Touch Panel原理介绍
- 格式:pdf
- 大小:5.83 MB
- 文档页数:50
Touch Panel原理壹:模拟式1.电流能均一性导通2.电压差能均匀变化同侧, 同侧当电流由 进入时, 即为接收端,反之反以此物理特性判位置之度(X.Y)点结构:一、上部基板1.基板: ITO/PET(属软性基板,可受力变形,才能使上,下部接触)ITO:氧化铟锡2.为使电流能匀一性导通,所以在除电极外,其余部份需绝缘,所以必须先印上一层绝缘层,只留电极处3.因绝缘胶印刷时可能有破洞,膜厚不足导致ITO与之后印刷的银线路产生绝缘不足情况,所以需再印一次同位置的绝缘层(注:另外亦可能以蚀刻方式制作出绝缘效果)4.银胶阻抗低目的:制造电流可均一性流通之效果,与ITO层直接接触银的宽度愈粗,则可使回路抵抗愈低当操作电压为5V时I(电流)=V/R=5/(r1+R+r2) r1,r2:即银线路之阻抗R: panel阻抗=面阻抗*银电极距离/银电极宽度△V AB=5/(r1+R+r2)*r1△VBC=5/(r1+R+r2)*R1△VCD=5/(r1+R+r2)*r2当在测直线性时则模拟转数字的IC,,则愈易判断位置,Touch panel之特性较好(注:电测时△V AB即为端子至第一点)5.当银线路制作完成后,为防止将来组合时银与下部电极产生导通,故须再印一层绝缘层,而此绝缘层需全面性覆盖,只留将来的pin处6. 接下来为使ITO/PET 与下部接着,必须有黏着剂将上、下部贴合黏着层为全面印刷,只留气穴及pin 处,气穴目的将组合后内部的空气挤出二、下部基板:1. 基板:ITO/Glass先印刷Micro Dot以Ni 金属板印刷,micro dot 要求透光度佳与ITO glass 附着力强目的:使组合后的ITO/PET 不会因重力的关系陷下而使上、下部无动作时产生动作 另,dot 之高度,、宽度荷重25g 以下 pitch=2mm 荷重15g 以下 pitch=3mm当量取荷重时,可能出现某些点有较大的荷重状况,此点不可计,原因为压的点可能在dot 上所导致A :四个dot 中心B :两个dot 中心C :dot 上荷重 C >B >A当测荷重时有Φ0.8及Φ8mm 两种测头,主要是模拟笔触及指触时的不同2. Touch panel 尺寸有分外型尺寸、视区尺寸、动作区尺寸视区尺寸:意指整个机台加上外盖时的可视区 动作尺寸:指panel 上之有效区因机台外壳会对panel 有加压的动作,恐会影响到上、下部ITO 处接触产生误动作,故需在动作区与视区间,印上一层绝缘层,如图 上、下各留两长条,为将来印刷银电极预留 此绝缘层为透明3. 因上述之透明绝缘内含溶剂,会与银产生反应,造成银导通不良,故在印刷银电极前需再印刷绝缘层(绿)UV 热硬化型,若只印一层,可能有气泡产生,故有时需印刷两次4. 印银电极:目的同上部(4)5. 印绝缘层:目的同上部(5)三、connect 部:可分为Heat Seal 及FPC 其作用是将讯号连接用,Heat Seal 通常用在插槽式,FPC 用在插槽式或焊接式基板:PET(38um)因薄所以可弯曲,可绕第一层:印刷银,导通,阻抗低第二层:印刷碳,目的:保护银线路,因银绕折性不佳,若无碳保护,可能导致断路第三层:印刷绝缘层,保护线路,若外界有particle 掉落恐有短路第四层:异方性胶印刷目的:使接pin 处之银,透过导电粒子导通,使讯号传送。
触摸屏工作原理触摸屏是一种常见的人机交互设备,广泛应用于手机、平板电脑、电子签名板等各种电子设备中。
它的工作原理基于电容技术或者电阻技术,能够感知人体触摸并将触摸信号转化为电信号,从而实现对电子设备的控制。
一、电容触摸屏原理电容触摸屏是目前应用最广泛的触摸屏技术之一,其工作原理是基于电容效应。
电容触摸屏通常由两层导电层面组成,上层为导电触摸面板,下层为驱动电极面板。
触摸面板上通过一个微小的间隙与驱动电极面板相隔,并且两者之间电绝缘。
当我们用手指触摸触摸面板时,人体本身就是一个带电体,会改变触摸面板上的电场分布。
触摸面板上的驱动电极会感应到这一变化,并将其转化为电信号。
电容触摸屏可分为电容传感型和投影电容型。
电容传感型触摸屏是在触摸面板上布置一些小电容传感器,通过检测这些传感器的电容变化来定位触摸位置。
而投影电容型触摸屏则是在触摸面板背后布置一层导电物质成像层,通过检测导电物质在触摸位置上的电容变化来实现定位。
二、电阻触摸屏原理电阻触摸屏是另一种常见的触摸屏技术,其工作原理是基于电阻效应。
电阻触摸屏通常由两层导电玻璃面板组成,两层导电面板之间通过绝缘层隔开。
当我们用手指触摸电阻触摸屏时,手指会压在上层导电玻璃面板上,导致上层导电玻璃面板弯曲。
由于两层导电面板之间存在电阻,触摸点位置的电阻值会发生变化。
电阻触摸屏通过检测触摸点位置导致的电阻变化来实现定位。
通常采用四线电阻触摸屏或五线电阻触摸屏,其中四线电阻触摸屏通过两根垂直电流引线和两根水平电流引线来测量电阻变化,而五线电阻触摸屏则多了一根触摸屏边界线。
三、与屏幕的互动触摸屏通过感知人体触摸信号,将其转化为电信号后,通过控制芯片将信号传递给显示器,从而实现对电子设备的操作。
电子设备会解析接收到的信号,并根据信号的不同作出相应的反应,比如移动、点击、缩放等。
触摸屏的工作原理使得用户能够通过手指触摸屏幕,直接对显示器上的图像和内容进行操作。
这种直观、高效的操作方式极大地提高了电子设备的使用体验,使之更加便捷和人性化。
tp 芯片TP芯片,全称为Touch Panel,是一种用于触摸屏的芯片。
随着智能手机、平板电脑、电子书阅读器等电子设备的普及,触摸屏技术逐渐成为人机交互的主流方式之一。
TP芯片作为触摸屏的关键部件之一,起着负责接收和处理用户输入的作用。
接下来我将以1000字的篇幅介绍TP芯片的原理、发展历程和应用。
首先,我们来了解一下TP芯片的工作原理。
TP芯片采用电容式触摸屏技术,通过人体的电容作用,实现用户输入的感应。
具体来说,TP芯片的基本构成是由绝缘材料和导电层构成的触摸面板,以及负责信号检测的控制电路。
当用户用手指或者触控笔触摸屏幕时,导电物质会改变电荷分布,TP芯片就会检测到这些电荷的变化,并将其转化为相应的控制信号。
然后,这些信号会通过TP芯片传递给处理器,最终实现屏幕上的响应。
TP芯片的发展历程可以追溯到20世纪60年代。
当时,美国的一些科学家开始研究电容触屏技术,并取得了一系列的突破。
而在20世纪90年代初,世界上第一台商用触摸屏手机IBM Simon发布,这标志着TP芯片的商业化应用。
之后,随着触摸屏技术的不断进步和发展,TP芯片也越来越小巧、高效和稳定。
如今,TP芯片已经成为了手机、平板电脑、车载导航和工业控制板等领域不可或缺的核心部件。
接下来,我将介绍TP芯片的应用场景和未来发展趋势。
首先,TP芯片广泛应用于智能手机和平板电脑等消费电子产品。
现代智能手机上的触摸屏几乎全部采用了TP芯片,它不仅为用户提供了便捷的触控操作,还支持多点触控、手势识别和指纹识别等功能,提升了用户体验和数据安全性。
此外,TP芯片还应用于ATM机、自助售货机、工业自动化设备等领域,提供了更加灵活和便捷的操作方式。
未来,TP芯片将继续引领触摸屏技术的发展方向。
首先,TP芯片将更加智能化和集成化,实现更多的人机交互方式。
比如,通过融合虚拟现实和增强现实技术,可以将触摸屏变成一种更为直观、沉浸式的交互界面。
其次,随着5G技术的普及,TP芯片也将实现更快的反应速度和更低的功耗,提高用户体验和设备的续航能力。
触控板原理触控板是一种常见的输入设备,广泛应用于笔记本电脑、平板电脑和智能手机等设备中。
它的原理是利用人体的电容性来实现触摸输入,从而实现对设备的控制和操作。
触控板的工作原理涉及到电容感应技术和信号处理技术,下面将对触控板的工作原理进行详细介绍。
首先,触控板利用电容感应技术来实现对触摸输入的检测。
当手指触摸触控板时,触控板上的电容会发生变化,这种变化可以被传感器所检测到。
传感器会将这种变化转化为电信号,并传输到处理器进行处理。
通过对电容变化的检测和分析,处理器能够确定手指的位置和移动轨迹,从而实现对设备的控制。
其次,触控板利用信号处理技术来实现对触摸输入的识别和解析。
处理器接收到传感器传输过来的电信号后,会对这些信号进行处理和解析。
通过对信号的频率、幅度和相位等特征进行分析,处理器能够准确地识别手指的触摸操作,并将其转化为相应的控制命令。
这些控制命令可以用来移动光标、点击按钮、滚动页面等操作,从而实现对设备的灵活控制。
总的来说,触控板的工作原理是基于电容感应技术和信号处理技术的。
通过对手指触摸时电容的变化进行检测和分析,以及对传感器传输过来的信号进行处理和解析,触控板能够实现对触摸输入的准确识别和灵活控制。
这种工作原理使得触控板成为一种方便、灵敏的输入设备,极大地方便了人们对设备的操作和控制。
除了在笔记本电脑、平板电脑和智能手机等设备中广泛应用外,触控板还被应用于一些特殊场合,比如工业控制、医疗设备和交通工具等。
通过对触控板的工作原理进行深入了解,可以更好地理解触控板在各种设备中的应用和优势,为相关领域的技术创新和应用提供有益的参考和指导。
综上所述,触控板的工作原理是基于电容感应技术和信号处理技术的,通过对手指触摸时电容的变化进行检测和分析,以及对传感器传输过来的信号进行处理和解析,实现对触摸输入的准确识别和灵活控制。
触控板作为一种常见的输入设备,在各种设备中得到了广泛的应用,为人们的操作和控制提供了便利和舒适的体验。
Touch Panel(TP)原理培训资料1、根据工作原理,触摸屏可分为电阻式、红外式、电容式、表面声波式4大类,本司生产主要以电阻式和电容式为主;2、电阻式触摸屏于上个世纪80年代首先在日本实现大规模的产业化;在产品的技术发展上,东西方各有不同,欧美的触摸屏以电容式、表面声波式及五线电阻式为发展方向,产品以大尺寸居多;日本、台湾触摸屏技术以四线电阻式为主要发展方向,产品以中小尺寸为主要目标;3、电阻式触摸屏又可细分为模拟式和数字式两大类,这两种类型的触摸屏也叫做类比式和矩阵式;目前市场上电阻式触摸屏产品有film + film、film + glass、film + film +承托板三种结构。
4、可视区(V.A)定义:透明区,装机后可看到的区域。
此区域不能出现不透明的走线及双面胶等。
5、动作区(A.A)定义:实际可操作的区域。
6、ITO,氧化铟锡,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。
ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。
1m=103mm=106μm=109nm=1010Å7、我司在制作F/G产品上使用到的主材有:ITO Film、ITO Glass、FPC、双面胶、图案线路等。
其产品结构如下图:8、本司在制作Touch Lens(ICON+F+F+PC)时,主要使用到的材料有:光学胶、上层Film(上电极)、下层Film(下电极)、PC板、ICON、等。
其结构如下图:9、TP原理:当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。
触摸面板原理触摸面板是一种能够感知人体触摸操作的输入设备,它已经广泛应用于智能手机、平板电脑、笔记本电脑等电子设备中。
触摸面板的原理是基于电容、电阻、红外线等不同技术,通过感应人体的电荷变化或者接触来实现对设备的控制。
本文将详细介绍触摸面板的原理及其工作方式。
首先,我们来介绍电容触摸面板的原理。
电容触摸面板是利用电容原理来感应人体触摸操作的一种技术。
它由一层导电玻璃和一层感应电极构成,当手指触摸屏幕时,手指和感应电极之间会形成一个微小的电容。
触摸面板会通过感应电极来检测这种电容变化,从而确定触摸位置和操作方式。
电容触摸面板具有高灵敏度、低功耗等优点,因此被广泛应用于各种电子设备中。
其次,电阻触摸面板是另一种常见的触摸技术。
它由一层玻璃和一层导电膜构成,导电膜上覆盖有微小的电阻网络。
当手指触摸屏幕时,手指和导电膜之间会形成一个电阻。
触摸面板会通过检测电阻的变化来确定触摸位置和操作方式。
电阻触摸面板相对于电容触摸面板来说,价格更低廉,但是灵敏度和响应速度较低。
除了电容和电阻技术,红外触摸面板也是一种常见的触摸技术。
它通过在屏幕边缘放置红外线发射器和接收器,当手指触摸屏幕时,会阻挡红外线的传感,从而确定触摸位置和操作方式。
红外触摸面板具有高抗干扰能力和耐用性的优点,但是对环境光线和灰尘等因素比较敏感。
总的来说,触摸面板的原理是通过感应人体的电荷变化或者接触来实现对设备的控制。
不同的触摸技术有各自的优缺点,可以根据具体的应用场景来选择合适的触摸面板技术。
随着科技的不断发展,触摸面板技术也在不断创新和完善,相信在未来会有更多更先进的触摸面板技术出现,为人机交互带来更便捷、更智能的体验。
在电子设备中,触摸面板已经成为了主流的输入方式之一,它的出现极大地改变了人机交互的方式,使得操作更加便捷、直观。
随着触摸面板技术的不断发展,相信它会在未来的电子设备中扮演更加重要的角色。
希望本文对触摸面板的原理有所帮助,让大家对这一技术有更深入的了解。
触控式面板(TouchPanel)触控式面板有4、5种以上的技术和许多的厂商投入其中,假如有些顾客想采用触控式面板,势必会被五花八门的资讯搞的眼花撩乱,不知所措。
这篇文章以目前比较主流的和未来的技术为架构,希望给初次涉入触控式面板的读者提供一些有用的参考。
这篇文章以目前比较主流的和未来的技术为架构,希望给初次涉入触控式面板的读者提供一些有用的参考。
■•电阻式■•电阻式电阻式触控萤幕可以说是目前使用量最多的一个技术,电阻式的驱动原理是用电压降的方式来找座标轴,由下图可以看出,X轴和Y轴各由一对0∼5V的电压来驱动,当电阻式触控萤幕被Touch到的时候,由於回路被导通,而会产生电压降,而控制器则会算出电压降所占的比例然后更进一步算出座标轴。
电阻式触控萤幕可以说是目前使用量最多的一个技术,电阻式的驱动原理是用电压降的方式来找座标轴,由下图可以看出,X轴和Y轴各由一对0∼5V的电压来驱动,当电阻式触控萤幕被Touch到的时候,由于回路被导通,而会产生电压降,而控制器则会算出电压降所占的比例然后更进一步算出座标轴。
从电阻式的结构面来讲,通常电阻式上层是以ITO Coating的PET来当材料,下层则是以ITO Coating的PET或是玻璃来当材料,平常没使用的时候上下两层是以绝缘体Spacer Dot来撑开,要不然就会产生Constant Touch(游标固定每一点)的问题。
从电阻式的结构面来讲,通常电阻式上层是以ITOCoating的PET来当材料,下层则是以ITOCoating的PET或是玻璃来当材料,平常没使用的时候上下两层是以绝缘体SpacerDot来撑开,要不然就会产生ConstantTouch(游标固定每一点)的问题。
一般电阻式架构式Film on Glass(FG),也就是说上层是ITO Coating的PET,下层则是以ITO Coating 的一般玻璃,缺点是一般玻璃假如在使用中不慎弄破,玻璃碎片会割伤使用者。
触控屏工作原理
触控屏的工作原理可以分为以下几个步骤:
1. 传感器阵列:触控屏通常由一组排列在屏幕下方的传感器组成。
这些传感器可以是电容式、压力式或者电阻式。
它们负责检测用户的触摸动作,并将信息传递给控制器。
2. 接收触摸信号:当用户用手指或者触控笔接触屏幕时,触摸屏的传感器会感知到触摸动作,然后将触摸信号传送到控制器。
3. 控制器处理信号:控制器是一个芯片,负责接收并解析来自传感器的触摸信号。
它会将信号转化为计算机可以理解的数字信号,并将处理后的信号发送给计算机。
4. 计算机处理触摸输入:计算机接收到触摸输入信号后,会根据这些信号来判断用户的操作意图。
然后,计算机会把这些输入信息转化为具体的操作,比如移动光标、打开应用程序等。
5. 屏幕显示:根据计算机的指令,触控屏会将操作结果显示在屏幕上。
用户可以透过触控屏来与屏幕上的图像、文字或者应用程序进行互动。
总的来说,触控屏的工作原理就是通过传感器感知用户的触摸动作,然后将这些信息传递给控制器,最终通过计算机的指令和屏幕显示来实现用户与设备的互动。