生物质成型燃料热解气化在锅炉中的应用研究
- 格式:pdf
- 大小:4.07 MB
- 文档页数:5
生物质燃烧与气化的特性研究生物质是指来自植物、动物等生物的有机物质,如木材、稻草、秸秆、麻棕等。
生物质资源丰富,是可再生能源的主要来源之一。
研究生物质燃烧与气化的特性,对于利用生物质资源进行能源化利用、减少化石能源的使用、降低燃烧排放物的产生等具有十分重要的意义。
1. 生物质燃烧的特性生物质燃烧是指将生物质燃料在氧气存在下进行燃烧反应,释放出能量的过程。
生物质燃烧的基本反应式为:生物质 + 氧气→ 二氧化碳 + 水 + 能量。
生物质燃烧的特性主要包括:热值、燃烧过程、燃烧产物等。
(1)热值。
生物质燃料的热值是指燃烧单位质量生物质所释放出的能量,通常用单位重量(kg或g)的生物质所产生的热能(MJ/kg或kJ/g)表示。
生物质燃料的热值较低,燃烧时需要大量的空气才能达到理论燃烧。
(2)燃烧过程。
生物质燃烧的过程受到许多因素的影响,如燃烧空气比、燃料质量、燃料湿度等。
在不同的燃烧环境下,生物质燃料的燃烧速率和燃料消耗率也会发生变化。
(3)燃烧产物。
生物质燃烧过程中会产生多种气态和固态产物,其中包括二氧化碳、一氧化碳、氮氧化物、颗粒物等。
这些燃烧产物对于环境和人体健康都有着一定的影响,因此需要对生物质燃烧产物进行有效的监测和控制。
2. 生物质气化的特性生物质气化是指将生物质燃料在氧气缺乏的情况下进行燃烧反应,生成气体燃料的过程。
生物质气化的基本反应式为:生物质 + 气化剂→ 一氧化碳 + 氢气 + 二氧化碳 + 热能。
生物质气化的特性主要包括:气化产物、气化速率、产物热值等。
(1)气化产物。
生物质气化过程中会产生一氧化碳、氢气、二氧化碳、甲烷等气体,其中一氧化碳和氢气是主要的可燃气体成分。
(2)气化速率。
生物质气化的速率受到气化温度、气化剂、燃料质量等多种因素的影响。
通常情况下,生物质气化的速率较燃烧速率慢,需要一定的时间才能完全气化。
(3)产物热值。
生物质气化产生的气体燃料具有较高的热值,可以作为热能和动力能源的供应。
生物质能利用技术的研究和应用生物质能是一种非常重要的清洁能源,它不仅可以替代传统的化石燃料,而且还能够减少环境污染和碳排放。
自20世纪80年代以来,生物质能利用技术一直受到广泛的关注和研究,不断涌现出新的解决方案和应用。
本文将介绍一些最新的研究成果以及生物质能利用技术在不同领域中的应用。
一、生物质能的来源和特点生物质能是一种由植物、动物、微生物等生物体生产的有机物质,如木材、秸秆、麦草、压缩木块等。
生物质能利用技术就是将这些生物质能源转化为可用的能量,以满足人们的能源需求。
与传统的化石能源相比,生物质能有以下几个特点:1. 可再生性:生物质能是一种可再生的能源,可以不断地生产和使用,不会造成资源枯竭。
2. 低碳排放:生物质能的燃烧过程中会产生CO2,但这些CO2来自于植物在生长过程中吸收的空气中的CO2,与使用化石能源所产生的CO2相比,生物质能的碳排放量要低得多。
3. 适用范围广:生物质能可以用于发电、加热、热水供应、燃料等多种场合,而且可以与传统的能源相互补充,以提高能源的利用效率。
二、生物质能利用技术的研究进展1. 生物质能的化学转化:生物质能的化学转化是将生物质能源通过化学反应转化为燃料和化学原料的过程。
目前,生物质能的化学转化主要有生物质热解、生物质气化、生物质液化、生物质发酵等几种方法。
其中,生物质热解是将生物质在高温下分解为固体炭、液体物质和气态物质的过程;生物质气化是将生物质在高温下与氧气和水蒸气反应,产生一种称为合成气的可燃性气体;生物质液化是将生物质在高温下与液体催化剂反应,生成一种称为生物质液体的燃料;而生物质发酵则是将生物质通过微生物的作用转化为乙醇、丁醇等发酵产物。
2. 生物质能的热力学转化:生物质能的热力学转化是将生物质能源通过燃烧转化为热能的过程。
目前,生物质能的热力学转化主要有生物质直接燃烧、生物质间接燃烧、生物质混燃等几种方式。
其中,生物质直接燃烧是将生物质直接用作燃料进行燃烧,产生热能;生物质间接燃烧是将生物质通过热力学转化后再燃烧,如将生物质热解生成的液体燃料用作燃料;而生物质混燃则是将生物质与传统的燃料混合使用,以提高燃烧效率和减少环境污染。
生物质的快速热解及热解机理研究生物质是一种可再生的能源资源,其快速热解技术在能源利用和环境保护方面具有重要意义。
本文将探讨生物质的快速热解及其热解机理研究。
快速热解是一种高温、短时间内对生物质进行加热分解的过程,通过这一过程可以得到液体燃料、气体燃料和固体炭等有用的产物。
快速热解技术在能源转化和减少碳排放方面具有重要的应用价值。
生物质的热解机理是指生物质在高温下发生化学和物理反应的过程。
热解过程中,生物质中的纤维素、半纤维素和木质素等主要成分会发生热解反应,产生液体、气体和固体产物。
热解反应主要包括干馏、裂解、气化和炭化等过程。
干馏是指在缺氧或低氧条件下,生物质中的挥发性物质被释放出来。
这些挥发性物质主要包括水、酸、醛、酮等。
干馏是生物质热解的第一步,对于液体和气体产物的生成具有重要影响。
裂解是指在高温下,生物质中的高分子化合物被断裂为低分子化合物。
裂解过程中,纤维素和半纤维素会分解为糖类、酚类和醇类等低分子化合物。
木质素则会分解为苯酚类和芳香烃类化合物。
裂解反应是生物质热解的关键步骤,对于液体和气体产物的生成具有重要影响。
气化是指生物质在高温下与气体反应生成气体的过程。
气化过程中,生物质中的碳水化合物被分解为一氧化碳和氢气等气体产物。
气化反应是生物质热解的重要环节,产生的气体可用于发电、供热和合成化学品等领域。
炭化是指生物质在高温下失去挥发性物质,生成固体炭的过程。
炭化过程中,生物质中的无机物质也会得以保留,形成矿物质残留物。
炭化反应是生物质热解的最终阶段,产生的固体炭可以用作燃料或其他工业用途。
研究生物质的快速热解及热解机理对于提高生物质能源的利用效率和减少环境污染具有重要意义。
研究人员通过实验和数值模拟等手段,探索不同反应条件下生物质热解的机理和影响因素。
研究结果表明,反应温度、反应时间、生物质种类和粒径等因素对于热解产物的种类和产率有重要影响。
在实际应用中,快速热解技术可以将农林废弃物、城市固体废弃物和能源作物等生物质资源转化为有用的能源产品。
生物质气化技术在能源转换中的应用优化生物质气化技术在当前的能源转换领域中正逐渐成为备受关注的研究热点。
作为一种可再生的能源形式,生物质气化技术具有潜在的巨大市场价值和环境利益,因此其在能源转换中的应用优化备受关注。
一、生物质气化技术的基本原理生物质气化是通过在高温、高压和缺氧环境下将生物质转化为可燃性气体的一种技术。
生物质气化过程主要包括干馏、热解和气固两相反应,其中干馏主要指在400-500摄氏度的温度下,生物质中的挥发性成分被释放出来,生成液体和气体产物,而热解则是指在600-800摄氏度的温度下,生物质中的碳成分被分解生成固体碳和气态产物。
二、生物质气化技术在能源转换中的应用现状目前,生物质气化技术已经在各个领域得到广泛应用,比如在电力生产、热能生产和生产化学品等方面。
以电力生产为例,生物质气化技术可以将生物质转化为合成气体,再通过气体轮机或内燃机发电,实现了能源的高效利用。
在热能生产方面,生物质气化技术可以将生物质转化为燃气或燃油,用于供热或供暖。
此外,生物质气化技术还可以生产生物质液体燃料、化学品等,为替代石油提供了可行的途径。
三、为了进一步提高生物质气化技术在能源转换中的效率和环境友好性,需要从技术、经济和环境等方面进行优化。
首先,在技术方面,可以通过设计和改进气化炉、改进气化剂配比、优化生物质预处理等手段,提高生物质气化的产气率和气质量,降低气化过程中的能耗和反应时间。
此外,还可以引入新型反应器、提高反应温度和压力等技术手段,进一步提高生物质气化技术的效率。
其次,在经济方面,可以优化生产成本、提高投资回报率,以提高生物质气化技术的市场竞争力。
通过合理设计生产工艺、降低生产能耗、提高产物利用率等手段,可以降低生物质气化技术的生产成本,提高其经济效益。
再次,在环境方面,可以减少气化过程中的污染物排放,提高生物质气化技术的环境友好性。
通过配备燃烧控制系统、进行废气处理等措施,可以有效降低生物质气化过程中的氮氧化物、二氧化碳等温室气体排放,减少对环境的影响。
生物油的制备及其应用研究一、引言生物油指的是通过生物质材料转化而成的液态燃料,具有低排放、可再生、替代化石能源等优点,因此受到广泛关注。
本文将在介绍生物油的制备方法的同时,探讨其在能源、化工、农业、医药等领域的应用研究。
二、生物油的制备方法1. 热解法热解法是指将生物质材料在高温下加热,使其分解成为可燃性气体和液态燃料。
目前最主要的热解方法是快速热解(pyrolysis),其特点是反应时间短、产物分布广、适用范围广。
优点在于生产设备简单、产品分布可控、产物质量稳定,但对原材料要求高。
2. 生物质气化法气化法是指利用空气、氮气或蒸气将生物质材料分解成一系列气体和液态燃料。
该方法最为广泛使用的是空气气化法(air gasification),该方法易于操作,实施成本低,但产物中含有大量氮气,使燃烧效率低。
3. 生物质液化法液化法是指将生物质材料溶解在溶剂中,形成含有大量氢气的混合物。
常用的液化剂有水、生物质油和有机溶剂。
该方法适用范围广,能使材料得到高度利用,但存在成本高的问题。
三、生物油的应用研究1. 能源领域生物油因其可再生、低排放、代替化石能源等优秀的性能,在能源领域的应用研究十分广泛。
生物油可以用来代替化石油,用于发电、工业蒸汽锅炉燃料、船舶燃料、温室暖气等领域。
根据研究显示,生物油的热值和燃烧效率与石油类似,同时具有更低的硫含量和碳排放量,对环境污染更少。
2. 化工领域生物油在化工领域的应用主要体现在生产润滑油、塑料、化妆品等方面。
研究发现,生物油可以用来生产生物基润滑油,具有可再生性和低污染性,同时可以降低石油对环境的影响。
生物油还可以被用来替代石油在合成塑料的生产中。
由于生物油的含氧量高,故可以在合成过程中减少酸值,并且生物塑料的在环保方面具有优势。
3. 农业领域生物油在农业领域的应用主要体现在作为农业燃料和农业化肥等方面。
生物油可以应用于农业种植中,作为农业燃料可以代替柴油,减少大气污染;作为生物肥料,生物油的氮素和磷酸盐成分可以为作物提供良好的养分,对于农作物的生长有积极的作用。
生物质热解气化技术应用领域生物质热解气化技术是一种将生物质原料转化为可再生能源的技术。
它通过加热生物质,在无氧或低氧条件下使其分解产生可燃气体,如合成气和油烟等。
这项技术具有广泛的应用领域,下面将从能源领域、环境保护和农业利用等方面进行介绍。
在能源领域,生物质热解气化技术可以用于生产可再生能源,如生物质气体和生物燃料。
生物质气体可以作为替代天然气的能源供应,广泛应用于发电、供暖和工业生产等领域。
生物燃料可以用作替代传统石油燃料的能源,用于汽车和船舶等交通工具,减少对化石能源的依赖,降低碳排放。
在环境保护方面,生物质热解气化技术可以有效处理生物质废弃物,如农作物秸秆、木屑和食品残渣等。
这些废弃物通常会被焚烧或填埋,造成环境污染和资源浪费。
通过热解气化技术,这些废弃物可以被转化为有用的能源,减少对自然资源的开采,同时还能减少二氧化碳等有害气体的排放,有利于环境保护。
在农业利用方面,生物质热解气化技术可以将农作物秸秆等农业废弃物转化为有机肥料。
传统的农作物秸秆通常会被焚烧或直接丢弃,造成了资源的浪费。
而通过热解气化技术,这些废弃物可以被转化为有机肥料,用于土壤改良和农作物生长,提高农田的产量和质量。
生物质热解气化技术还可以应用于木材加工、生物医药和生物化工等领域。
在木材加工方面,生物质热解气化技术可以将木材废弃物转化为有用的能源和化工原料。
在生物医药和生物化工领域,生物质热解气化技术可以利用生物质原料提取药物和生物活性物质,开发新型的生物医药和化工产品。
生物质热解气化技术具有广泛的应用领域。
它可以为能源领域提供可持续发展的能源供应,同时也可以解决环境污染和资源浪费等问题。
随着技术的进一步发展和创新,相信生物质热解气化技术将在更多领域发挥重要作用。
生物质气化技术的研究现状生物质气化技术是一种利用生物质原料,通过热解或部分氧化反应,将生物质转化为可燃气体的技术。
这种技术具有环保、可再生等优点,因此在能源领域备受关注。
本文将对生物质气化技术的研究现状进行介绍,并探讨其在能源领域的应用前景。
目前,生物质气化技术的研究已经取得了一定的进展。
在气化原理方面,学者们对生物质气化的反应机理进行了深入研究,揭示了生物质气化过程中的热解、部分氧化和还原反应等基本原理。
在反应设备方面,已经开发出了多种不同类型的生物质气化装置,包括固定床气化炉、流化床气化炉、旋转窑气化炉等。
这些设备在实验室和工业中得到了广泛应用,为生物质气化技术的研究和开发提供了技术支持。
与此生物质气化技术在能源领域的应用也逐渐得到了重视。
生物质气化可以生产出一种称为生物质气的可燃气体,其中主要成分为一氧化碳、氢气和甲烷等,可以作为燃料直接供给燃气锅炉、内燃机等能源设备使用。
生物质气化还可以通过一系列气体净化和转化工艺,生产出合成天然气(SNG)、合成液体燃料(GTL)等产品,用于替代传统石油天然气产品。
生物质气化技术仍然面临一些挑战和问题。
生物质气化过程中产生的气体含有一定量的杂质和灰分,需要进行气体净化和除灰处理,以满足燃气的质量要求。
生物质气化装置的设计和运行参数对气化产物的组成和产量有着重要影响,需要进一步优化和改进。
生物质气化技术的经济性和可持续性也需要进一步研究和评估。
为了进一步推动生物质气化技术的发展,未来的研究方向可以从以下几个方面展开。
需要进一步深入了解生物质气化的反应机理和气化产物的特性,为气化过程的优化设计提供科学依据。
可以通过改进气化反应设备和工艺参数,提高气化产物的质量和产量,降低气化过程的能耗和成本。
还可以结合生物质气化技术与其他能源利用技术,如焚烧、气体化和发酵等,形成多能互补的能源利用系统,提高生物质资源的综合利用效率。
生物质气化技术是一种具有广阔应用前景的能源转化技术,通过不断的研究和改进,相信生物质气化技术将能够更好地为我国的能源结构调整和节能减排工作做出贡献。
热解技术在生物质能源利用中的应用第一章、引言在全球变暖和环境污染日益严重的背景下,发展清洁能源显得尤为迫切。
生物质能作为一种主要的可再生能源,在近年来备受关注,主要是由于其来源广泛、不会排放大量二氧化碳等环境污染物。
但是,生物质本身的化学组成和形态复杂,难以直接利用。
因此,热解技术作为一种主要的生物质转化技术应运而生。
本文将详细介绍热解技术在生物质能源利用中的应用。
第二章、热解技术的基本原理热解是指在缺乏氧气的情况下,通过高温将生物质分解成有机物、气体和炭黑的化学过程。
其基本原理是生物质分子在高温下断裂,生成的低分子化合物可以通过吸收热能进一步分解。
具体来说,生物质在高温下分为三个阶段:干燥、热解和炭化。
在干燥阶段,生物质中的水分被蒸发。
在热解阶段,生物质分子断裂产生气体,液体和致密炭质,这个过程中需要吸收热能。
在炭化阶段,生物质逐渐转化成炭质产物。
总的来说,热解是将生物质在氧气条件下分解和氧化的亚化学反应,但不涉及产生化学反应的烟气和废物处理。
第三章、热解技术的类型生物质热解的类型分为常压热解和高压热解。
常压热解是将生物质在标准大气压下进行热解,最常见的是纤维素热解。
纤维素热解实质是通过对生物质加热产生的固相反应,将纤维素和木质素转化为固体炭和可燃气体。
高压热解则是在高压条件下进行,主要用于生产有机化学品。
在高压条件下,热裂解的分子含量更多,热效率更高。
常用的高压热解技术有气相热解、液相热解和超临界热解等。
第四章、热解技术在生物质能源利用中的应用1. 生产炭生物质炭是一个高效的生物质转化产物,具有耐火性,稳定性和碳储存能力。
在热解反应的炭化阶段,生物质逐渐转化成炭质产物。
由于生物质材料的化学性质,炭的质量往往由原料的种类和炭化温度决定。
生物质炭广泛应用于工业生产和玩具制造等领域。
此外,生物质炭还可以用于净化水和土壤,吸附有害气体。
2. 生产液体燃料和化学品高压热解技术可以生产大量的液体燃料和化学品。
生物质气化供热技术生物质气化供热技术,一种近年来备受关注的新型环保技术,正以其独特优势逐渐受到广泛欢迎。
作为一种高效、清洁的能源利用方式,生物质气化供热技术具有广阔的应用前景。
本文将对生物质气化供热技术的原理、优势、应用及发展前景进行深入探讨。
一、生物质气化供热技术的原理生物质气化供热技术是指利用生物质在缺氧或绝氧环境下的热化学反应过程,将生物质转化为可燃性气体,再利用这些气体进行供热的一种技术。
在气化过程中,生物质中的碳、氢等元素经过一系列反应转化为可燃性气体,主要包括一氧化碳、氢气、甲烷等。
二、生物质气化供热技术的优势1.环保性:生物质气化供热技术作为一种清洁能源技术,其燃烧产物主要为二氧化碳和水蒸气,相较于传统燃煤供热方式,可大幅减少硫化物、氮化物等有害物质的排放,有效降低空气污染。
2.高效性:生物质气化供热技术通过将生物质转化为气体燃料,实现了能源的高效利用。
同时,由于气化反应温度较高,可实现能源的充分释放。
3.资源丰富:生物质资源丰富,可从农业废弃物、林业废弃物等中获得,为生物质气化供热技术的发展提供了充足的原料保障。
4.灵活性:生物质气化供热技术可根据实际需求进行规模化的建设,既可应用于集中供热,也可应用于分散供热,具有较强的灵活性。
三、生物质气化供热技术的应用生物质气化供热技术在国内外得到了广泛应用。
在国内,许多地方已经建设了生物质气化供热站,为当地居民和企业提供清洁、高效的供热服务。
此外,在农业废弃物资源丰富的地区,生物质气化供热技术的应用可以有效解决废弃物的处理难题,提高资源利用率。
四、生物质气化供热技术的发展前景随着环保意识的不断提高和能源结构的转型升级,生物质气化供热技术的发展前景十分广阔。
未来,生物质气化供热技术有望成为主流的供热方式之一,为推动绿色发展、建设美丽中国贡献力量。
同时,针对生物质气化供热技术的进一步研究与创新将不断涌现,为该技术的推广应用提供有力支持。
总之,生物质气化供热技术作为一种环保、高效的新型供热方案,具有广阔的应用前景和重要的现实意义。
生物质气化气作为锅炉燃料的装置研发与应用摘要:生物质能是满足当今世界能源需求的最具潜力的可再生能源。
利用生物质气化技术能实现CO2的归零排放,节约常规能源,符合可持续发展的要求。
本文介绍了生物质气化的原理与工艺和相关气化反应器,指出了常规生物质气化反应器在应用中的缺陷及提出了一种新型的生物质气化炉。
生物质气化是在一定的热力学条件下,借助于空气部分(或者氧气)、水蒸气的作用,使生物质的高聚物发生热解、氧化、还原重整反应,最终转化为一氧化碳,氢气和低分子烃类等可燃气体的过程。
关键字:生物质气化,原理与工艺,气化炉,焦油炉内裂解引言:能源和环境问题已成为全球关注的焦点,随着能源消耗的迅速增长,化石燃料的大量使用带来了严重的环境污染和生态破坏,再加上常规能源如煤、石油、天然气等资源量的日益减少,开发洁净的可再生能源成为了可持续发展的迫切需要。
与此同时,生物质能在可再生能源中,是地球上唯一能够储存和可运输的清洁能源,资源量大,分布广,开发潜力巨大。
生物质能要真正成为矿物燃料的替代能源,其关键是要将能量密度低的低品位的生物质能转变成高品位能源。
如何有效地将生物质转化为洁净、高效的高品位能源,是该领域目前的主要研究课题。
当前,生物质能转化技术主要包括生物质气化、液化、固化以及直接燃烧技术。
生物质能气化技术就是其中重要的手段之一,生物质气化技术的基本应用方式主要有四个方面,即用于供热、用于发电、用于供气、用于化学品合成。
常规生物质气化炉类型:目前,生物质气化炉有固定床、流化床两种类型。
固定床气化炉:分为下吸式气化炉、横吸式气化炉和开心式气化炉。
固定床气化炉因其具有结构简单、制造简便、造价低廉、操作容易、适用于块状及大颗粒原料等优点。
下吸式气化炉:气流是向下流动的,通过炉栅进入外腔。
原料由上部加入,依靠重力下落。
经过干燥区后水分蒸发,在裂解区分解出的二氧化碳、一氧化碳、氢气、焦油等热气流向下流经气化区。
在气化区发生氧化还原反应。
生物质气化燃烧技术在工业锅炉上的应用研究摘要:生物质是一种清洁、可再生能源,随着环境污染的日益严重及化石能源的逐渐枯竭,它在社会工、农业生产中扮演重要角色。
生物质能是指把光能以化学能形式储存起来的有机物质,是一种可再生、环境友好、可持续发展的清洁能源。
生物质颗粒燃料的主要特性是高挥发份、低灰分、低硫、热值一般,容易着火,燃点低,燃烧温度低,但其草木灰中含碱金属较大,容易结焦和发生碱腐蚀,直接燃烧时容易产生黑烟及在受热面上沉积焦油,燃烧快速难以合理配风,燃烧温度较难控制,且需要的炉膛容积较大,容易结焦,不易压火,因此采用层燃燃烧方式难以组织稳定燃烧,而且燃烧效率和锅炉热效率较低,不能实现生物质颗粒燃料的高效利用。
对生物质气化及燃烧成套技术的研发和应用,保证气化过程的无焦油、能量的高转化率、运行的高安全性、自动进料和方便作业,是进一步推广技术应用的关键。
关键词:生物质气化;燃烧技术;工业锅炉引言生化煤气炉(煤气炉)是一种新型的能源装置,它生产生物质气体,不充分燃烧生物燃料,生产气体,不充分燃烧生物燃料、灰、灰和气体,最后通过烟道换热器,考虑到设计规则,有效处理现场直接燃烧造成的污染和资源浪费问题。
1工业锅炉行业、企业发展现状及创新能力评价我国工业锅炉行业原属机械工业部归口,1980年统领行业,战绩非凡。
但自机械工业部改弦后,命运多舛,未及更张新的部门。
工业锅炉行业失去国家和部委层面的支持后基本上处于较为松散状态,后经调整后隶属于中国电器工业协会,性质不同,始终缺乏独立性。
近20年来行业在国家和各部委层面没有建立相对应的话语权,导致行业缺乏国家级重点项目带动和企业发展的关键技术研发平台———国家级工业锅炉研究院和工程技术研发中心;失却国家和部委的强有力支持,虽经浴血奋战、闪转腾挪,然重聚辉煌力不从心。
工业锅炉行业中的企业也因缺少国家部委级项目聚拢人气,各自为政,致使连续“造血”功能紊乱,心有余而力有不逮。
前言生物质能是指由光合作用而产生的各种有机体,光合作用利用空气中的二氧化碳和土壤中的水,将吸收的太阳能转换为碳水化合物和氧气。
生物质通常包括农业废弃物、木材及森林工业废弃物、禽畜粪便、城镇生活垃圾以及能源作物等几种类型。
生物质能具有以下特点[1]:(1)属于可再生能源,可保证能源的永续利用;(2)种类多而分布广,便于就地利用,利用形式多样;(3)相关技术已经成熟,可贮存性好;(4)节能、环保效果好。
1生物质气化技术1.1生物质气化技术的原理生物质气化是利用空气中的氧气或含氧物作气化剂,在高温条件下将生物质燃料中的可燃部分转化为可燃气(主要是氢气、一氧化碳和甲烷)的热化学反应。
20世纪70年代,Ghaly[2]首次提出了将气化技术应用于生物质这种含能密度低的燃料。
生物质的挥发分含量一般在76%~86%[3],生物质受热后在相对较低的温度下就能使大量的挥发分物质析出。
几种常见生物质燃料的工业分析成分如表1所示:生物质气化技术原理及应用分析福建省电力勘测设计院郑昀济南锅炉集团有限公司邵岩李斌【摘要】生物质能是一种理想的可再生能源。
由于分布广泛、有利于环保等特点,因而越来越受到世界各国的关注。
生物质气化技术是利用生物质能的一种方式。
本文介绍了生物质气化技术的原理,生物质气化工艺及气化设备。
目前应用较多的气化技术是生物质气化供气和生物质气化发电技术。
文中提出了应用过程中存在的问题,提高效率、降低焦油含量等是今后利用生物质气化技术的发展方向。
【关键词】生物质气化原理气化技术应用种类工业分析成分水分(%)挥发分(%)固定碳(%)灰分(%)低位热值(MJ/kg)杂草豆秸稻草麦秸玉米秸玉米芯棉秸5.435.104.974.394.8715.06.7868.7774.6565.1167.3671.4576.6068.5416.417.1216.0619.3517.757.0020.719.463.1313.868.905.931.403.9716.19216.14613.97015.36315.45014.39515.991表1几种生物质的工业分析成分为了提供反应的热力学条件,气化过程需要供给空气或氧气,使原料发生部分燃烧。
目前在生物质能利用技术方面主要有哪些研究方向1.生物质能应用技术国外研究开发在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。
生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。
产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。
气化技术应用在二战期间达到高峰。
随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。
目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。
奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10某109MJ能量。
加拿大有12个实验室和大学开展了生物质的气化技术研究。
1998年8月发布了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。
瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。
1999年,瑞典地区供热和热电联产所消耗的能源中,26%是生物质。
美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。
装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2022年,生物质发电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。
流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。
反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。
包括循环流化床、加压流化床和常规流化床。
印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。
生物质能利用技术及其应用生物质能是指利用植物、动物等生物体来转化能量的一种能源形式。
随着全球对可持续发展的需求增加,生物质能的利用逐渐受到人们的关注。
本文将介绍生物质能利用技术及其应用。
一、生物质能利用技术1. 生物质气化技术生物质气化技术将生物质转化为一种含有可燃气体的混合气体,如合成气(Syngas),可供发电、提供热能和化工原料。
该技术的关键在于将生物质分解成由一氧化碳、氢气和其他气体组成的可燃性气体。
生物质气化技术的应用前景广泛,可以用于生产合成天然气,以及用于航空航天等领域的燃料生产。
2. 伯氏热解技术伯氏热解技术将生物质放入密闭的反应器中,在缺氧情况下进行高温(800-1000°C)和高压(20-40 bar)的处理,使生物质被分解为产生有机液体和气体的碳基化合物。
生产的有机液体可以用于制造石油替代品,如生物柴油和生物液化气,而气体主要用于发电和工业用途。
伯氏热解技术的优点在于可以处理多种类型的生物质,且产生的有机液体质量高、稳定性好。
3. 生物质热解技术生物质热解技术是将生物质在无氧或缺氧条件下进行加热处理,使其分解为产生有机倾向气体、固体和液体的化合物。
生物质热解技术不需要大量的氧气,所以对环境污染的风险也较低。
其中,生物质生物炭是一种多孔、高效吸水性、高热值的固体燃料,可以用于农业和工业。
二、生物质能应用领域1. 电力发电生物质气化技术和热解技术可用于电力发电。
生物质气化技术最大的好处是可以有效地转化生物质为燃料,应用于燃气轮机、内燃机和锅炉,可以提供洁净可再生的电力。
热解技术也被应用于为生物质能源发电,将空气和水加热制成高温高压蒸汽,然后用蒸汽驱动涡轮发电机,产生电力。
2. 燃料生产生物质可以用于生产燃料,如生物柴油和生物液化气。
伯氏热解技术可用于生产高质量的生物柴油,其性能与石油燃料相似,可应用于液体燃料的车辆。
生物液化气是一种有效的生物燃料,可用于燃烧器、壁炉和热水器等家庭用途。
生物质恒压热解气化站锅炉应用讲解
生物质恒压热解气化技术是一项能够将生物质能源转化为高质量燃气的技术,该技术
已经被广泛应用于工业生产中。
生物质恒压热解气化站锅炉是其中的重要设备,它可以实
现生物质的高效利用,减少污染排放,并且具有经济可行性。
生物质恒压热解气化站锅炉将生物质经过热解和气化反应,转化为生物质气体。
生物
质燃烧时所产生的热能可以用来发电或供热。
其工作原理如下:首先,将生物质物料放入
热解气化釜中,进行高温处理。
在高温下,生物质物料的分子结构发生改变,生成大量的
气体,包括一氧化碳、氢气和甲烷等。
这些气体是燃料气,可以用于锅炉或者其他热能设
备的燃烧。
生物质恒压热解气化站锅炉具有多种优点。
首先,它能够使用多种不同种类的生物质,如林木、麦秸、稻草等,这有助于提高生物质资源的有效利用率。
其次,生物质气化反应
过程中几乎没有污染物的产生,因此对环境的影响较小,可以有效减少气体排放。
此外,
生物质恒压热解气化站锅炉还具有高效、稳定、省电省煤等优点,可以在工业生产中起到
重要的作用。
当前,生物质恒压热解气化技术已经成为国家发展新能源的一个重要方向,在能源转
型和碳减排的背景下,该技术被广泛应用于化工、农业、能源等行业。
生物质恒压热解气
化站锅炉的出现,为生物质能源利用带来了新的发展机遇和思路,具有广阔的市场前景和
应用价值。
总之,生物质恒压热解气化站锅炉是一项非常重要的能源设备,它可以提高生物质资
源的利用效率,保护环境,减少能源消耗和碳排放,是推动我国经济可持续发展和环保事
业的重要手段。
生物质热解气化技术在发电中的应用实验报告一、引言随着全球能源需求的不断增长和对环境保护的日益重视,寻找可再生、清洁的能源成为当务之急。
生物质能作为一种丰富的可再生能源,具有巨大的潜力。
生物质热解气化技术是将生物质转化为可燃气体,进而用于发电的一种有效途径。
本实验旨在研究生物质热解气化技术在发电中的应用效果,为其进一步推广和应用提供参考依据。
二、实验目的1、研究不同种类生物质原料在热解气化过程中的产气特性和成分。
2、评估生物质热解气化气用于发电的可行性和效率。
3、分析影响生物质热解气化发电系统性能的因素。
三、实验材料与设备1、生物质原料:选取了玉米秸秆、小麦秸秆、木屑等常见的生物质材料。
2、热解气化设备:采用了固定床式热解气化炉,其主要由进料系统、反应室、气体净化系统和控制系统组成。
3、发电设备:选用了小型燃气内燃机发电机组,额定功率为_____kW。
4、分析仪器:包括气相色谱仪(用于分析气体成分)、热量计(用于测量气体热值)等。
四、实验方法1、生物质原料预处理:将收集到的生物质原料进行粉碎、干燥等预处理,使其达到合适的粒度和含水率。
2、热解气化实验:将预处理后的生物质原料均匀地送入热解气化炉中,控制反应温度、气化剂流量等参数,进行热解气化反应。
3、气体净化:热解气化产生的气体经过冷却、过滤、除焦油等净化处理,以提高气体质量。
4、发电实验:将净化后的气体通入燃气内燃机发电机组中,进行发电实验,记录发电功率、运行时间等数据。
5、气体成分和热值分析:定期采集气体样品,利用气相色谱仪和热量计分析气体成分和热值。
五、实验结果与分析1、产气特性不同生物质原料的产气率存在差异。
玉米秸秆的产气率较高,平均可达_____m³/kg;小麦秸秆和木屑的产气率相对较低,分别为_____m³/kg 和_____m³/kg。
产气成分主要包括氢气(H₂)、一氧化碳(CO)、甲烷(CH₄)、二氧化碳(CO₂)等。
我国生物质成型燃料的研究进展摘要:洁净、可再生的生物质成型燃料能源的利用,可以有效地缓解我国能源紧张的压力。
本文主要介绍了近年我国在生物质成型燃料成型工艺条件和燃烧性能,以及混合型生物质成型燃料方面的研究进展,并指出今后我国应对生物质成型燃料的压制机理、燃烧动力学等方面展开深入研究。
科技的进步、能源原料的应用使得人类社会进入工业化时代,社会经济得到飞速发展,但社会的发展使不可再生的化石资源储量日益减少,能源压力越来越大。
而且随着社会工业化程度的加深,环境污染更加严重。
世界各国也越来越重视保护环境,尤其发展中国家,面临着环境与发展的双重选择。
处于发展中的中国环境问题,更是受到一些大国的关注。
在哥本哈根会议中就针对我国的CO2排放量提出明确要求,此外,中国也向世界承诺在2030年CO2排放达到峰值,且比2005年时减少六十个百分点,加大可再生能源的利用约二十个百分点。
面对国际上的压力,我国加大了发展清洁、可再生能源利用的力度,尤其是对CO2零排放的生物质成型燃料的利用,符合目前世界的可持续发展理念。
目前,我国在生物质成型燃料方面的研究,主要集中在成型燃料成型工艺和燃烧性能方面。
针对生物质原料来源的丰富、广泛性,近几年有学者还开展了混合型生物质成型燃料的研究。
1生物质成型燃料成型工艺条件生物质成型燃料就是通过物理方法,将生物质原料压实,提高密度,形成固定形状。
压实后的生物质热值得到很大提高,且便于运输。
根据成型时的温度不同,生物质成型工艺可分为常温成型、加热成型以及高温炭化成型三种。
在各工艺实施过程中,具体的工艺条件对生物质成型性能以及使用时的燃烧性能和排放性能都有很大的影响,因此,许多学者开展了生物质成型燃料成型工艺的研究。
1.1生物质成型燃料成型工艺条件研究现状刑献军等采用正交实验方法研究了成型工艺对玉米秸秆的热压成型影响,其中预热温度对玉米秸秆成型燃料的松驰比影响最大,其次是玉米秸秆的含水率影响较大,再次是玉米秸秆的粒度和成型时的加压速度和时间。