2020版高考数学一轮复习第6章不等式第3讲基本不等式讲义理含解析
- 格式:doc
- 大小:186.50 KB
- 文档页数:9
第二节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[常用结论]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的. ( ) (2)函数y =x +1x的最小值是2.( ) (3)函数f (x )=sin x +4sin x,x ∈(0,π)的最小值为4.( )(4)x >0且y >0是x y +y x≥2的充要条件. ( )[答案] (1)× (2)× (3)× (4)×2.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82C [∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )m ax=81.]3.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5C [由题意得1a +1b=1.又a >0,b >0,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4. 当且仅当b a =a b,即a =b =2时等号成立,故选C.] 4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3D .4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.] 5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m ,则y =x (10-x ) ≤⎣⎢⎡⎦⎥⎤x +-x 22=25, 当且仅当x =10-x , 即x =5时,y m ax =25.]利用基本不等式求最值►考法1 配凑法求最值【例1】 (1)设0<x <2,则函数y =x -2x 的最大值为( )A .2B .22C. 3 D . 2 (2)若x <54,则f (x )=4x -2+14x -5的最大值为________.(1)D (2)1 [(1)∵0<x <2,∴4-2x >0,∴x (4-2x )=12×2x (4-2x )≤12×⎝ ⎛⎭⎪⎫2x +4-2x 22=12×4=2. 当且仅当2x =4-2x ,即x =1时等号成立. 即函数y =x-2x 的最大值为 2.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3 ≤-2-4x15-4x+3=-2+3=1. 当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.]►考法2 常数代换法求最值【例2】 已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.[解] (1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立. 故xy 的最小值为64.(2)法一:(消元法)由2x +8y -xy =0,得x =8yy -2,因为x >0,y >0,所以y >2, 则x +y =y +8y y -2=(y -2)+16y -2+10≥18, 当且仅当y -2=16y -2,即y =6,x =12时等号成立. 故x +y 的最小值为18.法二:(常数代换法)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y+8yx≥10+22x y ·8yx=18,当且仅当y =6,x =12时等号成立, 故x +y 的最小值为18.(1)已知>0,>0,+3+=9,则+3的最小值为________.(2)(2019·皖南八校联考)函数y =log a (x +4)-1(a >0,a ≠1)的图像恒过定点A ,若点A 在直线x m +yn=-1上,且m >0,n >0,则3m +n 的最小值为( )A .13B .16C .11+6 2D .28(1)6 (2)B [(1)∵x >0,y >0,x +3y +xy =9, ∴9-(x +3y )=xy =13×x ×3y ≤13×⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时,等号成立,由⎩⎪⎨⎪⎧x =3y ,x +3y +xy =9,因为x >0,y >0,计算得出⎩⎪⎨⎪⎧x =3,y =1.∴x +3y 的最小值为6.(2)函数y =log a (x +4)-1(a >0,a ≠1)的图像恒过A (-3,-1), 由点A 在直线x m +y n=-1上可得, -3m +-1n=-1,即3m +1n=1,故3m +n =(3m +n )⎝⎛⎭⎪⎫3m +1n =10+3⎝⎛⎭⎪⎫n m +m n, 因为m >0,n >0, 所以n m +mn ≥2n m ×m n =2(当且仅当n m =mn,即m =n 时取等号), 故3m +n =10+3⎝ ⎛⎭⎪⎫n m +m n ≥10+3×2=16,故选B .]利用基本不等式解决实际问题【例3】 随着社会的发展,汽车逐步成为人们的代步工具,家庭轿车的持有量逐年上升,交通堵塞现象时有发生,据调查某段公路在某时段内的车流量y (单位:千辆/时)与汽车的平均速度v (单位:千米/时)之间有函数关系:y =900vv 2+8v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量约为多少?(结果保留两位小数)(2)为保证在该时段内车流量至少为10千辆/时,则汽车的平均速度应控制在什么范围内?[解] (1)由题知,v >0,则y =900vv 2+8v +1 600=900v +1 600v+8≤90080+8=90088=22522,当且仅当v =1 600v,即v =40时取等号.所以y m ax =22522≈10.23.故当v =40时,车流量y 最大,最大约为10.23千辆/时. (2)由y =900v v 2+8v +1 600≥10,得90v v 2+8v +1 600≥1,即90v ≥v 2+8v +1 600,整理得v2-82v +1 600≤0,即(v -32)(v -50)≤0,解得32≤v ≤50.所以为保证在该时段内车流量至少为10千辆/时,汽车的平均速度应大于等于32千米/时且小于等于50千米/时.设变量时一般要把求最大值或最小值的变量定义为函数根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内.要制作一个容积为4 m ,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元C [设底面相邻两边的边长分别为x m ,y m ,总造价为T 元,则xy ·1=4⇒xy =4.T =4×20+(2x +2y )×1×10=80+20(x +y )≥80+20×2xy =80+20×4=160(当且仅当x =y 时取等号).故该容器的最低总造价是160元.] 基本不等式的综合应用【例4】 (1)已知a >0,b >0,若不等式3a +1b ≥m a +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24(2)设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N *),若a 1=d =1,则S n +8a n的最小值是________.(1)B (2)92 [(1)由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b=9b a +ab +6.又9b a+a b+6≥29+6=12(当且仅当9b a =ab,即a =3b 时等号成立),∴m ≤12,∴m 的最大值为12. (2)a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号. ∴S n +8a n 的最小值是92.](1)当x ∈R 时,32x-(k +1)3x+2>0恒成立,则k 的取值范围是( )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)(2)已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b的最小值等于________.(1)B (2)22 [(1)由32x -(k +1)·3x +2>0,解得k +1<3x+23x .∵3x >0,∴3x +23x ≥22(当且仅当3x=23x ,即x =log 32时,等号成立), ∴3x+23x 的最小值为2 2.又当x ∈R 时,32x-(k +1)3x+2>0恒成立,∴当x ∈R 时,k +1<⎝⎛⎭⎪⎫3x +23x min ,即k +1<22,即k <22-1.(2)由f (x )=|lg x |,且f (a )=f (b )可知 |lg a |=|lg b |,又a >b >0,∴lg a =-lg b ,即lg ab =0,∴ab =1.∴a 2+b 2a -b =a -b 2+2ab a -b =(a -b )+2a -b ≥22, 当且仅当a -b =2时等号成立,∴a 2+b 2a -b的最小值为2 2.]。
第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈ ⎥⎝⎦时,4sin sin x x +的最小值为4 ( )【答案】错误解:由0,2x π⎛⎤∈ ⎥⎝⎦得到0sin 1x <≤, 令sin t x =,则4y t t =+,因为01t <≤,所以函数4y t t =+为减函数,当1t =时,min 145y =+=,故答案为:错误.2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 【答案】正确 ∵102x <<, ∴()()2112121122122228x x x x x x +-⎛⎫-=-≤=⎡⎤ ⎪⎣⎦⎝⎭, 当且仅当212x x =-,即14x =时,取等号, 故()12x x -的最大值为18.故答案为:正确 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3 B .32C .D .【答案】D 由92x x +≥x = 可得当0x >时,92x x+的最小值为故选:D2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立. 故选:D.3.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2 B .5C .32D .52【答案】D因为2510a b +=≥52ab ≤,当且仅当5,12a b ==时,等号成立. 所以ab 的最大值为52.故选:D4.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =【答案】D对A ,y 可取负数,故A 错误; 对B ,2(1)11y x =-+≥,故B 错误;对C ,21)23y =+≥,故C 错误;对D ,222y =≥,等号成立当且仅当0x =,故D 正确;故选:D高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0 B .1 C .2 D .4【答案】B02x <<,20x ∴->,又(2)2x x +-=[]2(2)(2)14x x x x +-∴-≤=,当且仅当2x x =-,即1x =时等号成立,所以(2)x x -的最大值为1 故选:B2.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .3.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7 B .y 有最小值7 C .y 有最小值4 D .y 有最大值4【答案】B解:因为3x >,所以30x ->,所以()44333733y x x x x =+=-++≥=--,当且仅当433x x -=-,即5x =时取等号,所以y 有最小值7; 故选:B4.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3 B .4 C .5 D .6【答案】A 1x >-,∴函数(1)114441311y x x x x =+=++-≥=-=++,当且仅当411x x +=+,即1x =时取等号. 因此函数41y x x =++的最小值为3. 故选:A .5.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______. 【答案】4因04x <<,则40x ->,于是得2(4)(4)[]42x x x x +--≤=,当且仅当4x x =-,即2x =时取“=”, 所以()4x x -的最大值为4. 故答案为:4②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y +=,则当3x y +取得最小值时,x y +的值为( ) A .16 B .4C .24D .12【答案】A因为261x y+=,所以()2618233661224x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当182x y y x =,即3y x =时取等号,又因为261x y+=,所以4x =,12y =, 所以16x y +=. 故选:A.2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________. 【答案】94##2.25()21121152222222y x x y x y x y x y ⎛⎫⎛⎫+=⨯+⨯+=⨯++ ⎪ ⎪⎝⎭⎝⎭159224⎛≥⨯+= ⎝, 当且仅当242,,233y x x y x y ===时等号成立. 故答案为:944.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.【答案】16因为0,0a b >>,31a b +=所以313133()(3)101016b a a b a b a b a b +=++=++≥+ 当且仅当,3331b aab a b ⎧=⎪⎨⎪+=⎩,即14a b ==时,取“=”号, 所以31a b+的最小值为16.故答案为:165.(2022·天津·南开中学高一期末)已知110, 0, 4a b ab>>+=,则4a b +的最小值为_______________. 【答案】94##2.25解:因为110, 0, 4a b a b>>+=,所以()111141944554444b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当1144a b b a a b⎧+=⎪⎪⎨⎪=⎪⎩,即3438a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以4a b +的最小值为94.故答案为:94.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A2.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++ 1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.3.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.【答案】因为2x >-,则20x +>,则()()22224622222x x x y x x x x ++++===+++++≥=当且仅当2x =时,等号成立,所以,当2x >-时,函数2462++=+xx y x 的最小值为故答案为:4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----, 因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.【答案】12令1x t -=,则1x t =+,0t >,所以222111447(1)4(1)72422x t t x x t t t t t t -===≤=-++-++-++-,当且仅当4t t =,即2t =时,等号成立. 所以()21147x x x x ->-+的最大值为12. 故答案为:12.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>; (2)226(1)1x x y x x ++=>-. 【答案】(1)3;(2)10. (1)2111x x y x x x++==++∵10,2x x x >∴+≥=(当且仅当1x x =,即x =1时取等号)∴21(0)x x y x x++=>的最小值为3;(2)令1(0)t x t =->,则1x t =+,22226(1)2(1)6499=44101x x t t t t y t x t t t ++++++++∴===++≥=-当且仅当9t t=即t =3时取等号 ∴y 的最小值为10④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立 故选:C2.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4 B .8 C .7 D .6【答案】D 【详解】3,0,0a b b b a a >=++>,23()2a b a b +∴++≤,当且仅当a b =,即3a b ==时等号成立, 解得6a b +≥或2a b +≤-(舍去),a b ∴+的最小值为6故选:D3.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4 B .6 C .8 D .10【答案】C由2a b ab +=可得121b a+=,又因为0a >,0b >,所以()1242244448a b a b a b b a b a ⎛⎫+=++=++≥++= ⎪⎝⎭, 当且仅当42a bb a a b ab⎧=⎪⎨⎪+=⎩即42a b =⎧⎨=⎩时等号成立,所以2+a b 的最小值为8, 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 【答案】8由题意,正实数,x y ,由()22224x y x y xy xy +=++≥(x y =时等号成立),所以()24x y xy +≤,所以()284x x y y y x =++≤+,即2()4()320x y x y +-+-≥,解得4x y +≤-(舍),8x y +≥,(4x y ==取最小值) 所以x y +的最小值为8.故答案为:85.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______.【答案】5##5+∵2,1a b >>,且满足21ab a b =++, ∴13122a b a a +==+--, 2a b +=()33212255522a a a a ++=-++≥=--, 当且仅当32(2)2a a -=-时,2a b +的最小值为5. 故答案为:56.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 【答案】4解:由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭,令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立, 所以x y +的最小值为4. 故答案为:4.7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______. 【答案】6由0a >,0b >,得a b +≥a b =时,等号成立), 又因3a b ab +=-,得3ab -≥,即)130≥,由0a >,0b >3,即9ab ≥,故3936a b ab +=-≥-=. 因此当3a b ==时,a b +取最小值6. 故答案为:6.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞ B .[)2,+∞ C .[)4,+∞ D .(],4-∞【答案】D 当2x >时,11222422x x x x +=-++≥=--(当且仅当3x =时取等号),4a ∴≤,即a 的取值范围为(],4-∞. 故选:D.2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为() A .()+∞ B .(,-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭【答案】B当[]1,5x ∈时,由220x ax -+>可得2a x x <+,则min 2a x x ⎛⎫<+ ⎪⎝⎭,由基本不等式可得2x x +≥x所以,a <故选:B.3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41m a b a b+≥+恒成立,则m 的最大值为( ) A .10 B .12 C .16 D .9【答案】D由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b ⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .4.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】A因为x ,()0,y ∈+∞,且1x y +=,所以()222231124x y x y xy x y xy xy +⎛⎫++=+-=-≥-= ⎪⎝⎭,当且仅当12x y ==时,等号成立; 又不等式2221124x y xy m m ++>+恒成立, 所以只需2311424m m >+,即2230m m +-<,解得312m -<<. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( )A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦【答案】A由题意,对任意0x >,则有221111313153x x x x x x x x ==≤=++++++, 当且仅当1x x =时,即1x =时,等号成立,即231xx x ++的最大值为15, 又由对任意0x >时,231x a x x ≤++恒成立,所以15a ≥,即a 的取值范围为1,5⎡⎫+∞⎪⎢⎣⎭.故选:A.高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元 B .300元 C .512元 D .816元【答案】D设这个箱子的箱底的长为x m ,则宽为16xm , 设箱子总造价为f (x )元, ∴f (x )=15×16+12×3(2x 32x +)=72(x 16x +240=816, 当且仅当x 16x=,即x =4时,f (x )取最小值816元. 故选:D .2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C.12D .【答案】B由题意得:10p =,S =101032a b-+-=⨯当且仅当1010a b -=-,即7a b ==时取等号, 故选:B .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲 D .丙、甲、乙【答案】A设提价前价格为1,则甲提价后的价格为:(1%)(1%)1%%0.01%p q p q pq ++=+++,乙提价后价格为:21%1%1%%0.01%222p q p q p q p q +++⎛⎫⎛⎫⎛⎫++=+++⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,丙提价后价格为:()%11%%p q p q +=+++, 因为0p q <<,所以22p q pq +⎛⎫> ⎪⎝⎭,所以1%1%(1%)(1%)12(%2)p q p p q p q q ++⎛⎫⎛⎫++>++>+ ⎪⎪⎝⎭⎝⎭+,即乙>甲>丙. 故选:A4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A因为对任意,a b ∈R ,有222a b ab +≥,而对任意,a b ∈R ,22a b kab +≥, 所以22k -≤≤,因为[2,2]-是(,2]-∞的真子集,所以“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的充分不必要条件, 故选:A5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m > B .10m =C .10m <D .以上都有可能【答案】A由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a b ,再设先称得黄金为g x ,后称得黄金为g y ,则5bx a =,5ay b =, 5a x b ∴=,5b y a=,555510a b a b x y b a b a ⎛⎫∴+=+=+≥⨯ ⎪⎝⎭, 当且仅当a bb a=,即a b =时等号成立,但a b ,等号不成立,即10x y +>.因此,顾客购得的黄金10m >. 故选:A.6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.【答案】4设BM x =,则由//DC AM 得434ND ND x=++,解得12ND x =,∴矩形AMPN的面积为1248(4)(3)2432448S x x x x =++=++≥+=,当且仅当483x x =,即4x =时等号成立. 故答案为:4.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >【答案】B命题p :“1,42x ⎡⎤∃∈⎢⎥⎣⎦,240x ax -+>”,即max 4a x x ⎛⎫<+ ⎪⎝⎭,设4()f x x x=+,对勾函数在2x =时取得最小值为4,在12x =时取得最大值为172,故172a <,故选:B .2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-【答案】C若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则1a x x ⎛⎫≥-+ ⎪⎝⎭,即max 1a x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦,1y x x ⎛⎫=-+ ⎪⎝⎭在10,2⎛⎤ ⎥⎝⎦单调递增,max 52y =-,所以52a ≥-.故选:C3.(2022·全国·高三专题练习)函数2y =的最小值为( )A .2B .52C .1D .不存在【答案】B()2t t =≥,函数1y t t =+在()1,+∞上是增函数,1y t t∴=+在[)2,+∞上也是增函数.∴当2t =2,0x =时,min 52y =. 故选:B .4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞【答案】A解:121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≤,等价于121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦, ()1max f x ()2max g x ≤,由对勾函数的单调性知4()f x x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以max 117()22f x f ⎛⎫== ⎪⎝⎭, 又()2xg x a =+在[2,3]上单调递增,所以max 32(8)g x a a =+=+,所以1782a ≤+,解得12a ≥,所以实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.故选:A.5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值 【答案】A当0x ≠时,()3242221111113x x x x xx f x x x x x x x ---===++⎛⎫++-+ ⎪⎝⎭, 设1x t x -=,易知1t x x =-在[]1,3上单调递增,故80,3t ⎡⎤∈⎢⎥⎣⎦. ()23t g t t =+,()00g =,当0t >时,()2133t g t t t t==++,双勾函数3y x x =+在(上单调递减,在83⎤⎥⎦上单调递增,且0y >,故()max g t g==,()min 0g t >, 综上所述:()max g t =,()min 0g t =,即()max f x =()min 0f x =. 故选:A.1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b ++的最小值是( ) A .23B .43C .2D .4【答案】B解:因为()()240f a f b +-=,所以(2)(4)f a f b =--, 因为奇函数()f x 是定义在R 上的单调函数, 所以(2)(4)(4)f a f b f b =--=-, 所以24a b =-,即24a b +=, 所以226a b ++=,即2(1)6a b ++=, 所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭14(1)2261b a a b +⎡⎤=+++⎢⎥+⎣⎦14(1)461b a a b +⎡⎤=++⎢⎥+⎣⎦1144(44)663⎡⎤≥=+=⎢⎥⎣⎦, 当且仅当4(1)1b a a b+=+,即1,32a b ==时取等号,所以121a b ++的最小值是43. 故选:B2.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意; 对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .3.(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.【答案】0 , 0a b >>,212a b b a b b b ∴++≥=+≥当且仅当21a a b=且2b b =,即a b ==所以21ab ab ++的最小值为故答案为:4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元. (1)2000245y x x x=+-,[60,110]x ∈2416≥= 当且仅当20005x x=时,即100x =取“=”,符合题意; ∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =. 答:年产量为110吨时,最大利润为860万元.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( ) A .12x x+≥ B .函数224x y +=4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8【答案】C对于选项A ,只有当0x >时,才满足基本不等式的使用条件,则A 不正确; 对于选项B ,224x y +=2231x ++==(t t =≥,即(22y t t t =+≥在)+∞上单调递增,则最小值为min y ==, 则B 不正确;对于选项C ,()()22(2)211111x x x x x -=--++=--+≤,则C 正确;对于选项D ,当3a >时,44333733a a a a +=-++≥=--,当且仅当 433a a -=-时,即5a =,等号成立,则D 不正确. 故选:C .2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52B .最小值52C .最大值2D .最小值2【答案】D(方法1)52x ,20x ∴->,则2245(2)11(2)222(2)x x x x x x x -+-+==-+---,当且仅当122x x -=-,即3x =时,等号成立.(方法2)令2x t -=,52x,12t ∴,2x t ∴=+. 将其代入,原函数可化为22(2)4(2)511122t t t y t t t t t t +-+++===+⋅=,当且仅当1t t =,即1t =时等号成立,此时3x =. 故选:D3.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( ) A .16 B .24 C .32 D .40【答案】C正实数ab 满足121a b +=,所以18ab ≥≥当且仅当24b a ==时取等号,121a b +=化简得2ab a b =+,所以()()()228384322ab a b a a b b =+++=+≥++ 故选:C.4.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( ) A .[)2,-+∞ B .[)2,+∞ C .(],2-∞- D .(],2-∞【答案】A 解:由题得22x a x≥+对任意(),0x ∈-∞恒成立,22[()()]222x x x x +=--+-≤-- (当且仅当2x =-时等号成立) 所以2a ≥-. 故选:A5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V +=【答案】A易知120,0V V >>,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为11V ,逆流而上的时间为21V ,则平均速度12211V V V =+,由基本不等式可得V ≤,而122V V +≥当12V V =时,两个不等式都取得“=”,而根据题意12V V ≠,于是122V V V +. 故选:A.6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( ) A .(],2-∞ B .()2,-+∞ C .(]2,2- D .[)2,+∞【答案】C解:()()22212a a b t a tab b b =+++-+=,①当20t -=,即2t =时,1a b +=,则a b +的最大值为1,符合题意; ②当20t ->,即2t >时, 则()()()()()222222244t t a b t ab a b a b a b -+++-≤+++=+, 所以()2214t a b ++≥,所以a b +≥a b =时取等号, 此时a b +有最小值,无最大值,与题意矛盾; ③当20t -<,即2a <时, 则()()()22224t a b t ab a b +++-≥+, 当20t +=,即2a =-时,()22221a a ab b b +=-=-,所以1a b -=,不妨设a b >,则1a b -=,即1a b =+,故21a b b +=+,此时a b +无最大值,与题意矛盾; 当20t +>,即22t -<<时,()2214t a b ++≤,所以0a b <+≤a b =时取等号, 此时a b +有最大值,符合题意;当20t +<,即2t <-时,()2214t a b ++≤恒不成立,不符题意, 综上所述,若a b +存在最大值,(]2,2t ∈-. 故选:C.7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米. 故选:C.8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>. 又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”), 由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-. 故选:A . 二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y+--=.则x y +的取值范围为__________. 【答案】[6,)+∞ 因为334x y x y+--=,0,0x y >>, 所以23()3()1242x y x y x y xy x y x y +++-=≥=++⎛⎫⎪⎝⎭,当且仅当x y =时等号成立, 即2()4()120x y x y +-+-≥, 解得6x y +≥或2x y +≤-(舍去) 所以x y +的取值范围为[6,)+∞. 故答案为:[)6,+∞10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________.【答案】不存在由已知可得()0,x ∀∈+∞,1m x x <+,由基本不等式可得12x x +≥=,当且仅当1x =时,等号成立,2m <∴,故实数m 的最大值不存在. 故答案为:不存在.11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可. 在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =.在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.【答案】75设,615AG x x =≤<, 12124tan 15693B ===-, 15BG x =-,()()415tan 153EG x B x =-⨯=-, 所以矩形AGEH 的面积()244154225157533234x x x x -+⎛⎫-⋅≤⨯=⨯= ⎪⎝⎭, 当且仅当1515,2x x x -==时等号成立. 故选:75 三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?【答案】(1)a =b =6时,它们的和最小,为12;(2)a =b =9时,它们的积最大,为81 设两个正数为a ,b(1)36ab =,则12a b +≥=,当且仅当6a b ==等号成立, 即a =b =6时,它们的和最小,为12.(2)18a b +=,则()2814a b ab +≤=当且仅当9a b ==等号成立即a =b =9时,它们的积最大,为81.14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.【答案】x =(212cm -.由题意,矩形()ABCD AB AD >的周长为8cm ,且AB xcm =, ∴()4AD x cm =-,则4x x >-,∴24x <<, 又由AP AB PB AB DP x DP ''=-=-=-, 在Rt ADP △中,()()2224x DP x DP -+=-, 解得48x DP cm x -⎛⎫= ⎪⎝⎭,∴()1148422ADP x S AD DP x x-=⋅=-⋅△812212212x x ⎛⎫=-+≤-⨯- ⎪⎝⎭当且仅当8x x=,即x =∴ADP △面积的最大值为(212cm -,此时x =15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M . (1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值. 【答案】(1){08}aa ≤<∣(2)1 (1)当0a =时,20>满足题意;当0a ≠时,要使不等式220ax ax ++>的解集为R ,必须2080a a a >⎧⎨-<⎩,解得08a <<,综上可知08a ≤<,所以{08}M aa =≤<∣(2)∵08a ≤<,∴119a ≤+<, ∴441141311a a a a +=++-≥-=++,(当且仅当1a =时取“=”) ∴4521a a --≤+, ∵a M ∀∈,有245321a t t a --≤+-+,∴2322t t +-≥, ∴2340t t +-≥,∴1t ≥或4t ≤-, 又0t >,∴1t ≥,∴ t 的最小值为1.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本) (2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润. 【答案】(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩(2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. (1)当040x <<时,()229100105002500104002500L x x x x x =⨯---=-+-;当40x ≥时,()640064009100901630025003800L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭; 所以()2104002500,04064003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩ (2)当040x <<时,()()210201500L x x =--+, 当20x时,()max 1500L x =;当40x ≥时,()64003800380038001603640L x x x ⎛⎫=-+≤-=-= ⎪⎝⎭ (当且仅当6400x x=即80x =时,“=”成立) 因为36401500>所以,当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. 答:(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元.。
第3讲 基本不等式,)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)假如积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)假如和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.辨明两个易误点(1)使用基本不等式求最值,“一正,二定,三相等”三个条件缺一不行; (2)连续使用基本不等式求最值要求每次等号成立的条件全都. 2.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab≥2(a ,b 同号且都不为0);ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R );⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.巧用“拆”“拼”“凑”在运用基本不等式时,要特殊留意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.1.教材习题改编 将正数m 分成两个正数a 与b 之和,则ab 的范围为( )A .(0,m 22]B .(0,m 24]C .[m 22,+∞)D .[m 24,+∞)B a +b =m ≥2ab , 所以ab ≤m 24,故选B.2.教材习题改编 函数f (x )=x +1x的值域为( )A .B .∪ 当x >0时,x +1x≥2x ·1x=2.当x <0时,-x >0. -x +1-x≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x的值域为(-∞,-2]∪ 设折成的矩形的两边分别为x ,y (x >0,y >0).则x +y =a2.由于x +y ≥2xy , 所以xy ≤14(x +y )2=a 216,即S 矩形≤a 216. 当且仅当x =y =a 4时,(S 矩形)max =a 216.故选D.4.若x >1,则x +4x -1的最小值为________. x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1, 即x =3时等号成立. 55.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______.由于xy =1,所以y =1x,所以x 2+2y 2=x 2+2x2≥2x 2·2x2=2 2.即x 2+2y 2的最小值为2 2. 2 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题. 高考对利用基本不等式求最值的考查主要有以下三个命题角度: (1)知和求积的最值; (2)知积求和的最值; (3)求参数的值或范围.(1)(2021·安徽合肥二模)若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b 的最小值为( )A .7B .8C .9D .10(2)(2021·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16【解析】 (1)由于a ,b 都是正数,所以⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号.故选C.(2)由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.故选B.【答案】 (1)C (2)B角度一 知和求积的最值1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4C 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22, 当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”, 所以ab 的最小值为2 2. 角度二 知积求和的最值 2.已知函数y =ax +3-2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +y n=-1上,且m ,n >0,则3m+n 的最小值为________.易知函数y =ax +3-2(a >0,a ≠1)恒过定点(-3,-1),所以A (-3,-1).又由于点A 在直线x m +yn=-1上,所以3m +1n=1.所以3m +n =(3m +n )·⎝ ⎛⎭⎪⎫3m +1n=10+3m n +3n m≥10+23m n ·3nm=16,当且仅当m =n 时,等号成立, 所以3m +n 的最小值为16. 16角度三 求参数的值或范围 3.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x+ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号, 所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9恒成立. 所以a ≥4. 4利用基本不等式解决实际问题小王高校毕业后,打算利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流淌成本为W (x )万元,在年产量不足8万件时,W (x )=13x2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流淌成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)由于每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,此时,当且仅当x =100x,即x =10时,L (x )取得最大值15万元.由于9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域. (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 由于售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为.(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.,)——忽视最值取得的条件致误(1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.【解析】 (1)由于x >0,y >0,所以x +y =(x +y )⎝ ⎛⎭⎪⎫1x +2y=3+y x+2xy≥3+22(当且仅当y =2x 时取等号),所以当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)由于x <0,所以y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 【答案】 (1)3+2 2 (2)1+2 6(1)利用基本不等式求最值,肯定要留意应用条件,如本例(2)易忽视条件x <0而误用基本不等式得2x +3x≥2 6.(2)尽量避开多次使用基本不等式,若必需多次使用,肯定要保证等号成立的条件全都.当3<x <12时,函数y =(x -3)(12-x )x的最大值为________.y =(x -3)(12-x )x=-x 2+15x -36x=-⎝⎛⎭⎪⎫x +36x +15≤-2x ·36x+15=3.当且仅当x =36x, 即x =6时,y max =3. 3,)1.(2021·海口调研)已知a ,b ∈(0,+∞),且a +b =1,则ab 的最大值为( ) A .1B .14C .12D .22B 由于a ,b ∈(0,+∞), 所以1=a +b ≥2ab , 所以ab ≤14,当且仅当a =b =12时等号成立.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4C 由于x <0,所以f (x )=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4, 当且仅当-x =1-x,即x =-1时取等号.3.(2021·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4A 由于正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立,所以M ≤1,即M 的最大值为1.4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3D .8C y =x -4+9x +1=x +1+9x +1-5, 由于x >-1,所以x +1>0,9x +1>0. 所以由基本不等式, 得y =x +1+9x +1-5≥2(x +1)·9x +1-5=1, 当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号, 所以a =2,b =1,a +b =3.5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6D .8C 由已知得x +3y =9-xy , 又由于x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时,即x =3,y =1时取等号,(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6即x +3y ≥6.6.某车间分批生产某种产品,每批产品的生产预备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产预备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件B 若每批生产x 件产品,则每件产品的生产预备费用是800x 元,仓储费用是x 8元,总的费用是800x +x8≥2800x ·x8=20, 当且仅当800x =x8,即x =80时取等号.7.(2021·郑州检测)已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.由a +2b =3得13a +23b =1,所以2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b=43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83. 当且仅当a =2b =32时取等号.838.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. f (x )=4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即a =4x 2时取等号,则由题意知a =4×32=36.369.正实数x ,y 满足x +2y =2,则3x +9y的最小值是______. 利用基本不等式可得3x +9y =3x +32y ≥23x ·32y =23x +2y.由于x +2y =2, 所以3x +9y ≥232=6,当且仅当3x =32y,即x =1,y =12时取等号.610.不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是________.依据题意,由于不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝ ⎛⎭⎪⎫a b +b a min,由于a b +ba ≥2a b ·b a=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).(-2,1)11.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. (1)由2x +8y -xy =0, 得8x +2y=1,又x >0,y >0,则1=8x +2y ≥28x ·2y=8xy.得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎪⎫8x +2y·(x +y )=10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.12.(2021·东北育才学校模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9D 由于AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线, 则有AB →∥AC →,所以(a -1)×2-1×(-b -1)=0,所以2a +b =1, 又a >0,b >0,所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a+2ab≥5+22b a ·2ab=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.13.已知x >0,y >0,且2x +5y =20. 求:(1)u =lg x +lg y 的最大值; (2)1x +1y的最小值.(1)由于x >0,y >0,所以由基本不等式,得2x +5y ≥210xy . 由于2x +5y =20,所以210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg 10=1.所以当x =5,y =2时,u =lg x +lg y 有最大值1. (2)由于x >0,y >0,所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+2 5y x ·2x y =7+21020. 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.所以1x +1y 的最小值为7+21020.14.(2021·常州期末调研)某学校为了支持生物课程基地争辩植物生长,方案利用学校空地建筑一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值. (1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)由于8<x <450, 所以2x +7 200x≥22x ×7 200x=240.当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示.(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N +(1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).常用结论1.正确理解等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时 ,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时 ,{a n }是递减数列; 当q =1时,{a n }是常数列; 当q =-1时,{a n }是摆动数列. 2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂.(4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n(k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.二、教材衍化1.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫-12n -1.答案:-⎝ ⎛⎭⎪⎫-12n -1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( )(2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) 答案:(1)× (2)× (3)× 二、易错纠偏常见误区|K(1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n(a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为________.解析:因为x,2x+2,3x+3是一个等比数列的前三项,所以(2x+2)2=x(3x+3),即x2+5x+4=0,解得x=-1或x=-4.当x=-1时,数列的前三项为-1,0,0,不是等比数列,舍去.答案:-4等比数列基本量的运算(师生共研)(1)(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8C.4 D.2(2)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.【解】(1)选C.设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(2)①设{a n}的公比为q,由题设得a n=q n-1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n=1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解 分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n=a 1(1-q n )1-q =a 1-a n q 1-qn n 前n 项和,若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12132.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明(师生共研)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解】 (1)由条件可得a n +1=2(n+1)na n .将n =1代入得,a 2=4a 1, 而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2, 所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.等比数列的4种常用判定方法定义法若a n +1a n =q (q 为非零常数,n ∈N +)或a na n -1=q (q 为非零常数且n ≥2,n ∈N +),则{a n }是等比数列中项 公式法 若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列通项若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*),若b n=a n+1-2a n,求证:{b n}是等比数列.证明:因为a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以b n+1b n=a n+2-2a n+1a n+1-2a n=4a n+1-4a n-2a n+1a n+1-2a n=2a n+1-4a na n+1-2a n=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2-2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.2.已知数列{a n}的前n项和为S n,且S n=2a n-3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,当n=2时,S2=a1+a2=2a2-6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1,所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列.所以a n +3=6×2n -1,即a n =3(2n-1)(n ∈N +).等比数列的性质(多维探究) 角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)(一题多解)等比数列{a n }中,前n 项和为48,前2n项和为60,则其前3n 项和为________.(2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q =48,①a 1(1-q 2n)1-q=60,②②÷①,得1+q n=54,所以q n=14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14,所以S 3n =S 2n +q2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.【答案】 (1)63(2)12×⎝ ⎛⎭⎪⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(一题多解)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18解析:选C.法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.数列与数学文化及实际应用1.等差数列与数学文化(2020·陕西汉中二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( )A .6斤B .7斤C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【答案】 D以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.2.等比数列与数学文化(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( )A.253 B .503C.507D .1007【解析】 5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【答案】 D以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.3.递推数列与数学文化(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N +)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22【解析】 因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.4.周期数列与数学文化(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N +).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2. 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346.故选C.以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.5.数列在实际问题中的应用私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】 设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n +1.65=4.65,当且仅当0.15n =15n,即n=10时,年平均费用S nn取得最小值.所以这辆汽车报废的最佳年限是10年.【答案】 10数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.[基础题组练]1.(2020·江西宜春一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:选D.因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:选A.由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.3.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( )A .1B .2 C.22D .2解析:选D.设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q=2(舍负),故选D.4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( )A .6里B .12里C .24里D .96里解析:选A.由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B.设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n,即7292=3n,所以n =12.6.(2020·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16[1-(12)5]1-12=31.答案:317.(一题多解)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析:法一:设数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.答案:-78.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:29.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n+2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[综合题组练]1.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2(1q +1+q )=1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-(-q -1q)≤1-2(-q )·(-1q)=-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).2.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B .12C .-32D .32解析:选C.{b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1.a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.因为{a n }是等比数列,等比数列中有负数项,则q <0,且负数项为相隔两项,所以等比数列各项的绝对值递增或递减.按绝对值的顺序排列上述数值18,-24,36,-54,81, 相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.q =-32或q =-23(因为|q |>1,所以此种情况应舍),所以q =-32.故选C.3.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________.解析:因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1qn -1=2×4n -1=32,解得n =3. 答案:34.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________.解析:因为a n +ma m=a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n)1-2=2n +1-2.答案:2n +1-25.(2020·湖北武汉4月毕业班调研)已知正项等比数列{a n }的前n 项和S n 满足S 2+4S 4=S 6,a 1=1.(1)求数列{a n }的公比q ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值. 解:(1)由题意可得q ≠1, 由S 2+4S 4=S 6,可知a 1(1-q 2)1-q +4·a 1(1-q 4)1-q =a 1(1-q 6)1-q,所以(1-q 2)+4(1-q 4)=1-q 6,而q ≠1,q >0, 所以1+4(1+q 2)=1+q 2+q 4,即q 4-3q 2-4=0, 所以(q 2-4)(q 2+1)=0,所以q =2.(2)由(1)知a n =2n -1,则{a n }的前n 项和S n =1-2n1-2=2n-1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0,所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6) =-S 4+S 10-S 4+60-90=S 10-2S 4-30=(210-1)-2(24-1)-30 =210-25-29=1 024-32-29=963.6.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N +.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解:(1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32.所以{b n }是首项为32,公比为12的等比数列.所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
第六章 不等式、推理与证明 6.4 基本不等式练习 理[A 组·基础达标练]1.[2016·孝感调研]“a >b >0”是“ab <a 2+b 22”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a >b >0⇒a 2+b 2>2ab 充分性成立,ab <a 2+b 22⇒a ≠b ,a ,b ∈R ,故不必要,故选A.2.[2016·广州综合测试一]已知x >-1,则函数y =x +1x +1的最小值为( ) A .-1 B .0 C .1 D .2答案 C解析 由于x >-1,则x +1>0,所以y =x +1x +1=(x +1)+1x +1-1≥2x +1 ·1x +1-1=1,当且仅当x +1=1x +1,由于x >-1,即当x =0时,上式取等号,故选C.3.[2015·黄浦二模]已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A .a +b ≥2abB.a b +ba≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D .a 2+b 2>2ab答案 C解析 当a ,b 都为负数时,A 不成立,当a ,b 一正一负时,B 不成立;当a =b 时,D 不成立,因此只有C 正确.4.[2015·绵阳一诊]若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .1B .6C .9D .16答案 B解析 解法一:因为1a +1b =1,所以a +b =ab ⇒(a -1)·(b -1)=1,所以1a -1+9b -1≥21a -1·9b -1=2×3=6.(当且仅当a =43,b =4时取“=”) 解法二:因为1a +1b=1,所以a +b =ab ,所以1a -1+9b -1=b -1+9a -9ab -a -b +1=b +9a -10=(b +9a )·⎝ ⎛⎭⎪⎫1a +1b -10=b a +9a b +1+9-10≥2b a ·9a b =6(当且仅当a =43,b =4时取“=”). 解法三:因为1a +1b =1,所以a -1=1b -1,所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6(当且仅当b =4时取“=”). 5.若x >4,则函数y =x +1x -4( ) A .有最大值-6 B .有最小值6 C .有最大值2 D .没有最小值答案 B解析 ∵x >4,∴y =x +1x -4=(x -4)+⎝ ⎛⎭⎪⎫1x -4+4≥2 x -4 ⎝⎛⎭⎪⎫1x -4+4=6,当且仅当x -4=1x -4,此时x =5,故选B. 6.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D .6答案 C解析 由x +3y =5xy ,得3x +1y=5(x >0,y >0),则3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫3x +1y =15⎝ ⎛⎭⎪⎫13+12y x +3x y≥15⎝⎛⎭⎪⎫13+212y x·3x y=15(13+12)=5.当且仅当12y x =3xy,即x =2y 时,等号成立, 此时由⎩⎪⎨⎪⎧x =2y x +3y =5xy ,解得⎩⎪⎨⎪⎧x =1y =12.故选C.7.[2016·洛阳月考]设正实数a ,b 满足a +b =2,则1a +a8b 的最小值为________.答案 1解析 依题意得1a +a 8b =a +b 2a +a 8b =12+b 2a +a 8b ≥12+2b 2a ×a8b=1,当且仅当⎩⎪⎨⎪⎧b 2a =a 8b a +b =2即a =2b =43时取等号,因此1a +a8b的最小值是1.8.[2015·南昌模拟]已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 9=x +3y +xy =x +3y +13·(x ·3y )≤x +3y +13·⎝ ⎛⎭⎪⎫x +3y 22,所以(x +3y )2+12(x +3y )-108≥0. 所以x +3y ≥6或x +3y ≤-18(舍去). 当且仅当x =3y =3时取“=”.9.已知直线ax -2by =2(a >0,b >0)过圆x 2+y 2-4x +2y +1=0的圆心,ab 的最大值为________.答案 14解析 圆的标准方程为(x -2)2+(y +1)2=4, 所以圆心为(2,-1), 因为直线过圆心,所以2a +2b =2,即a +b =1. 所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时取等号,所以ab 的最大值为14.10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元.答案 5 8解析 每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.[B 组·能力提升练]1.[2015·青岛一模]在实数集R 中定义一种运算“*”,对任意a ,b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a ,b ∈R ,a *b =ab +(a *0)+(b *0). 则函数f (x )=(e x)*1ex 的最小值为( )A .2B .3C .6D .8答案 B解析 依题意可得f (x )=(e x )*1e x =e x ·1e x +e x +1e x =e x+1e x +1≥2e x·1ex +1=3,当且仅当x =0时“=”成立,所以函数f (x )=(e x)*1ex 的最小值为3,选B.2.[2015·唐山二模]若实数a ,b ,c 满足a 2+b 2+c 2=8,则a +b +c 的最大值为( ) A .9 B .2 3 C .3 2 D .2 6答案 D解析 (a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =8+2ab +2ac +2bc .∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴8+2ab +2ac +2bc ≤2(a 2+b 2+c 2)+8=24,当且仅当a =b =c =263时取等号,∴a +b +c ≤2 6.3.已知a >b >0,ab =1,则a 2+b 2a -b的最小值为________.答案 2 2解析 ∵a >b >0,∴a -b >0,∴a 2+b 2a -b = a -b 2+2ab a -b=a -b +2a -b≥2 a -b ·2a -b=2 2. 当且仅当a -b =2a -b,即a =b +2时等号成立. 4.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x,x ∈N *,g (x )在(0,22]上单调递减,在(22,+∞)上单调递增,且g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83. 故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞. 5.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解 (1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1),设平均每天所支付的总费用为y 1元, 则y 1=[9x x +1 +900]x+1800×6=900x+9x +10809≥2900x·9x +10809=10989,当且仅当9x =900x,即x =10时取等号.即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)∵不少于210吨,每天用面粉6吨, ∴至少每隔35天购买一次面粉.设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元则y 2=1x[9x (x +1)+900]+6×1800×0.9=900x+9x +9729(x ≥35).令f (x )=x +100x(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+100x 1-⎝ ⎛⎭⎪⎫x 2+100x 2=x 2-x 1 100-x 1x 2x 1x 2.∵x 2>x 1≥35,∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, ∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2),即f (x )=x +100x,当x ≥35时为单调递增函数,∴当x =35时,f (x )有最小值, 此时(y 2)min =704887<10989.∴该厂应接受此优惠条件.。
第3讲 基本不等式1.基本不等式设a >0,b >0,则a 、b 的算术平均数为□05a +b 2,几何平均数为□06ab ,基本不等式可叙述为□07两个正数的算术平均数不小于它们的几何平均数. 2.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有□01最小值是2p (简记:□02积定和最小).(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有□03最大值是p 24(简记:□04和定积最大).注:应用基本不等式求最值时,必须考察“一正、二定、三相等”,忽略某个条件,就会出现错误.3.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ), 2(a 2+b 2)≥(a +b )2(a ,b ∈R ). (5)a 2+b 22≥a +b24≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0).1.概念辨析(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为2.( )(4)x >0且y >0是x y +y x≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×2.小题热身(1)已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值0B .最小值0C .最大值-4D .最小值-4答案 C解析 因为x <0,所以-x >0, 所以-x +1-x≥2-x1-x =2,当且仅当-x =1-x即x =-1时等号成立.所以x +1x ≤-2.所以f (x )=x +1x-2≤-4.即f (x )有最大值-4.(2)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 由基本不等式18=x +y ≥2xy ⇔9≥xy ⇔xy ≤81,当且仅当x =y 时,xy 有最大值81,故选C.(3)已知lg a +lg b =2,则lg (a +b )的最小值为( ) A .1+lg 2 B .2 2 C .1-lg 2 D .2 答案 A解析 由lg a +lg b =2,可知a >0,b >0, 则lg (ab )=2,即ab =100. 所以a +b ≥2ab =2100=20, 当且仅当a =b =10时取等号, 所以lg (a +b )≥lg 20=1+lg 2. 故lg (a +b )的最小值为1+lg 2.(4)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大.答案 15152解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.题型 一 利用基本不等式求最值角度1 直接应用1.(2019·沈阳模拟)已知a >b >0,求a 2+1ba -b的最小值. 解 ∵a >b >0,∴a -b >0. ∴a 2+1ba -b ≥a 2+1⎝ ⎛⎭⎪⎫b +a -b 22=a 2+4a 2 ≥2a 2·4a 2=4,当且仅当b =a -b ,a 2=2,a >b >0,即a =2,b =22时取等号.∴a 2+1ba -b的最小值是4.角度2 拼凑法求最值2.求f (x )=4x -2+14x -5⎝ ⎛⎭⎪⎫x <54的最大值.解 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.角度3 构造不等式求最值(多维探究)3.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为( ) A .3 B .4 C.92 D.112答案 B解析 因为x >0,y >0,且x +2y +2xy =8, 所以x +2y =8-2xy ≥8-⎝⎛⎭⎪⎫x +2y 22.整理得(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8.又x +2y >0,所以x +2y ≥4.故x +2y 的最小值为4. 条件探究 把举例说明3的条件“x +2y +2xy =8”改为“4xy -x -2y =4”,其他条件不变,求xy 的最小值.解 因为x >0,y >0且4xy -x -2y =4,所以4xy -4=x +2y ≥22xy . 整理可得2xy -2xy -2≥0.解得2xy ≥2即xy ≥2,所以xy 的最小值为2.角度4 常数代换法求最值(多维探究)4.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5 答案 C解析 解法一:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a≥2+2a b ·ba=4,当且仅当a =b =2时取“=”,所以a +b 的最小值为4.解法二:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1,所以b =aa -1>0,所以a >1,a -1>0,所以a +b =a +aa -1=a +a -1+1a -1=a -1+1a -1+2≥2a -1a -1+2=4. 当且仅当a -1=1a -1即a =2时等号成立,所以a +b 的最小值为4. 条件探究 将举例说明4条件变为“x >0,y >0且1x +9y=1”,求x +y 的最小值.解 ∵x >0,y >0,∴y >9且x =yy -9.∴x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. ∵y >9,∴y -9>0. ∴y -9+9y -9+10≥2y -9y -9+10=16. 当且仅当y -9=9y -9,即y =12时取等号. 又1x +9y=1,则x =4.∴当x =4,y =12时,x +y 取最小值16.1.拼凑法求解最值应注意的问题(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的条件. 2.通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.如举例说明4解法二.3.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式.如举例说明4解法一.(4)利用基本不等式求解最值.1.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B.223 C.33 D.233答案 B解析 对于x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x≥229=223(当且仅当x =22时等号成立).故选B. 2.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.答案 14解析 因为a -3b +6=0,所以a -3b =-6,2a +18b =2a +123b =2a +2-3b ≥22a ·2-3b=22a -3b=22-6=14⎝ ⎛⎭⎪⎫当且仅当2a =18b =18,即a =-3,b =1时取等号,所以2a +18b的最小值为14. 题型 二 基本不等式的综合应用角度1 基本不等式中的恒成立问题1.当x ∈⎝⎛⎭⎪⎫0,π2时,2sin 2x -a sin2x +1≥0恒成立,则实数a 的取值范围是________.答案 (-∞,3]解析 当x ∈⎝⎛⎭⎪⎫0,π2时,sin2x >0,原不等式可化为a sin2x ≤2sin 2x +1, a ≤2sin 2x +1sin2x.设f (x )=2sin 2x +1sin2x,则f (x )=2sin 2x +sin 2x +cos 2x 2sin x cos x =32tan x +12tan x.因为x ∈⎝⎛⎭⎪⎫0,π2,所以tan x >0. 所以f (x )=32tan x +12tan x≥232tan x ·12tan x=3, 当且仅当32tan x =12tan x ,即tan x =33时等号成立,所以f (x )min =3,所以a ≤ 3.角度2 基本不等式与其他知识的综合问题2.(2018·西安模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是( )A.6-24 B.6+24 C.6-22D.6+22答案 A解析 由正弦定理,得a +2b =2c .所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24.当且仅当3a 2=2b 2,即3a =2b 时,等号成立. 所以cos C 的最小值为6-24.基本不等式的综合运用常见题型及求解策略(1)应用基本不等式判断不等式的成立性或比较大小,有时也与其他知识进行综合命题,结合函数的单调性进行大小的比较.(2)利用基本不等式研究恒成立问题,以求参数的取值范围为主,如举例说明1. (3)与其他知识综合考查求最值问题,此时基本不等式作为求最值时的一个工具,常出现于解三角形求最值、解析几何求最值问题等.如举例说明2.1.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)答案 B解析 由32x -(k +1)3x +2>0恒成立,得k +1<3x+23x .∵3x+23x ≥22,∴k +1<22,即k <22-1.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92B.72C .22+12D .22-12答案 A解析 a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n n +2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号. ∴S n +8a n 的最小值是92.故选A.题型 三 基本不等式在实际问题中的应用某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2017年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ,∴k =2,∴x =3-2m +1. 由题意可知每件产品的销售价格为1.5×8+16xx(元),∴2017年的利润y =1.5x ·8+16xx-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1,即m =3(万元)时,y max =21(万元). 故该厂家2017年的促销费用投入3(万元)时,厂家的利润最大为21万元.利用基本不等式求解实际问题的求解策略(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.提醒:利用基本不等式求最值时,一定要结合变量的实际意义验证等号是否成立.(2018·成都诊断)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.答案 2 20解析 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x (k 1≠0),y 2=k 2x(k 2≠0),∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭⎪⎫5x +20x 万元,∵5x +20x≥25x ×20x =20,当且仅当5x =20x,即x =2时,运费与仓储费之和最小,为20万元.。