 7.用一把带有刻度尺的直角尺, ①可以画出两条平行的直线a 和b , 如图(1); ②可以画 出∠AOB 的平分线OP , 如图(2);③可以检验工件的凹面是否为半圆, 如图(3); ④可以量出一个圆的半径, 如图(4). 这四种说法正确的有 ( ) A . 4个 B . 3个 C . 2个 D. 1个8. 已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为 2 ;④S △APD +S △APB =1+ 6 ;⑤S正方形ABCD=4+ 6 .其中正确结论的序号是()A .①②④ B.①②⑤ C .③④⑤ D .①③⑤二、填空题(共有10小题,每小题3分,共计30分.请把答案CA BDEP(第8题)图(3)图(4)图(1)图(2)填写在下面相.应横线...上.) 9.若等腰三角形的顶角为80°,则它的一个底角为 .10.若式子x -2在实数范围内有意义,则x 的取值范围是 .11.在四边形ABCD 中,AD ∥BC ,∠D =90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)12.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是 .13.数据11,8,10,9,12的极差是_ ___,方差是_ ______。
江苏省盐城地区九年级上学期期末考试数学考试卷(含答案)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中,是关于x的一元二次方程的是(▲)A.x+1x=2B.2x2﹣x=1C.3x3=1D.xy=42.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为(▲)A.3B.32C.32D.﹣23.如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于(▲)A.30°B.60°C.120°D.300°4.已知⊙O的半径是4,点P到圆心O的距离为5,则点P在(▲)A.⊙O的内部B.⊙O的外部C.⊙O上或⊙O的内部D.⊙O上或⊙O的外部(第3题)5.从拼音“shuxue”中随机抽取一个字母,抽中字母u的概率为(▲)A.13B.14C.15D.166.一组数据x、0、1、﹣2、3的平均数是1,则x的值是(▲)A.3B.1C.2.5D.07.将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是(▲)A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变8.表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是(▲)A.这个函数的最小值为﹣6B.这个函数的图象开口向下C.这个函数的图象与x轴无交点D.当x>2时,y的值随x值的增大而增大二、填空题(本大题共8小题,每小题3分,共24分)9.抛物线y=﹣2(x+2)2﹣5的顶点坐标是▲.10.方程x2﹣x=0的根为▲.11.一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是▲.12.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是▲.13.如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.则a的值为▲.14.转动如图所示的转盘,当转盘停止时,指针落在阴影区域的概率是▲.(第13题)(第14题)(第15题)15.二次函数y=ax2+bx+c的图象如图所示,则三个代数式①abc,②b2﹣4ac,③a﹣b+c中,值为正数的有▲.(填序号)16.如图中的三个图形都是边长为1的小正方形组成的网格,数一数长度为1的线段,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为▲.(用含n的代数式表示)(第16题)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17.(6分)解方程:(1)(x ﹣1)2﹣9=0 (2)x 2﹣2x ﹣5=018.(6分)已知关于x 的一元二次方程x 2+x ﹣m =0.(1)设方程的两根分别是x 1,x 2,若满足2121x x x x ⨯=+,求m 的值. (2)二次函数y =x 2+x ﹣m 的部分图象如图所示,求m 的值.19.(8分)已知二次函数y =x 2﹣4x +3. (1)将y =x 2﹣4x +3化成y =a (x ﹣h )2+k的形式: ▲ ;(2)这个二次函数图象与x 轴交点坐标为 ▲ ; (3)这个二次函数图象的最低点的坐标为 ▲ ; (4)当y <0时,x 的取值范围是 ▲ .20.(8分)已知关于x 的一元二次方程:x 2﹣(2k +2)x +k 2+2k =0. (1)当k =2时,求方程的根;(2)求证:这个方程总有两个不相等的实数根.21.(8分)九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A 、B 、C 、D 的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ▲ ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”、“列表”等方法写出分析过程).22.(10分)某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,每组20人,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955根据上面的信息,解答下列问题:(1)甲组的平均成绩为▲分,甲组成绩的中位数是▲,乙组成绩统计图中m=▲,乙组成绩的众数是▲;(2)根据图表信息,请你判断哪个小组的成绩更加稳定?只需要直接写出结论.23.(10分)如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.24.(10分)【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为▲.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长与OP的长无关.其中所有正确结论的序号是▲.【问题解决】(3)若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为▲°.(4)已知如图②给定的线段EF和⊙O,点Q是⊙O内一定点.过点Q作弦AB,满足AB=EF,请问这样的弦可以作▲条.25.(10分)某水果超市经销一种高档水果,售价每千克40元.(1)若按售价为每千克50元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,超市决定采取适当的涨价措施,但超市规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克.现该超市希望每天盈利6000元,那么每千克应涨价多少元?(2)在(1)的基础上,利用函数关系式求出每千克水果涨价多少元时,超市每天可获得最大利润?最大利润是多少?26.(12分)如图,点P 在y 轴的正半轴上,⊙P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和⊙P 于E 、F 两点,连接AC 、FC ,AC 与BD 相交于点G . (1)求证:∠ACF =∠ADB ; (2)求证:CF=DF ; (3)∠DBC = ▲ °;(4)若OB=3,OA=6,则△GDC 的面积为 ▲ .27.(14分)如图1,在平面直角坐标系中,直线y =﹣6x +6与x 轴、y 轴分别交于A 、C 两点,抛物线y =x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为B . (1)抛物线解析式为 ▲ ;(2)若点M 为x 轴下方抛物线上一动点,MN ⊥x 轴交BC 于点N ,当点M 运动到某一位置时,线段MN 的长度最大,求此时点M 的坐标及线段MN 的长度;(3)如图2,以B 为圆心、2为半径的⊙B 与x 轴交于E 、F 两点(F 在E 右侧),若点P 是⊙B 上一动点,连接P A ,以P A 为腰作等腰Rt △P AD ,使∠P AD =90°(P 、A 、D 三点为逆时针顺序),连接FD .①将线段AB 绕点A 顺时针旋转90°,请直接写出B 点的对应点B′的坐标; ②求FD 长度的取值范围.图1 图2AE FDO BCGPxy参考答案一、选择题(本大题共有8小题,每小题3分,共24分) 1.B2.A3.C4. B5.A6.A 7.D8.D二、填空题(本大题共8小题,每小题3分,共24分) 9. (-2,-5) 10.x 1=0,x 2=111.8012.π20 13.314.31 15.①②③16.2n (n +1)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17.(6分)解:(1)31±=-x2,421-==x x (3分) ()16166161)2(212+-=+=±=-=-x x x x (3分)18.(6分)解: (1)由题意得:121-=+x xmx x -=⨯21∴1=m(2分)当m=1时,∆>0,∴1=m (1分)(2)图像可知:过点(1,0) 当x=1,y=0代入y =x 2+x ﹣m ∴2=m(3分)19.(8分)解:(1) y =(x ﹣2)2﹣1; ;(2分) (2) (1,0)或(3,0) ;(2分) (3)(2,-1);(2分) (4) 1<x <3 ;(2分)20.(8分)解:(1)解:当k =2时,求方程的根为124,2x x ==.(4分) (2)证明:∵Δ=[﹣(2k +2)]2﹣4(k 2+2k )=4>0,∴不论k 取何值,此一元二次方程总有两个不相等的实数根.(4分)21.(8分)解:(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为,故答案为:; (3分)(2)画树状图如下:- (3分)共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的. (答2分) 22.(10分)解:(1) 甲组的平均成绩为 8.7 分,甲组成绩的中位数是 8.5 , 乙组图中m = 3 ,乙组成绩的众数是 8 ; (2+2+2+2分) (2)∴乙组的成绩更加稳定. (2分) 23.(10分)(1)证明:如图,连接OC , ∵P A 是半⊙O 的切线, ∴P A ⊥OA , ∴∠OAP =90°,∵OD ⊥AC ,OD 经过圆心O , ∴CD =AD , ∴PC =P A ,∵OC =OA ,OP =OP , ∴△OCP ≌△OAP (SSS ), ∴∠OCP =∠OAP =90°,∵PC 经过⊙O 的半径OC 的外端,且PC ⊥OC , ∴PC 是⊙O 的切线. (方法不唯一) (5分) (2)∵AB 是⊙O 的直径,且AB =10, ∴OA =OB =5,∵∠ADO =90°,∠CAB =30°, ∴OD =OA =23,∴AC=2AD=33, ∴S △AOC =349233321=⨯⨯, ∵∠COB =2∠CAB =60°, ∴∠AOC =180°﹣60°=120°,∴S 扇形AOC =ππ336031202=⨯, ∴S =S 扇形AOC ﹣S △AOC=3493-π(5分) 24.(10分)解:(1)若⊙O 的半径为5,OP 的长为3,则AB 的长为 8 .(2分) (2)其中所有正确结论的序号是 ② .(2分) (3) 90° (3分) (4)可以作2条. (3分) 25.(10分)解:(1)设每千克应涨价x 元,由题意,得 (10+x )(500﹣20x )=6000, 整理,得x 2﹣15x +50=0, 解得:x =5或x =10,(4分) ∵超市规定每千克涨价不能超过8元, ∴x =5,答:该超要保证每天盈利6000元,那么每千克应涨价5元;(5分) (2)设超市每天可获得利润为w 元, 则w =(10+x )(500﹣20x ) =﹣20x 2+300x +5000 =﹣20(x ﹣)2+6125,∵﹣20<0, ∴当x ==7.5时,w 有最大值,最大值为6125,答:当每千克水果涨价7.5元时,超市每天可获得最大利润,最大利润是6125元.(5分) 26.(12分)解: (1)证明:连接AB ,∵OP ⊥BC , ∴BO =CO , ∴AB =AC , 又∵AC =AD , ∴AB =AD , ∴∠ABD =∠ADB , 又∵∠ABD =∠ACF , ∴∠ACF =∠ADB .(3分) (2)∵AC =AD , ∴∠ACD =∠ADC , ∵∠ACF =∠ADF ,∵∠ACD -∠ACF =∠ADC -∠ADF , ∴即∠FCD =∠FDC , ∴CF =DF (3分) (3)∠CBD =45°(3分) (4)15(3分)27.(14分)解:(1)∴抛物线解析式为y =x 27x +6;(4分) (2)当y =x 2﹣7x +6=0时, 解得:x 1=1,x 2=6,∴B (6,0), ∴直线BC 的解析式为:y =﹣x +6,设M (m ,m 2﹣7m +6),则N 为(m ,﹣m +6),∴MN =﹣m +6﹣(m 2﹣7m +6)=﹣m 2+6m =()932+--m ,∴当M 运动到(3,-6)时,线段MN 的长度最大为9;(4分) (3)①∵A (1,0),B (6,0),∴AB =6﹣1=5, ∵将线段AB 绕A 点顺时针旋转90°, ∴B 点的对应点的坐标为(1,﹣5);(2分)②如图2,连接BP ,过点A 作AQ ⊥AB ,并截取AQ =AB =5,连接DQ , ∵∠P AD =∠BAQ =90°, ∴∠BAP =∠QAD ,AE FDO B CGPA E FDO B CGPQH∵AB =AQ ,AP =AD ,∴△BAP ≌△QAD (SAS ),∴PB =DQ =2,∴点D 在以Q 为圆心,以2为半径的圆上运动, ∴当Q 在线段DF 上时,DF 最长,Rt △AQF 中,AQ =4,AF =5+2=7,∴QF =745722=+,∴此时DF 的最大值是2+74;(2分) 当D 在线段QF 上时,DF 的长最小,同理可得DF 的最小值是74﹣2;(1分) ∴FD 的取值范围是:274274+≤≤-DF .(答1分)。
江苏省盐城市第一学期九年级数学期末试卷(含解析)一、选择题1.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.2472.有一组数据5,3,5,6,7,这组数据的众数为()A.3 B.6 C.5 D.7 3.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在()A.⊙O上B.⊙O外C.⊙O内4.若x=2y,则xy的值为()A.2 B.1 C.12D.135.sin30°的值是()A.12B.22C.3D.16.已知52xy=,则x yy-的值是()A.12B.2 C.32D.237.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.98.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A.16B.13C.12D.239.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月11.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86 B .87 C .88 D .89 12.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .113.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3414.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .215.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .3B .3C .7D .7二、填空题16.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .18.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.19.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.23.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .25.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.26.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm2.27.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.28.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1 图2(1)求证:△ADP ∽△CBP;(2)当AB⊥CD时,探究∠PMO与∠PNO的数量关系,并说明理由;(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.32.解方程:(1)3x2-6x-2=0;(2)(x-2)2=(2x+1)2.33.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm34.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?35.解方程:(1)x2-3x+1=0;(2)x(x+3)-(2x+6)=0.四、压轴题36.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 37.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 38.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.3.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.A解析:A 【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 5.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6.C解析:C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.7.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.8.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D11.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.12.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD AB,再证明△CBD为等边三角形得到BC=BD AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.15.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=32,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.二、填空题16.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,17.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得所以解析:16【解析】【分析】 【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n18.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得:20x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618. 21.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】22=+﹣,=--1266(1)6h t t t∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.22.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.23.【解析】【分析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.26.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.27.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相解析:67【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=12CD=2,DF=CF÷tan30°3=3∴BF=4,∴BD22DF BF+1612+7,∵△CPQ是等边三角形,∴S △CPQ =4CP 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP ,∴AQ =BP =7, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE =7,∴QE =AQ−AE =7.. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键. 28.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,=0∆,即2220=0b a-,解得b=﹣25a或b=25a(舍去),原方程可化为ax2﹣25ax+5a=0,则这两个相等实数根的和为25.故答案为:25.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
2014届盐城盐都九年级数学上期末统考
试题(附答案)
填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)
9.数据-2,-1,0,3,5的极差是▲.
10.计算:=▲.
11.二次函数y=-2(x-5)2+3的顶点坐标是▲.
12.如果一个扇形的弧长是,半径是6,那么此扇形的圆心角为▲°.
13.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件▲,使四边形ABCD成为菱形(只需添加一个即可)
14.已知一个扇形的半径为2,面积为cm2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为▲.
15.某县政府2012年投资0.5亿元用于保障性房建设,计划到2014年投资保障性房建设的资金为0.98亿元.如果从2012年到2014年投资此项目资金的年增长率相同,那么年增长率是▲.
16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x -4)2+3,由此可知小明的铅球成绩为▲m.
17.如图,AB、AC是⊙O切线,切点为B、C,连接BC,若△ABC是等边三角形,弦BC所对的圆周角为▲°.
18.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,
以对角线OB1为一边作正方形OB1B2C1,再以正方形
OB1B2C1的对
角线OB2为一边作正方形OB2B3C2,…,依次下去,
则点B2014的坐标是▲.。
2014/2015学年度第一学期期末质量检测九年级数学试卷(时间:120分钟;满分:150分)一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给的选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应的位置.)1.数据1,3,3,4,5的众数为 【 】 A .1 B .3 C .4 D .52.⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是 【 】 A .相切 B. 相交 C. 相离 D. 不能确定3.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是 【 】A .16B .15C .25D .354.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为 【 】 A .1:2 B .2:1 C .1:4 D .4:1 5.下列关于x 的方程有实数根的是 【 】 A .x 2-x +1=0 B .x 2+x +1=0 C .x 2-x -1=0 D .(x -1) 2+1=0 6.将抛物线y =-x 2向上平移2个单位后,得到的函数表达式是 【 】 A .22y x =-+ B .2(2)y x =-+ C .2(2)y x =-- D .22y x =-- 7.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB .若∠DAB =65°,则∠BOC =【 】 A . 25° B . 50° C . 130° D . 155°第7题图 第8题图 第9题图8.如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为 【 】 A .(60°,4) B .(45°,4) C .(60°,22) D .(50°,22)二、填空题 (本大题共10小题,每小题3分,共30分,)9.如图,四边形ABCD 内接于⊙O ,∠A =62°,则∠C = °. 10.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是 .11.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是 .12.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的一个解是x =1,则a +b +2015的值是 . 13.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是 km .14.如图,小明用长为3m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12m ,则旗杆AB 的高为 _m .15.请写出一个开口向上,与y 轴交点的纵坐标为2的抛物线的函数表达式 .第14题图 第16题图 第18题图16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 _ cm .172则m _ _18.已知Rt △ABC 中,∠C =90°,BC =1,AC =4,如图把边长分别为x 1,x 2,x 3,…,x n 的n 个正方形依次放入△ABC 中,则第2015个正方形的边长为_ _.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明、说理步骤或演算步骤.) 19.(本题满分8分)(1)解方程:x 2-x -2=0; (2)先化简,再求值:22111121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭,其中1x =20. (本题满分8分)已知关于x 的方程x 2-(k +2)x +2k =0.(1)小明同学说:“无论k 取何实数,方程总有实数根。
江苏省盐城市盐都区2014届九年级上学期期中考试数学试题 苏科版(时间:120分钟;满分:150分)1.本卷是试题卷,考试结束不上交. 2.请用黑色签字笔.....在答题卷上答题. 3.请在答题卷相应题号的区域内答题,超出无效....! 一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上........) 1.式子1-x 在实数范围内有意义,则x 的取值范围是 ········· 【 ▲ 】A .x <1B .x ≥1C .x ≤-1D .x <-12.已知:甲、乙两组数据的平均数都是5,甲组数据的方差2s 甲=112,乙组数据的方差2s 乙=110,下列结论中正确的是 ···················· 【 ▲ 】 A .甲组数据比乙组数据的波动大 B .乙组数据的比甲组数据的波动大C .甲组数据与乙组数据的波动一样大D .甲组数据与乙组数据的波动不能比较 3.一元二次方程22x x +-=0的根的情况是 ·············· 【 ▲ 】A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根4.下列命题中,真命题是 ······················ 【 ▲ 】A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形5.设a 1,a 在两个相邻整数之间,则这两个整数是 ······· 【 ▲ 】A .1和2B .2和3C .3和4D .4和56.小明的作业本上有以下四题:=24a ;=;③············ 【 ▲ 】A .①B .②C .③D .④7.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别为1S 、2S ,则1S 与2S 的大小关系是 ········· 【 ▲ 】A .1S >2SB .1S =2SC .1S <2SD .13S =22S友情提醒:8.如图,点C 线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是 ············ 【 ▲ 】A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大C .当C 为AB 的三等分点时,S 最小D .当C 为AB 的三等分点时,S 最大 二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题纸相应位置上........) 9的一个同类二次根式: ▲ .10.在实数范围内因式分解:22x -= ▲ .11.如图,在□ABCD 中,AB =6,BC =10,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,则OE = ▲ .12.比较大小:.(填“>”、“<”或“=”)13.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件▲ ,使ABCD成为菱形.(写出一个即可)14.如图,矩形的对角线AC 、BD 相交于点O ,且AC =8cm ,∠AOD =120°,则边AB 的长为 ▲ .15.若关于x 的方程2(5)x +=2m -没有实数根,则m 的取值范围是 ▲ .16.已知△ABC 的三边分别为2、x 、5+的值为 ▲ .17.如图,已知正方形ABCD ,点E 在边DC 上,DE =4,EC =2,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为▲ .18、、S 1、S 2、S 3、S 4,…,计算S 2-S 1,S 3-S 2,S 4-S 3,….若边长为n n 为正整数)的正方形面积记作n S ,根据你的计算结果,猜想n S -1n S -= ▲ .(用含n 的式子表示)三、解答题(本大题共10小题,共96分.请在答题纸指定区域内作答,解答时写出必要的文字说明、证明过程或验算步骤) 19.(本题满分8分)解方程(1)2(1)x -=4;(2)2241x x -+=0.20.(本题满分8分)计算(1+; (2)当x 1-时,求221x x +-的值.A B C D E F 第22题第21题 B C D O21.(本题满分8分)如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC =BD .求证:(1)BC =AD ;(2)△OAB 是等腰三角形.22.(本题满分8分)如图,在△ABC 中,AC =BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE绕点E 旋转180°得△CFE .判断四边形ADCF 的形状,并说明理由.23.(本题满分10分)菜农王叔叔种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.王叔叔为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华爸准备到王叔叔处购买5吨该蔬菜,因数量多,王叔叔决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华爸选择哪种方案更优惠,请说明理由.24.(本题满分10分)已知关于x 的一元二次方程2224x x k ++-=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.25.(本题满分10分)为了让广大青少年学生走进操场、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)从图中看,小明与小亮分别是哪次成绩最好?(3)计算他们5次成绩的平均数和方差,若你是他们的教练,会分别给予他们怎样的建议?26.(本题满分10分)若一元二次方程20(0)ax bx c a ++=≠的两个实根为1x 、2x ,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a=.这一结论称为一元二次方程根与系数关系,它的应用很多,请完成下列各题:(1)应用一:用来检验解方程是否正确.本卷第19题中的第(2)题是:解方程2241x x -+=0.检验:先求12x x += ▲ ,12x x = ▲ .再将你解出的两根相加、相乘,即可判断解得的根是否正确.(本小题完成填空即可)小明 小亮(2)应用二:用来求一些代数式的值.①已知:1x 、2x 是方程242x x -+的两个实数根,求12(1)(1)x x --的值;②若a 、b 是方程222013x x +-=0的两个实数根,求代数式23a a b ++的值.27.(本题满分12分)如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以2cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以3cm/s 的速度运动,设运动时间为()t s .(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;(2)①当t 为何值时,四边形ACFE 是平行四边形;②当t 为何值时,以A 、F 、C 、E 为顶点的四边形是直角梯形.28.(本题满分12分)【观察发现】(1)如图1,若点A 、B 在直线l 同侧,在直线l 上找一点P ,使AP +BP 的值最小.作法如下:作点B 关于直线l 的对称点B ′,连接AB ′,与直线l 的交点就是所求的点P .(2)如图2,在等边三角形ABC 中,AB =4,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小.作法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为 ▲ .【实践运用】如图3,菱形ABCD 中,对角线AC 、BD 分别为6和8,M 、N 分别是边BC 、CD 的中点,若点P 是BD 上的动点,则MP +PN 的最小值是___▲___.【拓展延伸】(1)如图4,正方形ABCD 的边长为5,∠DAC 的平分线交DC 于点E .若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值是___▲___(2)如图5,在四边形ABCD 的对角线BD 上找一点P ,使∠APB =∠CPB .保留画图痕迹,AA G 备用图1 A G备用图2并简要写出画法.九年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误)20.(1 ····························· 4分化简正确各给1分,结果正确给1分,写成1分. (2)2. ································ 4分说明:21)-计算正确给2分;结果正确给2分.21.(1)证得△ABC ≌△BAD . ························ 3分 ∴BC =AD . ······························ 4分(2)由△ABC ≌△BAD 得∠BAC =∠ABD . ·················· 6分 ∴OA =OB ,即△OAB 是等腰三角形. ··················· 8分22.∵△ADE 绕点E 旋转180°得△CFE ,∴AE =CE ,DE =EF . ·········· 2分∴四边形ADCF 是平行四边形. ······················ 4分 ∵AC =BC ,点D 是边AB 的中点,∴CD ⊥AB ,∴∠ADC =90°. ········ 6分 ∴四边形ADCF 矩形. ·························· 8分23.(1)设平均每次下调的百分率为x ,则25(1)x -=3.2. ·························· 3分 解得1x =0. 2,2x =1.8(舍去). ·················· 5分 答:平均每次下调的百分率为20%. ················· 6分(2)方案一:3.250000.9⨯⨯=14400(元). ················ 7分方案二:3.250002005⨯-⨯=15000(元). ·············· 8分 ∵14400<15000,∴小华爸选择方案一更优惠. ··········· 10分24.(1)24b ac -=44(24)k --=208k -. ·················· 2分∵方程有两个不相等的实数根,∴208k ->0. ·························· 4分∴k <52. ···························· 5分 (2)∵k 为正整数,且k <52,∴k =1或2. ··············· 7分当k =1时,已知方程为222x x +-=0,解得1x =1,2x =1-; 当k =2时,已知方程为22x x +=0,解得1x =0,2x =-2(是整数).∴k =2. ···························· 10分25.(1)小明第4次13.2; ························· 1分小亮第2次13.4. ························· 2分(2)小明第4次成绩最好; ······················· 3分小亮第3次成绩最好. ······················· 4分(3)小明的平均数x 小明=13.3(秒). ·················· 5分方差2s 小明=0.004(2秒). ····················· 6分小亮的平均数x 小明=13.3(秒). ·················· 7分 方差2s 小亮=0.02(2秒). ····················· 8分建议:言之有理酌情给分. ···················· 10分26.(1)12x x +=2; ··························· 1分12x x =12. ···························· 2分 (2)①∵12x x +=4,12x x =2, ····················· 3分∴12(1)(1)x x --=1212()1x x x x -++ ················· 5分=241-+=-1. ·················· 6分②∵a b +=-2,22a a +=2013, ·················· 8分∴23a a b ++=2(2)()a a a b +++ ··················· 9分=201322011-= ·················· 10分。
江苏省盐城市九年级上学期期末质量自测数学试题一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③5.下列是一元二次方程的是( ) A .2x +1=0 B .x 2+2x +3=0C .y 2+x =1D .1x=1 6.若x=2y ,则xy的值为( ) A .2B .1C .12D .137.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠08.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,09.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x10.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.511.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°12.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .1613.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=14.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变15.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +二、填空题16.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米; 17.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.18.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).19.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.20.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 21.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.22.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 24.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.25.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.26.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.27.已知234x y z x z y+===,则_______ 28.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .29.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.利用一面墙(墙的长度为20m ),另三边用长58m 的篱笆围成一个面积为200m 2的矩形场地.求矩形场地的各边长?32.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O 于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.33.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).34.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.35.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程),四、压轴题36.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.37.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 38.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 39.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.40.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -, ∴228610+= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.C解析:C 【解析】【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案. 【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知,∴当x=1时,y=a+b+c的值无法判断,故②不正确;由图像可知,y==ax2+bx+c≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax2+bx+c=-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.5.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.6.A解析:A【解析】将x=2y 代入x y中化简后即可得到答案. 【详解】将x=2y 代入x y得: 22x y y y ==, 故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 7.D解析:D【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴△=b 2﹣4ac=4+4k >0,且k≠0.解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.8.C解析:C【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.9.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.10.C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..11.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.12.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.13.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289x x+=-,222x x++=-+,8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.14.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.15.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题16.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.17.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.18.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.19.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.20.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键. 21.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 22.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.24.2或【解析】【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.25.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.26.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 27.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的 解析:2 【解析】 【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =,∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.28.【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD 2=x 2+(8﹣x )2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.则AC 为直径时最长,则最大值为42.【详解】解:设AB =x ,则AD =8﹣x ,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC的最大值为42.故答案为:42.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.29.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.30.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A67 3A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58-2x),利用矩形的面积公式列出方程并解答.【详解】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4,当x=4时,58﹣8=50,∵墙的长度为20m,∴x=4不符合题意,当x=25时,58﹣2x=8,∴矩形的长为25m,宽为8m,答:矩形长为25m,宽为8m.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.32.(1)证明见解析;(2)40°.【解析】【分析】(1)连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠A BE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.33.(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,。
江苏省盐城市第一中学教育集团2014届九年级上学期期末考试数学试题考试时间:120分钟 卷面总分:150分 考试形式:闭卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.2的相反数是A .2B . 2-C .12D .12-2.下列计算中,正确的是A . 325a b ab +=B . 44a a a ⋅= C .623a a a ÷= D .()2362a b a b =3.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是A .B .C .D .4.一元二次方程0412=++x x 的根的情况是A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.若二次函数2ax y =的图象经过点P (-2,4),则该图象必经过点A. (2,4)B. (-2,-4)C. (-4,2)D. (4,-2)6.若扇形的半径为6,圆心角为120°,则此扇形的弧长是 A .3πB .4πC .5πD .6π7.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为150° 的菱形,剪口与第二次折痕所成角的度数应为A .15°或30°B .30°或45°C .15°或75°D .30°或60°A .142 B .1168 C .1105D . 1252二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上) 9.3的立方是 ▲ . 10.在函数3xy x =+中,自变量x 的取值范围是 ▲ . 11.2013年12月2日,江苏省环境监测中心和江苏省气象台联合发布,全省13市全部重污染,其中最严重的是盐城,PM2.5小时值达到405微克/立方米.PM2.5是大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 ▲ . 12.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为 ▲ . 13.如图,点A 、B 、C 在⊙O 上,若∠C =30°,则∠AOB 的度数为 ▲ °.14.已知2540x x --=,则52102+-x x = ▲ .15.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系91098922++-=x x y ,则羽毛球飞出的水平距离为▲ 米.16.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为 ▲ cm .17.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE =,且cos ∠EFC =45,那么该矩形的周长为 ▲ cm . 18.如图,在等腰直角△ACB 中,∠ACB =90°,AC =4,O 是斜边AB 的中点,点D 、E 分别是直角边AC 、BC 上的动点,且∠DOE =90°,DE 交OC 于点P .当AD =1时, OP = ▲ .第17题 第18题三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分) (1)计算:32sin30--︒ ; (2)解方程:09102=+-x x .20.(本题满分8分)先化简,再求值:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,其中3x =-.21.(本题满分8分)垃圾的分类处理与回收利用,可以减少污染,节省资源. 某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题: (1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共 吨;(3)调查发现,在可回收物中塑料类垃圾占51,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?数量/吨A54%B 30% CD 10%A B C D可回收物厨余垃圾有害垃圾其它垃圾22.(本题满分8分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)用列表格或画树状图的方法分别求出小明和小刚获胜的概率;(2)这个游戏规则是否公平?请说明理由.23.(本题满分10分)如图,已知□ABCD中,F是BC边的中点,连接DF并延长,交AB 的延长线于点E.(1)求证:△C D F≌△BEF;(2)若DA=DE,连接BD、CE,试判断四边形BDCE的形状,并说明理由.24.(本题满分10分)如图,山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定点D在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)25.(本题满分10分)七巧板游戏是将一个正方形分割成七块,然后用这七块拼接成丰富多彩的几何图形.如图(a)是正方形的一种分割方法,并在每块上标了号码.(1)设正方形网格的边长为1,则面积为2的有号图形;(2)只改变图(a )中的7号图形的位置,使它和其他部分拼成一个新的多边形,请在图(b )中画出所拼的图形(只需画出7号图形);(3)将这副七巧板的七块图形重新拼成一个和图(a )、图(b )形状不同的多边形,(不留缝隙且不相互重叠),请在图(c )中画出所拼的图形,并使多边形的顶点落在格点上.26.(本题满分10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =802+-x .设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?27.(本题满分12分)已知⊙O 的半径为1,O 为坐标原点,AB 是⊙O 的弦,四边形ABCD 是以AB 为边的正方形,点C 、D 在⊙O 外.(1)如图1,当点A 在x 轴正半轴上、点B 在y 轴正半轴上时,求出点C 与圆心O 的距离; (2)如图2,将图1中的正方形ABCD 沿y 轴向上平移至与⊙O 相切,求出此时平移的距离;(3)如图3,点A 在x 轴正半轴上,点B 在x 轴上方,当点B 在⊙O 上运动时:①直线BD 是否总经过一定点?若直线BD 过一定点,直接写出这点的坐标;若不过一定点,请说明理由.②求出点C 与圆心O1 7536 4 2 1 5364 228.(本题满分12分)如图,二次函数的图象与x 轴相交于点A (﹣3,0)、B (﹣1,0),与y 轴相交于点C (0,3),点P 是该图象上的动点,点Q 的坐标为(4,0). (1)求该二次函数的表达式; (2)当OP //CQ 时,求点P 的坐标;(3)点M ,N 分别在线段AQ 、CQ 上,点M 以每秒3个单位长度的速度从点A 向点Q 运动,同时,点N 以每秒1个单位长度的速度从点C 向点Q 运动,当点M ,N 中有一点到达Q 点时,两点同时停止运动.设运动时间为t 秒,当直线PQ 垂直平分线段MN 时,请求出此时t 的值及点P 的坐标.图3图2图1参考答案及评分标准二、填空题(本大题共有10小题,每小题3分,共30分)三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)(1)原式=2+3122-⨯=4 (4分) (2)11x = 29x = (4分)20.(本题满分8分)解:原式=•=, (5分)当x=-3时,原式=3132-+--=25. (3分)21.(本题满分8分)解:(1)如图 ·················································································································· 2分 (2)3 ························································································································ 2分 (3)3787.051%545000=⨯⨯⨯(吨) ···························································· 3分 答:每月回收的塑料类垃圾可以获得378吨二级原料. ·············································· 1分22.(本题满分8分)(2)这个游戏规则不公平.理由:∵P(小明获胜)≠P(小刚获胜),∴这个游戏规则不公平2分23.(本题满分10分)解:(1)证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF和△BEF中∴△CDF≌△BEF(AAS)(5分)(2)∵△CDF≌△BEF(已证)∴BE=DC,又∵BE∥CD∴四边形BDCE是平行四边形又∵四边形ABCD是平行四边形,∴AD=BC,又∵AD=DE∴BC=DE.∴□BDCE是矩形.(5分)24.(本题满分10分)解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x+2x=80.0,解得:x≈24.6,即PD≈24.6米,∴DB=2x=49.2.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.(10分)25.(本题满分10分)(1)4、6、7 (3分)(2)7号图形的位置如图所示(只需画出一种即可)(3分)(3)答案不惟一,如(4分)12345671234567123456726.(本题满分10分)解:⑴ w =(x -20)∙y =(x -20)(802+-x )=-160012022-+x x∴w 与x 的函数关系式为:w =-160012022-+x x ……………………(3分) ⑵w =-160012022-+x x =-2()200302+-x∵-2<0,∴当30=x 时,w 有最大值.w 最大值为200.……………………(2分)答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. ………………………(1分)⑶当w 150=时,可得方程-2()200302+-x =150.解得 251=x ,352=x .∵35>28 ∴352=x 不符合题意,应舍去. (3分) 答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.…(1分)(2)平移的距离为BB ’1 (4分)(3)①经过定点E (0,1); (2分)1.连接CE ,AE 证△BC'E ≌△BAE .则当点C 在y 轴正半轴上时, 取到最大值. (3分)28.(本题满分12分)⑴设抛物线的解析式为:y=ax 2+ bx+c ,∵抛物线经过点C (0,3),∴c=3.把A (﹣3,0)、B (﹣1,0)代入y=ax 2+ bx+3中得933030a b a b -+=⎧⎨-+=⎩,解得14a b =⎧⎨=⎩∴抛物线的解析式为:y=x 2+4x+3. (3分)⑵∵OP //CQ∴∠POH=∠CQO∴tan ∠POH=tan ∠CQO=OC OQ =34∴PH OH =34。
第3题图第4题图江苏省盐城市盐都区2014届九年级下学期期中考试数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-3的倒数是( ▲ )A .-3 B. 3 C. 31 D.31-23面图形是( ▲ )A .B .C .D .4.如图,将含有30°角的直角三角板另一个锐角顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A 、B 两点,P 是优弧AB 上任意一点(与A 、B 不重合),则∠APB=( ▲ )A .15°B .30°C .60°D .30°或150° 5.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ▲ )A .180元B .120元C .80元D .60元 6.下列各式能用完全平方公式进行因式分解的是( ▲ )A . 12++x x B . 122-+x x C. 962+-x x D. 422+-x x7. 若点(a ,b )在一次函数y=2x ﹣3的图象上,则代数式4b ﹣8a+2的值是( ▲ ) A .-10 B .-6 C .10 D . 14 A .1B .4C .5D .16二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.一运动员某次跳水的最高点离跳板2m ,记作+2m ,则水面离跳板3m 可以记作 ▲ m. 10.我国除了约960万平方千米的陆地面积外,还有约3 000 000平方千米的海洋面积.把 3 000 000用科学记数法表示为 ▲ .11.函数12-=x y 中,自变量x 的取值范围是 ▲ .12.一个多边形的内角和是外角和的3倍,则这个多边形的边数为 ▲ .第21题图13.如图,已知A 点是反比例函数(k 0)ky x=≠的图象上一点, AB ⊥y 轴于B ,且△ABO 的面积为2,则k 的值为 ▲ .14.若3,a, 4, 5的中位数是4,则这组数据的方差是 ▲ .15.在半径为4的圆中,30°的圆心角所对的弧长为 ▲ (结果保留π).16. 已知菱形ABCD 的周长为40cm ,对角线AC =16cm ,则菱形ABCD 的面积为 ▲ cm 2. 17. 如图,有两只大小不等的圆柱形无盖空水杯 (壁厚忽略不计),将小水杯放在大水杯中,并 将底部固定在大水杯的底部,现沿着大水杯杯壁 匀速向杯中注水,直至将大水杯注满,大水杯中 水的高度y (厘米)与注水时间x (秒)之间的函 数关系如图所示,则图中字母a 的值为 ▲ .18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19(本题满分8分)(1)计算:12-60s 4-20130︒+in )(π (2)解不等式组⎩⎨⎧≤+>-51063x x ,并把它的解集在数轴上表示出来20.(本题满分8分) 解分式方程:xx 23532=+.21.(本题满分8分)如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 的点, 连接AF 、CE 有AF =CE . (1)求证:BEC DFA ∆∆≌;(2)求证:四边形AECF 是平行四边形.DE ACF第17题图第23题图22.(本题满分8分)2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m =_______,n =_______,扇形统计图中表示E 组的扇形圆心角等于_______度. (2)若该市人口约有800万人,请你估计其中持D 组“观点”的市民人数; (3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可) 23.(本题满分10分)某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB ⊥BC ,EF ∥BC ,0143EAB ∠=,AB =1.2米,AE =1.5米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)24.(本题满分10分) 教育部在《关于推进学校艺术教育发展的若干意见》中指出:中小学校要深入推进体育艺术“2+1”项目.某校积极开展各项体育与艺术活动,丰富学生的课余生活.肖聪同学准备在篮球、足球、花样跳绳三项体育活动中任意参加两项,在合唱、校园集体舞两项艺术活动中任意参加一项.(1)请写出肖聪同学参加的两项体育活动所有可能性,并求这两项活动是篮球和花样跳绳的概率; (2)在肖聪同学已确定...参加..篮球活动的前提下........,求他所参加的“2+1”项目是“篮球、花样跳绳、合唱”的概率。
(请用树状图或列表格的方法解答)25. (本题满分10分)根据江苏省物价局规定,盐城市于2012年7月1日起试行居民阶梯电价.考虑居民夏、冬季用电较多的实际情况,阶梯电价按年为周期执行,即一年里总用电量在2760千瓦时及以内,实行原有峰谷电价标准,2760千瓦时至4800千瓦时之间的部分,每千瓦时加价0.05元,4800千瓦时以上的部分每千瓦时加价0.3元.电价调整还考虑到家庭人口对用电的影响。
对家庭人口在5.人.(.含.5.人.).以上..的用户,每月..增加100度阶梯电价基数.原有峰谷电价标准为:每日峰时(8时至21时)0.5583元/千瓦时,谷时(21时至次日8图1 图2 图3 A E FA E F A E FB C第27题图时)0.3583元/千瓦时.电费按照“先峰谷、后阶梯”的方式进行计算.如:一个有4口人的家庭一年用电5000千瓦时,其中峰时3000千瓦时,谷时2000千瓦时,则电费为:3000×0.5583+2000×0.3583+(4800-2760)×0.05+(5000-4800)×0.3=2553.5(元)(1) 该市4口之家庭的李明一家2013年全年共用峰时电3000千瓦时,谷时电1000千瓦时,则李明一家2013年需付_____________元的电费;(2) 该市3口之家庭的张华一家2013年全年共用电2400千瓦时,电费为1139.92元,求张华一家2013年全年峰时、谷时各用多少千瓦时的电?(3) 该市家庭人口有6人的王辉一家2013年全年共用电6500千瓦时,电费为3380.95元,求王辉一家2013年全年峰时、谷时各用多少千瓦时的电?26.(本题满分10分)如图,已知⊙O 的直径AB =16,点C是⊙O 的一点,且AC =BC . (1) 求AC 的长;(2) 若AD 是⊙O 的切线,点D 与C在直径AB 的两侧.①求△CDO 的面积②求由BC 、CD 、DB 围成的图形面积比由AC 、CD 、DA 围成的图形面积大多少?27.(本题满分12分)【观察发现】 如图1,F ,E 分别是正方形ABCD 的边CD 、DA DF =AE .直线BE 、AF 相交于点G ,猜想线段BE 与AF 的数量关系,以及直线BE 与直线AF 的位置关系.(只要求写出结论,不必说出理由) 【类比探究】如图2,F ,E 分别是正方形ABCD 的边CD 、DA 延长线上的两个动点(不与D 、A 重合),其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请根据图2加以说明. 【深入探究】若在上述的图1与图2中正方形ABCD 的边长为4,随着动点F 、E 的移动,线段DG 的长也随之变化.在变化过程中,线段DG 的长是否存在最大值或最小值,若存在,求出这个最大值或最小值,若不存在,请说明理由.(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)图1 图2第28题图 28.(本题满分12分) 如图,已知抛物线c bx x y ++-=281经过点A (6 ,0),B(0,3),点C 与点B 关于抛物线对称轴对称. (1) 求抛物线的函数关系式,并求点C 的坐标;(2) 点P是线段OA上一动点,以OP为直角边作等腰直角三角形OPQ ,使△OPQ 与△OAB 在x 轴的同侧,且∠OPQ =90°,OP =PQ .①当点Q 恰好在线段AB 上时,求OP 的长;②将①中的△OPQ 沿x 轴向右平移,记平移后的△OPQ 为△O′P′Q′,当点P′与点A重合时停止平移.设平移的距离为t,P′Q′与AB 交于点M,连接O′C、O′M 、CM .是否存在这样的t ,使△O′CM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;③在②的平移过程中,设△O′P′Q′与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.备用图1备用图2备用图32013/2014学年度第二学期期中质量检测九年级数学参考答案及评分标准三、解答题(共96分)19.(本题8分)解:(1)原式=1+423⨯-32…………3分(化简每对1个得1分) =1………………4分 (2)42≤<x …………3分(每对一个解集得1分) 数轴表示正确…………4分 20、(本题8分)解:3-=x …………6分检验…………8分、21、(本题8分)(1)证明略…………………………………………4分(2)证明略…………………………………………8分 22、(本题满分8分)(1)40,100,54…………………………………3分(每对1个得1分) (2)240万…………………………………6分 (3)(答案不唯一)本题答案开放,只要有道理即得分………………………8分 23、(本题10分)延长BA 、FE 相交于点H ,由EF ∥BC 得∠B+∠AHE=180° 8分 B H=AB+AH=1.2+1.2=2.4 10分24、(本题10 两项体育活动是篮球和花样跳绳的概率为3162=;…… 5分(2)树状图或表格正确………… 8分在已确定参加篮球活动的前提下,所参加的项目是“篮球、花样跳绳、合唱”的概率是41……10分25、(本题10分)(1)2095.2…………2分(2)设张华一家2013年全年峰时用x 千瓦时的电,则谷时用(2400-x )千瓦时的电,可得方程92.1139)2400(3583.05583.0=-+x x …………4分 解得1400=x 2400-x=1000答:张华一家2013年全年峰时用1400千瓦时,谷时用1000千瓦时的电………6分H(3)设王辉一家2013年全年峰时用y 千瓦时的电,则谷时用(6500-y )千瓦时的电, 由题意可知对家庭人口在5人(含5人)以上的用户,一年阶梯电量标准分别为3960千瓦时和6000千瓦时 95.33803.0)60006500(05.03960-6000)6500(3583.05583.0=⨯-+⨯+-+)(y y ……8分 解得4000=x 6500-x=2500答:王辉一家2013年全年峰时用4000千瓦时,谷时用2500千瓦时的电, ……10分27、(本题12分)【观察发现】BE =AF ,BE ⊥AF ………………2分 【类比探究】【观察发现】中的结论仍成立,即BE =AF ,BE ⊥AF ……3分 理由:可证ΔABE ≌ΔDAF 得BE =AF ,∠ABE =∠DAF ……5分 由∠BAD=90°得∠DAF +∠BAG =90°, ∴∠ABE +∠BAG =90°∴∠AGB =90°即BE ⊥AF …………7分 【深入探究】图1中线段DG 存在最小值为2-52,不存在最大值图2中线段DG 存在最大值为252+,不存在最小值…………9分 理由:如图1,取AB 的中点H ,连接HD 、HG则HG=21AB=2,DH=52当H 、G 、D 三点不共线时,DG>DH-HG 当H 、G 、D 三点共线时,DG=DH-HG ∴线段DG 存在最小值为2-52∵E 不与A 重合 ∴线段DG 不存在最大值…………12分 或:如图2,取AB 的中点H ,连接HD 、HG图1则HG=21AB=2,DH=52当H 、G 、D 三点不共线时,DG<DH+HG 当H 、G 、D 三点共线时,DG=DH+HG ∴线段DG 存在最大值为252+∵E 不与A 重合 ∴线段DG 不存在最小值…………12分 (只求存在的最值,没说明不存在的最值不扣分) 28、(本题12分)(1)抛物线的函数关系式341812++-=x x y ,………2分点C 的坐标为(2,3)………3分(2)①如图,点Q 在线段AB 上 设OP=x ,则OP=PQ=x , ∵OA=6,OB=3, ∴A P=OAB ﹣OP=6-x , ∵PQ ∥OB ,∴△A PQ ∽△A OB , ∴OAAP OBPQ =,即663x x -=, 解得:x=2,即OP=2;………5分②存在满足条件的t ,理由:如图,过点C 作CG ⊥OA 于G , 则OG =BC=2,CG=OB =3,由题意得:OO ′= t ,GO ′=|t ﹣2|,AP ′=4﹣t , ∵P ′M ∥OB ,∴△MP ′A ∽△BOA ,∴OAAP OBMP '=',即643MP t -=',∴MP ′=2﹣21t , 在Rt △O ′P ′M 中,(O ′M )2=(MP ′)2+(O′P′)2=(2﹣21t )2+22=14t 2﹣2t +8, 在Rt △O ′CG ′中,(O′C)2=CG2+(O ′G )2=32+(t ﹣2)2=t 2﹣4t +13,过点M 作MH ⊥CG 于H,则HM=GP′=t ,GH =M P′=2﹣21t ,∴CH=CG-HG=3﹣(2﹣21t )=21t +1, 在Rt △CHM中,CM 2=CH2+HM2=22)121t t ++(=54t 2+t +1,图2。