201520161《线性代数》期末考试(A)答案及评分标准
- 格式:docx
- 大小:397.00 KB
- 文档页数:11
线性代数期末试卷A答案及评分标准IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】A卷2015—2016学年第一学期《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4.本试卷正文共7页。
说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分) 1.5阶行列式中,项4513523124a a a a a 前面的符号为【负】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+等于【0】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【2】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【1】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【1】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【-8】.二、选择题(共5个小题,每小题3分) 1.设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【A 】.(A)2-;(B)21-;(C)1-;(D)2. 2.矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【A 】.(A)210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(B)210110001⎛⎫ ⎪ ⎪ ⎪⎝⎭;(C)110120001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(D)110110001⎛⎫ ⎪⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【A 】. (A)||0A =;(B)||1A =;(C)A 可逆;(D)A 满秩.4.设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【D 】.(A)4;(B)8;(C)0;(D)1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【B 】.(A)2=a ;(B)1=a ;(C)3=a ;(D)以上选项都不对.三、求解下列各题(共3小题,每小题7分)1.若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k =分2.设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得0=+B E A又02=122010012=+≠--E A ----------2分因此0=B因此可得5=-a .----------7分3.设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为-1,t ,3,因此A 的特征值也为-1,t ,3 利用特征值的性质可得21132(4)3ta t a ++=-++⎧⎨-=-⎩----------5分 解得12a t ==,.----------7分四、(共2小题,每小题8分) 1.求向量组的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪⎪⎝⎭,把A 进行行变换,化为行最简形,()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2.问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量,即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -,----------6分而114300000A E a -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,因此可知0≠a .----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解;----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ, 正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p ,----------12分 令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=.----------14分 七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1.“设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由.解:该结论成立。
2016~2017学年第二学期《 线性代数A 》课程期末考试卷A 卷考核方式: 闭卷 考试日期:20 年 月 适用专业、班级:一. 填空题 (每小题3分,共15分)1. 排列()()12321n n n --的逆序数为(2)(1)2n n -- 2. 向量组()()()123,0,,,,0,0,,TTTa cbc a b ααα===线性相关,则a,b,c 应 满足 abc=03. ,A B 为三阶方阵,1,3,2A B ==则12T B A -= 484. 若齐次线性方程组1232312320250320x x x x x x x kx ++=⎧⎪+=⎨⎪--+=⎩有非零解,则k=___7___5. 设4阶矩阵A 与B 相似,矩阵A 的特征值为11111,,,,B E 2345--=则__24__二. 选择题(每小题3分,共15分).1. 若11121321222331323312a a a D a a a a a a ==,则11131112121232122313331322 22 22 2a a a a D a a a a a a a a -=-=-( C ) (A ) 4 (B ) 4- (C )2 (D )2-.2. 设,A B 均为n 阶对称矩阵,AB 仍为对称矩阵的充要条件是( D ) (A )A 可逆. (B )B 可逆 (C )AB 0≠ (D )AB BA =3. A 为m 行n 列矩阵,A 的n 个列向量线性无关,则r(A)( D )(A )>m (B )<n (C )=m (D )=n 4. 向量组12,,,s ααα线性无关,且可由向量组12,,,t βββ线性表示则必有(A )t s ≤ (B )t s ≥ (C )t s < (D )t s > ( B )5.2λ=是非奇异矩阵A 的特征值,则1213A -⎛⎫⎪⎝⎭有一个特征值为( B )(A )43 (B )34 (C )12 (D )14三. 计算下列行列式的值(每小题6分,共12分)1.1 3 5 73 5 7 1 5 7 1 3 7 1 3 5解:1 3 5 71 3 5 7 1253 5 7 1 0 -4 -8 -20128134 5 7 1 3 0 -8 -24 -3258117 1 3 50 -20 -32 -44==-12512801120480214=--=--2.1 3 3 3 3 32 33 33 3 3 3 3 3 3 3 1 33 3 33 nn n- 解:1 3 3 3 32 0 0 0 03 2 33 3 0 -1 0 0 03 3 3 3 3 3 3 3 3 3 3 3 3 1 30 0 0 3 3 33 nn n-=- 4 00 0 00 3nn n --2 0 0 0 0 0 -1 0 0 036(3)!0 0 0 4 00 0 0 0 3n n n -==--- 四给定向量组()()()()12341, 1, 0, 4,2, 1, 5, 6,1, 2, 5, 2,1,1, 2, 0,αααα=-===--()53,0, 7, 14α= 求它的一个极大无关组,其余向量用此极大无关组线性表示。
×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 分,共 分)若022150131=---x ,则=χ 。
.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题 分,共 分) 若行列式D 中每个元素都大于零,则0〉D 。
( ) 零向量一定可以表示成任意一组向量的线性组合。
( )向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
三、单项选择题 每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题 分,共 分设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n 2② 12-n③ 12+n④n 维向量组 s ααα,,, 21( )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量 下列命题中正确的是 。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关设A ,B 均为 阶方阵,下面结论正确的是 。
A卷2015—2016学年第一学期《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期 2016年1月15日1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4. 本试卷正文共7页。
说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分) 1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+ 等于【 0 】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【 2 】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【 1 】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【 -8 】.二、选择题(共5个小题,每小题3分) 1. 设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【 A 】.(A) 2-; (B) 21-; (C) 1-; (D) 2. 2. 矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【 A 】.(A) 210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (B)210110001⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 110120001-⎛⎫⎪- ⎪ ⎪⎝⎭; (D) 110110001⎛⎫⎪ ⎪ ⎪⎝⎭. 3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【 A 】.(A) ||0A =; (B) ||1A =; (C) A 可逆; (D) A 满秩.4. 设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【 D 】.(A) 4; (B) 8; (C) 0; (D) 1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【 B 】.(A) 2=a ; (B) 1=a ; (C) 3=a ; (D) 以上选项都不对. 三、求解下列各题(共3小题,每小题7分)1. 若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k . 解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k = 6. ----------7分 2. 设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得 0=+B E A又 02=122010012=+≠--E A----------2分因此 0=B因此可得 5=-a . ----------7分3. 设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为 -1,t ,3,因此A 的特征值也为 -1,t ,3 利用特征值的性质可得21132(4)3t a t a ++=-++⎧⎨-=-⎩ ----------5分 解得12a t ==,. ----------7分 四、(共2小题,每小题8分)1.求向量组的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪⎪⎝⎭, 把A 进行行变换,化为行最简形,()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2. 问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量, 即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -, ----------6分而114300000A E a -⎛⎫⎪-= ⎪ ⎪⎝⎭,因此可知0≠a . ----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解; ----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为1. ----------4分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ,正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p , ----------12分 令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=. ----------14分七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1. “设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由. 解:该结论成立。
线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。
设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。
如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。
如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。
设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。
设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。
设A 为正交矩阵,则A = ;6。
设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
《线性代数》期末考试试卷附答案一、填空题(每小题3分,共30分)1.如果行列式2333231232221131211=a a a a a a a a a ,则=---------333231232221131211222222222a a a a a a a a a 。
2.设2326219321862131-=D ,则=+++42322212A A A A 。
3.设1,,4321,0121-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=A E ABC C B 则且有= 。
4.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a 。
5.A 、B 均为5阶矩阵,2,21==B A ,则=--1A B T 。
6.设T )1,2,1(-=α,设T A αα=,则=6A 。
7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。
8.若31212322212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。
9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。
10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。
二、单项选择(每小题4分,共20分)1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( )A .1或2B . -1或-2C .1或-2D .-1或2.2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( )A .5B .-5C .-3D .33.设A 、B 均为n 阶矩阵,满足O AB =,则必有( )A .0=+B A B .))B r A r ((=C .O A =或O B =D .0=A 或0=B4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是( )A .21+ββB .()212351ββ+ C .()21221ββ+ D .21ββ-5. 若二次型32312123222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( )A . 1B .2C . 3D . 4三、计算题 (每题10分,共50分)1.计算n 阶行列式abbb a b b b aD n=线性代数答案:一、填空题1.-16; 2. 0; 3.⎪⎪⎭⎫⎝⎛21107; 4. 1; 5.-4;6. ⎪⎪⎪⎭⎫ ⎝⎛----=1212421216655A ;7.λ1A ;8.3535<<-t ; 9. 2π;10. 24。
《线性代数》期末考试试题(A 卷)及评分标准一.单项选择题(每小题3分,共30分)1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。
()A ()()r A r B <; ()B ()()r A r B =;()C ()()r A r B >; ()D 无法判定()r A 与()r B 之间的关系。
2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。
()A A 中有一行元素全为零; ()B A 有两行(列)元素对应成比例; ()C A 中必有一行为其余行的线性组合; ()D A 的任一行为其余行的线性组合。
3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( )() ;A A O B O ==或()AX B B 的每个行向量都是齐次线性方程组=O 的解.();C BA O = ()()().D R A R B n +≤4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( )()A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠; ()B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++=12(),,...,s C ααα的秩等于s ;12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示5.设n 阶矩阵(3)n ≥1...1................1a aa a aa A a a a ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭,若矩阵A 的秩为1n -,则a 必为( )。
()A 1; ()B 11n-;()C 1-; ()D 11n -.6.四阶行列式112233440000000a b a b b a b a 的值等于( )。
2011-2012学年第一学期期末考试《线性代数》试卷 (A )评阅人:_____________ 总分人:______________一、单项选择题。
(本大题共10小题,每小题3分,共30分) 1.设1111011x x x xx x++=+,则实数x =A .1 ;B .-1;C .0;D .4. 2.设A 为n 阶方阵,则kA =A .A k n; B. A k ; C. A k ; D. nA k )(. 3.设B A ,均为n 阶矩阵,且AB =O ,则下列命题中一定成立的是( ) A. A =O 或B =O ; B. A ,B 都不可逆;C. A +B =O ;D. A ,B 至少有一个不可逆.4.下列矩阵中与矩阵123218001A ⎛⎫⎪= ⎪ ⎪⎝⎭同秩的矩阵是 A .()456; B.123456⎛⎫⎪⎝⎭; C.12111011⎛⎫ ⎪- ⎪ ⎪⎝⎭; D.122101402⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.设A 是正交矩阵,则下列结论错误的是( ) A. A 2必为1; B. A 必为1; C. T A A=-1; D. A 的行(列)向量组是正交单位向量组.6.设非齐次线性方程组Ax =b 的导出组为Ax =0,则下列结论中正确的是( )A.若Ax =0仅有零解,则Ax =b 有唯一解;B.若Ax =0有非零解,则Ax =b 有无穷多解;C.若Ax =b 有无穷多解,则Ax =0仅有零解;D.若Ax =b 有唯一解,则Ax =0仅有零解。
__________________系__________专业___________班级 姓名_______________ 学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………27.已知λ=3是可逆矩阵A 的一个特征值,则1-A 有一特征值是( )A.49; B. 94; C. 13; D. 19 .8.设n 维向量α与β满足α,β()=0,则有( )A. α,β 全为零向量;B. α,β中至少有一个是零向量;C. α与β的对应分量成比例;D. α与β 正交. 9.设向量组A 与向量组B 等价,则有( )A. B A R R <B. B A R R >C. B A R R =D. 不能确定A R 和B R 的大小.10.设齐次线性方程组0AX =的系数矩阵A 为m n ⨯矩阵,()()R A s s n =<,则此方程组基础解系的秩为A .m s - ; B. s n - ; C. n s - ; D. m n -.二、填空题。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
线性代数期末试题及答案线性代数一、填空题(每小题2分,共20分)1.如果行列式,则。
2.设,则。
3.设= 。
4.设齐次线性方程组的基础解系含有2个解向量,则。
5.A、B均为5阶矩阵,,则。
6.设,设,则。
7.设为阶可逆矩阵,为的伴随矩阵,若是矩阵的一个特征值,则的一个特征值可表示为。
8.若为正定二次型,则的范围是。
9.设向量,则与的夹角。
10. 若3阶矩阵的特征值分别为1,2,3,则。
二、单项选择(每小题2分,共10分)1.若齐次线性方程组有非零解,则().1或2 . -1或-2 .1或-2 .-1或2.2.已知4阶矩阵的第三列的元素依次为,它们的余子式的值分别为,则().5 .-5 .-3 .33.设A、B均为n阶矩阵,满足,则必有(). ..或 .或4.设是非齐次线性方程组的两个解向量,则下列向量中仍为该方程组解的是()A. B. C. D.5. 若二次型的秩为2,则(). 1 .2 . 3 . 4三、计算题 (每题9分,共63分)1.计算阶行列式2. 设均为3阶矩阵,且满足,若矩阵,求矩阵。
3.已知向量组和;已知可以由线性表示, 且与具有相同的秩,求a ,b 的值。
4. 已知向量组(1)求向量组的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。
5. 已知线性方程组(1)a为何值时方程组有解?(2)当方程组有解时求出它的全部解(用解的结构表示).6. 设矩阵,矩阵由关系式确定,试求7.将二次型化为标准形,并写出相应的可逆线性变换。
四、证明题(7分)已知3阶矩阵,且矩阵的列向量都是下列齐次线性方程组的解,(1)求的值;(2)证明:。
参考答案与评分标准1. 填空题1.-16; 2. 0;3.; 4. 1; 5.-4; 6. ; 7.;8.; 9. ; 10. 24。
二. 单项选择:1.C;2. A;3. D; 4.B; 5. C.三.计算题:1. 4分9分2.3分因为显然可逆 6分则 9分3. 3分即,且 5分那么,则 6分,即 9分4. 4分5分其极大线性无关组可以取为 7分且:, 9分5.当时,线性方程组有解 4分即,特解为, 6分其导出组的一般解为,基础解系为 8分原线性方程组的通解为为任意常数) 9分6. 由,得 2分4分7分9分7.= 2分= 4分令 6分即作线性变换 8分可将二次型化成标准形 9分四.证明题:因为,所以齐次线性方程组有非零解,故其方程组的系数行列式,所以 3分(2),,因此齐次线性方程组的基础解系所含解的个数为3-2=1,故,因而。
线性代数(2)试题A 答案及评分标准一、单项选择题(3×5):二、填空(3×10): 1.8,98 ,18 ,918. 2.1(7)4A E - . 3. 相关 , 3 .4. 2A ,12n A - .5. 12- .三、计算(45):1.【解】将第1列加至第2列,然后把新的第2列加至第3列,新的第3列加至第4列,依次直到第n 列加至第1n +列21122310000000000000012111C C n n n a a a a D a a ++---=====- (2)3212300000000000000012311C C n n a a a a a +---=====-= (4)112300000000000000001231n n C C n a a a a nn -+---=====-+ (3)12(1)(1)nnn a a a =-+ (1)2.【解】由2AXX B=+可得(2)A E X B -=,30010010020112010011014001012A E ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又 1201110012A E -=--=-≠, 故2A E -可逆,从而1(2)X A E A -=-. (3)32100100100100(2)011010011010012001001011r r A E E +骣骣鼢珑鼢珑鼢珑鼢-=--揪井--珑鼢珑鼢珑鼢鼢珑桫桫232(1)1001001001000100210100210011100111r rr +?骣骣鼢珑鼢珑鼢珑鼢揪井-揪井--珑鼢珑鼢珑鼢鼢珑桫桫 (5)由此得到,1(2)A E --=100021011⎛⎫ ⎪-- ⎪ ⎪⎝⎭ 11003636(2)02111410112331X A E B -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=--=- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭……2 3.【解】123412131110(,,,)052746A k αααα⎛⎫ ⎪--⎪== ⎪- ⎪⎝⎭ (1)2141,4r r r r+-−−−→ 12130303052702412k ⎛⎫ ⎪ ⎪ ⎪- ⎪---⎝⎭213r ⨯−−−→12130101052702412k ⎛⎫ ⎪ ⎪ ⎪- ⎪---⎝⎭ 324252r r r r-+−−−→12130101002200410k ⎛⎫ ⎪ ⎪ ⎪- ⎪--⎝⎭21()2r ⨯-−−−→12130101001100410k ⎛⎫ ⎪ ⎪ ⎪- ⎪--⎝⎭ (4)434r r+−−−→12130101001100014k ⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭122r r-−−−→10110101001100014k ⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭13r r-−−−→1002010100110014k ⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭ (3)当14k =时,向量组1234,,,a a a a 线性相关.线性相关时,秩为3,向量组的极大线性无关组是123,,.a a a (2)4.【解】 先对方程组的增广矩阵进行初等行变换112311361315101535107A a ⎛⎫ ⎪ ⎪=⎪- ⎪⎝⎭ 213141,3r r r rr r---−−−−→11231024220484402423a ⎛⎫ ⎪- ⎪ ⎪- ⎪--⎝⎭32422r r r r--−−−→1123102422000050000a ⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭212r ⨯−−−→1004012110000500a ⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭……5 当5a =,线性方程组有解,且原方程等价于方程组1423441x x x x x = -⎧⎨=-2+ 1+⎩ 令 3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭分别代入等价方程组对应的齐次方程组中求得基础解系120412,1001ξξ-⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭求特解: 令3400x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得00100ξ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ (4)从而,所求方程组的通解为01122X c c ξξξ=++ (21,c c 为任意常数). ……1.四、证明(10):【证明】设1122...0n nk k k βββ+++=即 1121212()...(...)0n n k k k αααααα+++++++=∴12122(...)(...)...0n n n n k k k k k k ααα++++++++= (4)向量组12,,...,n ααα线性无关,∴ 122...0...0..............................0n n n k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩ (2)11...101...110 0...1=≠∴方程组仅有零解,即12...0n k k k ==== (3)∴向量组12,,,n βββ 线性无关. (1)。
201520161《线性代数》期末考试(A)答案及评分标准————————————————————————————————作者:————————————————————————————————日期:A卷2015—2016学年第一学期《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期 2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人注意事项:1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4. 本试卷正文共7页。
说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分)1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+ 等于【 0 】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【 2 】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【 1 】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【 -8 】.本题满分15分 本题得分二、选择题(共5个小题,每小题3分)1. 设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【 A 】.(A) 2-; (B) 21-; (C) 1-; (D) 2.2. 矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【 A 】.(A) 210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (B)210110001⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 110120001-⎛⎫⎪- ⎪ ⎪⎝⎭; (D) 110110001⎛⎫⎪ ⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【 A 】.(A) ||0A =; (B) ||1A =; (C) A 可逆; (D) A 满秩.4. 设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【 D 】.(A) 4; (B) 8; (C) 0; (D) 1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【 B 】.(A) 2=a ; (B) 1=a ; (C) 3=a ; (D) 以上选项都不对.本题满分15分 本题得分三、求解下列各题(共3小题,每小题7分)1. 若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k . 解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为 零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得=3+0=+2+20=323211λλλλλλk 由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k = 6. ----------7分 2. 设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得 0=+B E A又 02=122010012=+≠--E A----------2分因此 0=B因此可得 5=-a . ----------7分本题满分21分本题得分3. 设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为 -1,t ,3,因此A 的特征值也为 -1,t ,3 利用特征值的性质可得21132(4)3t a t a ++=-++⎧⎨-=-⎩ ----------5分 解得12a t ==,. ----------7分四、(共2小题,每小题8分)1.求向量组123410311301,,,217242140⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα 的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪ ⎪⎝⎭, 把A 进行行变换,化为行最简形, ()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分本题满分16分 本题得分2. 问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量, 即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -, ----------6分而114300000A E a -⎛⎫⎪-= ⎪ ⎪⎝⎭,因此可知0≠a . ----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解; ----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ----------12分本题满分12分本题得分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为1. ----------4分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ, 正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫⎝⎛==15452--,012222323322ηηηξηξηξη, 单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=3515541552-15452-35,0125132p p , ----------12分 本题满分14分本题 得分令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=. ----------14分七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1. “设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由. 解:该结论成立。
由于A 为反对称阵,则A A T -=,对于任意n 维实的列向量α,有:[][][]ααααααααααααA A A A A A T T T T -=-=-===)(-所以[]0=ααA ,即α和αA 正交; ----------3分考虑0=)x E A -(,即x Ax =,等式两边同时左乘T x ,得0==x x Ax x T T ,由此得:0=x ,即0=)x E A -(只有零解,所以0≠-E A ,E A -可逆. ----------7分2. 设矩阵A 满足122A B B E -=+,1002110223002B ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭,试求出A E -的第2行的元素. 解:等式122A B B E -=+两边同时左乘A 得:A AB B +2=2,整理得:)+2=2E B A B (,B 已知,由此可求出1101003002A ⎛⎫ ⎪-⎪= ⎪⎪ ⎪⎝⎭, ----------5分 本题满分7分 本题 得分个人收集整理,勿做商业用途从而可求出A E的第2行的元素为:1,-1, 0. ----------7分。