Improved Gene Selection for Classification of Microarrays
- 格式:pdf
- 大小:249.98 KB
- 文档页数:12
蛋白质修饰位点预测
蛋白质修饰位点预测是生物信息学领域的一个重要研究方向。
蛋白质修饰是一种在蛋白质翻译后发生的化学变化,对蛋白质的功能和活性产生重要影响。
目前,许多生物信息学方法已经被开发用于预测蛋白质修饰位点,主要包括以下几种:
1. 基于机器学习的方法:这类方法通过训练一个分类器(如支持向量机(SVM)、神经网络等)来预测蛋白质修饰位点。
这类方法通常需要大量的已知修饰位点和非修饰位点的蛋白质序列作为训练数据。
例如,研究人员针对水稻蛋白质磷酸化位点开发了一种基于SVM的预测工具[1]。
2. 基于氨基酸序列特征的方法:这类方法通过分析蛋白质序列中的氨基酸特征(如氨基酸频率、组成等)来预测修饰位点。
这类方法不需要依赖蛋白质结构信息,仅通过序列信息进行预测。
例如,研究人员利用氨基酸频率计算方法来进行特征提取,并结合SVM算法构建了一种针对水稻蛋白质磷酸化位点的预测工具[2]。
3. 基于结构的方法:这类方法通过分析蛋白质三维结构来预测修饰位点。
由于蛋白质结构与功能密切相关,这类方法具有较高的预测准确性。
然而,结构信息通常不易获取,且计算成本较高。
4. 集成学习方法:这类方法将多个预测模型进行集成,以提高预测准确性。
例如,研究人员将多个基于机器学习的预测模型进行集成,构建了一种针对蛋白质翻译后修饰位点的预测工具[3]。
总之,蛋白质修饰位点预测是一个具有挑战性的课题。
随着生物信息学技术的发展,未来可能会出现更多高效、准确的预测方法。
同时,蛋白质修饰位点预测在生物学研究中的应用也将越来越广泛,有助于揭示蛋白质功能和调控机制。
二代测序在临床决策的影响12月16日Science播报了一个网络在线会议报告:关于新技术在医疗卫生体系临床决策方面的影响。
该在线会议介绍了高通量的基因组、转录组测序和蛋白组、代谢组分析革命性地改变l了临床决策。
学术和医疗卫生系统的紧密合作已经驱使了前沿技术和生物信息分析在临床诊断方面的应用。
临床医生能更快更好地对病人的情况进行评估,并给予最大程度个性化的治疗。
这些进步为理解疾病机制和开发新治疗方案提供机遇。
在这个讨论会中来自瑞典Uppsala大学肿瘤遗传研究的负责人RichardRosenquistBrandell博士,来自瑞典Karolinska研究所的OlliKallioniemi博士和AnnaWedell博士三位专家分别介绍了二代基因组测序和功能分析如何提高医疗诊断与治疗的。
1RichardRosenquistBrandell博士首先介绍了SciLifeLab这个研究中心是如何将二代测序运用在诊断中。
SciLifeLab是2010年以斯德哥尔摩和乌普萨拉的四所大学:Stockholm大学,Karolinska研究所,KTH皇家技术学院和Uppsala大学为核心建立的,政府经费支持,35个国家级部门的大型研究中心。
目前该中心拥有超过1200名研究者。
研究计划以环境与健康的相互作用为中心,分国家基础基因组、蛋白组学、生物影像学、生物信息学、化学生物学、临床诊断、药物开发、功能基因组学和结构生物学9个平台,其中临床诊断就分临床测序、临床基因组学、临床生物标记、转录组和整体生物学5个部门。
临床测序中包括遗传学家、生物信息人员和医生,为提供“从实验室到病床边”的服务,为临床评估传递检测到的所有差异。
整合了大学、研究中心、医院在分子病理、临床遗传学方面不同平台的力量来做出决策是项目成功的关键。
主要分析目标是固体肿瘤,白血病和遗传性疾病。
癌症基因的临床测序主要是针对肺癌、结肠癌、黑色素瘤等多种癌症,运用靶向捕获技术对15-32个基因、50-250bp长度片段的诊断相关与治疗反应的突变进行检测。
一、简介Genecards是一个用于基因和蛋白质信息的集成数据库,提供了基因、蛋白质、药物和疾病等相关信息。
在Genecards中,基因的筛选score是一个重要的标准,用于评估基因的相关性和重要性,本文将对Genecards筛选score标准进行分析和总结。
二、Genecards筛选score的定义1. Genecards筛选score是指Genecards数据库根据一系列模型和算法对基因进行综合评估,得出的一个分数。
2. 这个分数是基于多种数据源和文献信息,包括基因表达水平、突变情况、蛋白质互作关系、药物靶点信息等。
3. Genecards筛选score越高,表示该基因在生物学功能和临床疾病中的重要性和相关性越高。
三、Genecards筛选score的应用1. 在基因功能研究中,研究人员可以利用Genecards筛选score来确定基因的重要性,优先选择研究重要性较高的基因。
2. 在药物靶点预测中,Genecards筛选score可以帮助研究人员筛选出潜在的药物靶点,加速药物研发过程。
3. 在临床转化研究中,基于Genecards筛选score的基因筛选可以帮助医生和研究人员发现与疾病相关的潜在生物标志物。
四、Genecards筛选score的影响因素1. 数据来源:Genecards整合了来自多个公共数据库和文献,对于数据覆盖范围和质量的要求较高。
2. 算法模型:Genecards筛选score的计算依赖于复杂的算法模型,不同模型的选择和权重设置会影响最终的得分结果。
3. 参数调整:Genecards对于不同基因类别和研究领域可能会进行参数调整,以保证评估结果的客观性和准确性。
五、Genecards筛选score的局限性1. 数据偏差:由于数据来源的限制,Genecards筛选score可能受到数据偏差的影响,特定基因的得分可能会受到一些偏差。
2. 算法局限:基于算法模型的限制,Genecards筛选score可能无法完全反映基因的所有相关信息和重要性。
基因修饰菌株的筛选和优化在现代生物技术领域,基因编辑和修饰可以让我们设计和构建更强大的菌株,以此来满足工业、农业、医药和环境等各个领域的需求。
基因修饰可以在菌株中引入新基因、删除或替换现有的基因、改变某些基因的表达水平等,这样的改变可以使菌株拥有更强的代谢能力、更好的适应性、更高产率的产品等特点。
如何筛选和优化基因编辑和修饰后的菌株,是我们需要研究和解决的问题之一。
一、基因编辑和修饰的筛选基因编辑和修饰包括各种方法和技术,如CRISPR/Cas9、TALEN、ZFN等。
这些技术可以精准地改变目标基因的序列和表达,但是在实际应用中,我们需要花费大量时间和精力来筛选和确认编辑和修饰后的菌株。
1.筛选方法目前,最常用的基因编辑和修饰的筛选方法包括:(1)PCR鉴定:将菌株中目标基因的序列扩增出来进行序列鉴定。
(2)限制酶切割:利用限制酶切割菌株中目标基因的PCR产物,如产物能产生新的片段,则表明目标基因已被编辑和修饰。
(3)测序分析:通过直接对菌株进行测序来确认目标基因的编辑和修饰情况。
(4)蛋白质表达分析:利用西方印迹、免疫荧光等方法检测目标蛋白在菌株中的表达情况。
2.筛选条件在筛选和确认基因编辑和修饰后的菌株时,需要注意以下条件:(1)菌株的鉴定和纯化:确保菌株是纯的、保存良好,不受外部环境的影响。
(2)优化PCR扩增条件:优化PCR扩增的温度、时长和引物浓度等条件,确保PCR扩增的正确性和灵敏度。
(3)选择适当的限制酶:根据目标基因的序列,选择适当的限制酶,保证酶切产物的剪切正确性。
(4)测序单元长度:在进行测序时需要选择适当的单元长度,长单元长度可以提高测序的准确性和信噪比。
二、基因编辑和修饰的优化基因编辑和修饰后的菌株虽然拥有了更强的代谢能力和适应性,但是还存在一些问题,如产率不高、产品质量不稳定等。
因此,我们需要对基因编辑和修饰后的菌株进行优化,以便更好地满足应用需求。
1.基因表达优化基因表达的优化是指通过调整目标基因的表达水平,来获得更好的产率和产品质量。
《基于机器学习挖掘益生菌基因组分子标记及构建可视化筛选预测平台》篇一一、引言随着现代生物技术的飞速发展,益生菌作为一种具有重要生理功能的微生物,在人类健康领域的应用越来越广泛。
为了更好地研究和开发益生菌,对其基因组分子标记的挖掘和筛选显得尤为重要。
本文旨在介绍一种基于机器学习的方法,挖掘益生菌基因组分子标记,并构建可视化筛选预测平台,以期为益生菌的研究和开发提供新的思路和方法。
二、益生菌基因组分子标记的挖掘2.1 数据收集与预处理首先,我们需要收集大量益生菌的基因组数据,包括其基因序列、表达水平、功能注释等信息。
然后,对这些数据进行预处理,包括数据清洗、质量控制、标准化等步骤,以保证数据的可靠性和准确性。
2.2 特征提取与选择在预处理后的数据基础上,我们利用机器学习算法提取出与益生菌功能相关的特征,如基因序列中的保守区域、表达水平的差异等。
同时,通过特征选择算法,筛选出对预测益生菌功能具有重要影响的特征。
2.3 机器学习模型的构建与优化我们采用监督学习的方法,构建机器学习模型。
模型包括分类、聚类、回归等多种类型,根据具体需求选择合适的模型。
在模型构建过程中,我们通过交叉验证、参数调优等方法,优化模型的性能,提高其预测准确率。
三、可视化筛选预测平台的构建3.1 平台架构设计可视化筛选预测平台采用模块化设计,包括数据管理模块、特征提取与选择模块、机器学习模型模块、可视化展示模块等。
各个模块之间通过接口进行数据传输和交互。
3.2 数据管理与交互平台提供数据上传、下载、查询、删除等功能,方便用户管理和使用数据。
同时,平台支持用户自定义特征、模型和参数,以满足不同研究需求。
3.3 可视化展示平台采用图表、热图、散点图等多种方式,将复杂的数据分析结果直观地展示给用户。
用户可以通过鼠标操作,轻松地查看和分析数据,提高工作效率。
四、平台应用与效果评估4.1 平台应用我们利用构建的可视化筛选预测平台,对大量益生菌进行筛选和预测。
改善稀有密码子和氨基酸残基限制提高重组人ADAM15去整合素结构域蛋白表达水平吴静;雷楗勇;张莲芬;花慧;金坚【期刊名称】《微生物学报》【年(卷),期】2008(48)8【摘要】[目的]为提高重组人ADAM(A Disintegrin And Metalloproteinase)15去整合素结构域蛋白(rhADAMl5)的表达水平.[方法]在详尽分析rhADAM15的cDNA和GST(谷胱甘肽-S-转移酶).ADAM15结构的基础上,选择表达宿主菌并对表达质粒进行改造.[结果](1)选择能为大肠杆菌稀有密码子提供额外tRNA的Escherichia coli.Rosetta(DE3)作为宿主菌,将质粒pGEX-ADAM15转化于其中在最佳诱导表达条件下获得298 mg/L融合蛋白GST-ADAM15;(2)采用PCR体外定点突变技术将目标蛋白编码区稀有密码子GGA(Gly<'425)替换为GGC,使融合蛋白表达水平提高9.4%;(3)通过消除凝血酶识别序列附近的Pro-Glu-Phe残基,提高凝血酶酶切效率,使rhADAM15产量提高了35.7%;(4)在GGA替换为GGC基础上切除"Pro-Glu-Phe"残基,使rhADAM15产量提高到68 mg/L,比分别切除"Pro-Glu-Phe"残基、GGA替换为GGC和野生型提高了19.2%、51.1%和61.9%.[结论]这一结果表明,在充分认识目标蛋白特性的基础上定向选择表达宿主并改造表达质粒能实现外源蛋白高水平表达.【总页数】8页(P1067-1074)【作者】吴静;雷楗勇;张莲芬;花慧;金坚【作者单位】工业生物技术教育部重点实验室;江南大学医药学院分子药理研究室,无锡214122;工业生物技术教育部重点实验室;工业生物技术教育部重点实验室;江南大学医药学院分子药理研究室,无锡214122;工业生物技术教育部重点实验室;工业生物技术教育部重点实验室;江南大学医药学院分子药理研究室,无锡214122【正文语种】中文【中图分类】Q816【相关文献】1.重组人ADAM15去整合素区域蛋白抑制HeLa细胞的增殖及迁移 [J], 侯颖;储敏;蔡燕飞;杜芳芳;王晓敏;陈蕴;金坚2.基因重组白眉蝮蛇去整合素Adinbitor对人肝癌细胞系SSMC7721增殖、凋亡和侵袭的影响 [J], 胡燕荣;刘淑清;田余祥;田晓光;于丽华;崔秀云;赵宝昌3.密码子优化提高重组金葡菌肠毒素O在大肠杆菌中的表达水平 [J], 黄鹏;孙红颖;陈枢青4.改造稀有密码子提高SEA蛋白表达量 [J], 时成波;吕安国;吴文芳;杨立泉;冯家勋;柏学亮5.表达人受精素β去整合素结构域的重组沙门菌疫苗株的构建 [J], 张军;靳风烁;江军;李彦锋因版权原因,仅展示原文概要,查看原文内容请购买。
《基于序列信息预测选择性剪接位点和盒式外显子》篇一一、引言选择性剪接(Alternative Splicing)是基因表达过程中重要的调控机制之一,通过选择不同的外显子组合来生成不同的蛋白质亚型。
盒式外显子(Exon Skipping)是选择性剪接的一种形式,对于生物体中的多种生物学过程起着关键作用。
因此,准确预测选择性剪接位点和盒式外显子的位置,对于理解基因的复杂调控和蛋白质多样性具有重要意义。
本文旨在基于序列信息,开发一种高质量的预测方法,以实现对选择性剪接位点和盒式外显子的准确预测。
二、材料与方法1. 数据收集我们收集了来自不同物种、不同组织类型的选择性剪接事件的RNA序列数据,并对这些数据进行预处理和质量控制。
此外,我们还收集了已知的选择性剪接位点和盒式外显子的相关信息,以作为我们的训练数据集。
2. 预测方法基于深度学习和机器学习算法,我们开发了一种新的预测模型。
该模型通过分析RNA序列的特定模式和特征,如剪接位点的信号、外显子长度和GC含量等,来预测选择性剪接位点和盒式外显子的位置。
我们使用大量的正负样本进行训练和优化,以提高模型的准确性和泛化能力。
3. 模型评估我们使用交叉验证和独立测试集来评估模型的性能。
通过计算敏感性、特异性、精确度和F1值等指标,我们评估了模型在预测选择性剪接位点和盒式外显子方面的准确性。
三、结果与讨论1. 预测结果我们的模型在测试集上取得了较高的预测准确率,能够有效地识别出选择性剪接位点和盒式外显子的位置。
与传统的预测方法相比,我们的模型在敏感性和特异性方面均表现出较好的性能。
2. 结果分析通过对预测结果的分析,我们发现RNA序列的特定模式和特征与选择性剪接位点和盒式外显子的位置密切相关。
我们的模型能够有效地捕捉这些特征,从而提高预测的准确性。
此外,我们还发现不同物种和不同组织类型的RNA序列在选择性剪接方面存在差异,这为进一步研究基因表达调控和蛋白质多样性提供了新的思路。
《橙皮素早期干预对APPswe-PS1dE9双转基因小鼠Aβ生成的影响》篇一橙皮素早期干预对APPswe-PS1dE9双转基因小鼠Aβ生成的影响一、引言近年来,阿尔茨海默病(AD)已成为全球范围内的公共卫生问题。
在AD的发病机制中,Aβ的异常沉积与沉积引起的神经毒性是关键因素之一。
为了探讨有效降低Aβ生成及减缓AD发展的方法,越来越多的研究开始关注天然产物的应用。
橙皮素作为一种天然的黄酮类化合物,其抗氧化、抗炎及神经保护作用备受关注。
本篇论文旨在研究橙皮素早期干预对APPswe/PS1dE9双转基因小鼠Aβ生成的影响。
二、材料与方法1. 材料橙皮素:选用纯度较高的橙皮素原料。
APPswe/PS1dE9双转基因小鼠:用于模拟AD病理过程的小鼠模型。
实验试剂与仪器:包括酶联免疫吸附试验(ELISA)试剂、显微镜、离心机等。
2. 方法(1)分组与干预:将APPswe/PS1dE9双转基因小鼠随机分为实验组和对照组,实验组自出生后即开始给予橙皮素干预,对照组则不作处理。
(2)样本收集:在干预一定时间后,收集小鼠脑组织样本。
(3)Aβ检测:采用ELISA法检测脑组织中Aβ的含量。
(4)统计分析:对实验数据进行统计分析,比较两组小鼠Aβ含量的差异。
三、实验结果1. 橙皮素对APPswe/PS1dE9双转基因小鼠体重的影响:实验期间,两组小鼠体重均呈增长趋势,但两组间体重无明显差异,说明橙皮素的干预未对小鼠体重造成影响。
2. 橙皮素对APPswe/PS1dE9双转基因小鼠脑组织Aβ含量的影响:实验组小鼠脑组织中Aβ含量较对照组显著降低(P<0.05),说明橙皮素早期干预能够显著降低Aβ的生成。
3. 统计分析结果:通过t检验分析两组小鼠Aβ含量的差异,结果显示P值小于0.05,具有统计学意义。
四、讨论本实验结果表明,橙皮素早期干预能够显著降低APPswe/PS1dE9双转基因小鼠脑组织中Aβ的生成。
这可能与橙皮素的抗氧化、抗炎及神经保护作用有关。
首页 科技服务 测序指南 基因课堂 市场活动与进展 文章成果 关于我们全基因组选择1. Meuwissen T H, Hayes B J, Goddard M E.Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819 1829. 阅读原文>>2. Haberland A M, Pimentel E C G, Ytournel F, et al. Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information[J]. Journal of Animal Breeding and Genetics, 2013, 130(6): 456-467. 阅读原文>>3. Wu X, Lund M S, Sun D, et al. Impact of relationships between test and training animals and among training animals on reliability of genomic prediction[J]. Journal of Animal Breeding and Genetics, 2015, 132(5): 366-375. 阅读原文>>4. Goddard M E ,Hayes BJ. Genomic selection [J]. Journal of Animal Breeding and Genetics,2007,124:323:330. 阅读原文>>5. Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement [J]. Crop Science, 2009, 49(1): 1-12. 阅读原文>>参考文献全基因组选择简介Meuwissen等[1]在2001年首次提出了基因组选择理论(Genomic selection , GS),即利用具有表型和基因型的个体来预测只具有基因型不具有表型值动植物的基因组育种值(GEBV)。
【高中生物】Nature:饿死肿瘤的新方法RPF的9,12和15位点分别对应核糖体的E,P和A位点肿瘤的生长和代谢可能会局限于某些氨基酸用于蛋白合成。
最近已经被证明,某些类型的癌细胞依赖于甘氨酸、谷氨酰胺,亮氨酸,丝氨酸代谢和增殖。
此外,运用左旋门冬酰胺酶诱导天冬酰胺缺乏,已经用于治疗急性淋巴细胞白血病。
然而,本研究之前还不能在每个肿瘤中检测哪些氨基酸缺乏可以导致其生长受阻。
在2月25日的Nature中,研究者用核糖体分析来检测限制性氨基酸。
他们开发了diricore,一种核糖体检测不同密码子的步骤,用来评估特定氨基酸用于蛋白合成的可用性。
Diricore是基于核糖体分析检测(ribosomeprofiling)而开发的,核糖体分析是一种基于深度测序的技术可以定量地分析核苷酸翻译的方法。
使用核酸酶消化mRNA时,在翻译过程中发挥作用的核糖体结合并保护了大约30bp的mRNA片段(RPF)。
将细胞中这些被保护的mRNA片段构建成DNA文库,再使用测序仪对文库中所有的片段进行深度测序,最终得到了有关细胞中蛋白质翻译情况的图谱。
而在此基础上如图,diricore运用RPF进行亚克隆测序和5’末端密度两种互补的方法进行分析。
他们首先运用代谢抑制和营养缺乏分析验证了diricore的功能与抑制。
值得注意的是使用左旋门冬酰胺酶在天冬酰胺密码子诱导特殊diricore信号会引起高水平天冬酰胺合成酶(ASNS)。
然后研究者将diricore运用到肾癌上,从信号上发现脯氨酸是限制性的氨基酸。
对于天冬酰胺来说,观察的结果与高水平的PYCR1,脯氨酸产生的一个关键酶相关。
这提示了一个允许肿瘤扩增的代偿性的机制。
PYCR1是由脯氨酸前体不足引起的,当脯氨酸缺乏时抑制该酶可以抑制肾癌细胞的增殖。
高水平的PYCR1经常在浸润性的乳腺癌中被观察到。
在这个肿瘤的体内模型系统中,研究人员也发现了脯氨酸是限制性氨基酸。
在限制生长的条件下,需要PYRC1来维持肿瘤生长。
一种新的自适应步长果蝇优化算法
段艳明;肖辉辉
【期刊名称】《河南师范大学学报:自然科学版》
【年(卷),期】2016(0)1
【摘要】针对基本果蝇优化算法(FOA)易陷入局部最优、寻优精度低和后期收敛速度慢的问题,提出了一种自适应步长果蝇优化算法(ASFOA).该算法在运行过程中根据上一代最优味道浓度判断值和当前迭代次数来自适应调整进化移动步长,使算法在初期的步长大而避免种群个体陷入局部最优,到后期果蝇移动的步长变小而获得更高的收敛精度解,并加快收敛速度.通过6个标准测试函数对改进算法进行仿真测试,结果表明ASFOA算法具有更好的全局搜索能力,其收敛精度、收敛速度均比FOA算法及参考文献中其他改进果蝇优化算法有较大的提高.
【总页数】8页(P161-168)
【关键词】自适应;果蝇优化算法;收敛速度;味道浓度
【作者】段艳明;肖辉辉
【作者单位】河池学院计算机与信息工程学院;江西财经大学信息管理学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于自适应步长的果蝇优化算法 [J], 郭晓东;王丽芳;张学良
2.基于自适应步长果蝇优化算法图像分割 [J], 宋杰; 许冰; 杨淼中
3.一种新型的混沌步长果蝇优化算法 [J], 张铸; 饶盛华; 张仕杰
4.一种新型自调节步长果蝇优化算法 [J], 盛超;邹海;朱富占
5.一种基于步长指数递减策略的果蝇优化算法 [J], 秋兴国;黄润青
因版权原因,仅展示原文概要,查看原文内容请购买。
利用SAS软件优化胆固醇降解菌F- 1的发酵培养基摘要:利用SAS软件中二水平设计的部分重复因子实验对菌株F- 1降解胆固醇的发酵培养基组成进了初筛, 发现Tween-80和酵母膏是影响降解能力的主要因子,前者为负影响, 后者为正效应。
然后采用中心组合设计及响应面分析确定Tween-80和酵母膏的最佳浓度分别是0.905mL/L和5.694g/L, 并通过实验测得优化培养基后的降解酶活力为1.956×10U-3/mL, 与预测值1.982×10U-3/mL非常接近, 且比培养基组分优化前提高了22%。
关键词:胆固醇响应面; 培养基优化微生物的生长代谢过程受碳源、氮源、生长因子和无机盐等多种培养基组分的影响, 要找出主要影响因子并对其浓度进行优化涉及多因素多水平实验。
常用的正交设计或均匀设计虽在一定程度上可以解决上述问题, 但其要求实验次数多, 且无法反映因子之间的交互作用。
响应面分析能够弥补上述统计方法的缺陷, 该技术包括实验设计、建模、因子效应评估以及寻找因子最佳操作条件。
本研究以菌株F-1的发酵培养基为对象, 应用响应面分析方法考察培养基各组分对其降解胆固醇能力的影响, 并对主要影响因子的使用浓度进行了优化。
1 试验材料和方法1.1 实验材料菌株F-1:由实验室从土壤中筛选保藏;斜面保藏培养基、发酵和种子培养基配方。
1.2 胆固醇降解酶酶活力的测定采用邻苯二甲醛比色法, 以培养基中胆固醇的减少表示降解酶的活力1.3 试验设计部分因子实验设计: 采用重复因子设计。
中心组合设计:用最常用的统计软件SAS Version 6.12对实验数据进行回归分析,用t检验测试回归系数的显著性, 用微分计算预测最佳点。
2 结果与讨论2.1 培养基成分对酶活力大小的影响将浓度为1012cfu/mL的种子发酵液以10%的接种量接入各组培养基中, 30℃培养15h, 测定胆固醇降解酶活力。
为了进行方差分析, 在重复设计的因子中心点处增加4次重复, 其设计及结果见表1, 培养基各组分对酶活力影响的显著性检验结果见表2和表3。
AI定量参数对良恶性肺结节的诊断价值陈新花;姚彦娥;李建龙【期刊名称】《临床医学进展》【年(卷),期】2022(12)7【摘要】目的:探讨AI定量参数对良恶性肺结节诊断价值。
方法:回顾性收集2019年12月~2022年1月在延安大学附属医院经手术切术最终病理确诊的孤立性肺结节患者84例,其中肺腺癌62例,肺良性结节22例,利用人工智能软件,在薄层扫描肺窗图像上提取AI定量参数。
采用独立样本t检验或非参数检验比较良恶性组患者定量参数差异,进行单因素二元logistic回归分析,并绘制ROC曲线计算曲线下面积(AUC),敏感度、特异度寻找鉴别良恶性结节的风险因素。
结果:良恶性结节的一般临床基线资料差异没有统计学意义。
单因素回归分析显示平均CT值、中位数、偏度是良恶性结节预测因素。
多因素回归显示平均CT值是肺良恶性结节独立预测指标(OR值 = 0.995,95% CI:0.992~0.999)。
ROC曲线下面积AUC = 0.770 (0.615~0.915),临界值为−165.35,灵敏度62%,特异度87.5%。
结论:定量参数平均CT值、中位数、偏度能够鉴别良恶性肺结节,其中平均CT值诊断效能最优。
【总页数】7页(P6975-6981)【作者】陈新花;姚彦娥;李建龙【作者单位】延安大学附属医院延安【正文语种】中文【中图分类】R73【相关文献】1.基于人工智能CT密度定量对肺结节的良恶性诊断价值2.超声造影定量参数和参数图在甲状腺良恶性结节鉴别诊断中的临床应用价值研究3.64层螺旋CT形态学特征与CT灌注成像定量参数对肺结节良恶性的诊断价值4.彩色多普勒超声成像及定量参数用于鉴别诊断甲状腺结节良恶性的价值观察5.超声积分法及超声造影定量参数对甲状腺结节良恶性的诊断价值因版权原因,仅展示原文概要,查看原文内容请购买。
改良的内切酶突变体富集法检测肺癌标本中EGFR基因突变杨帆;陈克终;姜冠潮;李剑锋;王俊【摘要】Background and objective Epidermal growth factor receptor (EGFR) gene mutation in lung cancer is a reliable predictor of the efficacy of tyrosine kinase inhibitors, so detection of gene mutation has very important clinical significance.The aim of this study is to optimize conditions for restriction enzyme-based mutant enriched detection of EGFR mutation in lung cancer specimens.Methods EGFR somatic mutations identified in DNA specimens from 251 lung adenocarcinomas with modified mutant enriched method and direct sequencing were compared.The sensitivity of the modified method was determined by serial dilution of mutant-carrying lung cancer cells in wild-type cells.Results 46 deletion mutations in exon 19 and 26 point mutations in exon 21 were found by sequencing, while modified method identified another 78 deletions in exon 19 and 57 substitutions in exon 21 with a mutation rate of 53.8%.Sensitivity of this modified method was 0.5% (mutant/wild type) in serial diluted cells.Conclusion The modified restriction enzyme-based method is convenient for clinical EGFR mutation screening in non-small cell lung cancer for its simpleness, cost-saving and high sensitivity%背景与目的表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变是肺癌靶向药物疗效的可靠预测指标,因此基因突变的检测具有非常重要的临床意义.本研究建立使用常规实验仪器、高灵敏度、简便的检测表皮生长因子受体突变的方法,以利于临床中快速的检测EGFR基因突变.方法采用改良的内切酶法富集法检测251例肺腺癌DNA标本中EGFR基因外显子19缺失突变和21(L85SR)点突变,并与直接测序进行比较.利用混合突变/野生型EGFR基因的细胞系测定改良方法的灵敏度.结果在251例腺癌标本DNA中使用测序法检测出EGFR 外显子19突变46例、外显子21突变26例.采用改良的突变体富集法检另外测出外显子19突变78例、外显子21突变57例,总突变率53.8%.灵敏度检测显示对于外显子19和21,新方法的检测灵敏度达0.5%.结论本方法具有简便、经济、灵敏度高等特点,便于临床快速筛查非小细胞肺癌病理组织中的EGFR基因突变.【期刊名称】《中国肺癌杂志》【年(卷),期】2011(014)008【总页数】5页(P637-641)【关键词】肺肿瘤;表皮生长因子受体;突变【作者】杨帆;陈克终;姜冠潮;李剑锋;王俊【作者单位】100044,北京,北京大学人民医院胸外科;100044,北京,北京大学人民医院胸外科;100044,北京,北京大学人民医院胸外科;100044,北京,北京大学人民医院胸外科;100044,北京,北京大学人民医院胸外科【正文语种】中文【中图分类】R734.2表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)的出现是非小细胞肺癌(non-small cell lung cancer,NSCLC)治疗领域的重大突破。
IMPROVED GENE SELECTION FOR CLASSIFICATION OFMICROARRAYSJ. JAEGER*, R. SENGUPTA*†, W.L. RUZZO*†*Department of Computer Science & EngineeringUniversity of Washington114 Sieg Hall, Box 352350Seattle, WA 98195, USA†Department of Genome SciencesUniversity of Washington1705 NE Pacific St, Box 357730Seattle, WA 98195, USAIn this paper we derive a method for evaluating and improving techniques for selecting informative genes from microarray data. Genes of interest are typically selected by ranking genes according to a test-statistic and then choosing the top k genes. A problem with this approach is that many of these genes are highly correlated. For classification purposes it would be ideal to have distinct but still highly informative genes. We propose three different pre-filter methods — two based on clustering and one based on correlation — to retrieve groups of similar genes. For these groups we apply a test-statistic to finally select genes of interest. We show that this filtered set of genes can be used to significantly improve existing classifiers.1IntroductionEven though the human genome sequencing project is almost finished the analysis has just begun. Besides sequence information, microarrays are constantly delivering large amounts of data about the inner life of a cell. The new challenge is now to evaluate these gigantic data streams and extract useful information.Many genes are strongly regulated and only transcribed at certain times, in certain environmental conditions, and in certain cell types. Microarrays simultaneously measure the mRNA expression level of thousands of genes in a cell mixture. By comparing the expression profiles of different tissue types we might find the genes that best explain a perturbation or might even help clarify how cancer is developing.Given a series of microarray experiments for a specific tissue under different conditions we want to find the genes most likely differentially expressed under these conditions. In other words, we want to find the genes that best explain the effects of these conditions. This task is also called feature selection, a commonly addressed problem in machine learning, where one has class-labeled data and wants to figure out which features best discriminate among the classes. If the genes are the featuresdescribing the cell, the problem is to select the features that have the biggest impact on describing the results and to drop the features with little or no effect. These features can then be used to classify unknown data. Noisy or irrelevant attributes make the classification task more complicated, as they can contain random correlation. Therefore we want to filter out these features.Typically, informative genes are selected according to a test statistic or p-value rank according to a statistical test such as the t-test. The problem here is that we might end up with many highly correlated genes. Besides being an additional computational burden, it also can skew the results and lead to misclassifications. Additionally, if there is a limit on the number of genes to choose we might not be able to include all informative genes. Our approach is to first find similar genes, group them and then select informative genes from these groups to avoid redundancy.Besides t-like-statistics, there are many different techniques applicable. There are non-parametric tests like TNoM1 (which calculates a minimal error decision boundary and counts the number of misclassifications done with this boundary) or Wilcoxon rank sum/Mann-Whitney2 (which test statistic is identical3 to the Park4 score). It creates a minimal decision boundary too, but incorporates the distance from the boundary into the score. T-like statistics such as Fisher5 and Golub6 put different weights in the variance and number of samples. The Mutual Information score results from entropy and information theory, and the B-score7 comes from Bayesian decision theory. Vapnik8 describes an interesting method to optimize feature selection while generating support vector boundaries for SVMs.In this paper we will compare classification done with five different test statistics: Fisher,5 Golub,6 Wilcoxon,2 TNoM,1 and t-test2 on three different publicly available datasets, Golub,6 Notterman16 and Alon9. We will propose two algorithms based on clustering and one based on correlated groups to find similar genes.We then show that these prefiltering methods yield consistently better classification performance than standard methods using similar numbers of genes.The rest of the paper is organized as follows: Section 2 will review important methods needed for our proposed approach. Section 2.1 will introduce Microarrays. Section 2.2 describes a method for evaluating different feature selection sets using support vector machines and a technique called leave-one-out cross-validation. In section 2.3 we will review clustering techniques used in this paper. In section 2.4 we will discuss how reducing redundancy in a dataset can help with the final classification process and elucidate why redundancy can cause problems for classification tasks. In section 2.5 we propose new methods to select genes from clusters using correlation, clustering and statistical information about the genes. In section 3 we will present results using our proposed approach on three publicly available data sets. Section 4 contains conclusions and future research directions.2Methods and Approach2.1MicroarraysA typical microarray holds spots representing several thousand to several tens of thousands of genes or ESTs (expressed sequence tags). After hybridization the microarray will be scanned and converted into numerical data. Finally the data should be normalized. The purpose of this step is to counter systematic variation (e.g. difference in labeling efficiency for different dyes, compensation for signal spill over from neighboring spots10) and to allow a comparison between different microarrays11. The data we work with is already background-corrected and normalized, and we do not address these problems in this paper.2.2Validation, ClassificationAs we are proposing new gene selection schemes we want to measure their performance and allow a comparison. All schemes provide us with a set of informative genes that will be used for future classification. Assume we have n samples. Leave-one-out cross-validation (LOOCV) is a technique where the classifier is successively learned on n-1 samples and tested on the remaining one. This is repeated n times so that every sample was left out once. To build a classifier for the n-1 samples, we extract the most revealing genes for these samples, and use a machine learner. With this classifier we try to classify the remaining (left out) sample. Repeating this procedure n times gives us n classifiers in the end. Our error score is the number of mispredictions. We use support vector machines (SVMs12) as the classification method as these are very robust with sparse and noisy data.2.3Support Vector MachinesSupports Vector machines (SVMs) expect a training data set with positive and negative examples as input (i.e., a binary labeled training data set). Then they create a decision boundary (the maximal-margin separating hyperplane) between the two groups and select the most relevant examples involved in the decision process (the so-called support vectors). The construction of the hyperplane is always possible as long as the data is linearly separable. If this is not the case, SVMs can use ‘kernels’, which provide a nonlinear mapping into a higher dimensional feature space. If a separating hyperplane in this feature space is found, it can correspond to a nonlinear decision boundary in the input space. If there is noise or inconsistent data a perfectly separating hyperplane may not exist. Soft-margin SVMs12 attempt to separate the training set with a minimal number of errors. In this paper we used Bill Noble’s SVM implementation 1.3 beta now called gist13.2.4ClusteringCluster analysis is a technique for automatically grouping and finding structures in a dataset. Clustering methods partition the dataset into clusters, where similar data are assigned to the same cluster whereas dissimilar data should belong to different clusters. Fuzzy clustering14 deals with the problem that there is often no sharp boundary between clusters in real applications. Instead of assigning an element to one specific cluster there is a membership probability for each cluster. In doing so an element can be a member of several clusters. Fuzzy clustering can be seen as a generalization of k-means15 clustering. We used the FCMeans Clustering MATLAB Toolbox V2-0.2.5Reducing RedundancyNow that we have reviewed all the methods we need, we will return to the problem of feature selection. Table 1 shows a list of 7 genes from Notterman’s Adenoma16 dataset sorted by increasing p-value. For gene M18000 the expression value is generally higher in Adenoma than in Normals with the exception of Adenoma 1 and Normal 2. Looking at X62691 the same is true. Both genes have a very low p-value and would be pulled out by conventional methods, which focus on genes with the lowest p-values. Biologists are often interested in a small set of genes (for financial, personal workload or experimental reasons) that describes the perturbation as well as possible. Therefore we are limited in the number of genes to extract and e.g. assuming we could only extract 2 genes we would pull out the first two genes as they have the lowest p-value. However we would not get much additional information using the second gene as it shows the same overall pattern. It would be better to include a gene that provides us with extra information.Table 1:Expression values for 7 selected genes of Adenoma and normal tissues, sorted by p-value.Adenoma Normal AccessionNumber12341234t-test p-valueM18000705.411227.27959.35951.56359.83711.08485.33431.190.014 X62691387.91577.57578.45546.54227.26436.65306.94239.330.016 M8296291.8516.2712.6161.62187.4476.90181.38186.530.017 U374260.477.05 6.30 3.40-3.88 1.58-2.99-2.910.018 HG2564 2.330.54 1.58 3.82-2.91-2.11 1.00-2.910.019 Z5085335.4326.0351.4941.2227.6815.8012.4615.990.022 M32373-48.02-28.20-64.62-56.95-15.05-16.86-7.97-34.880.022Table 2: Correlation between Adenoma genes from table 1M18000X62691M82962U37426HG2564Z50853M32373 M18000 1.000X626910.961 1.000M82962-0.944-0.971 1.000U374260.9730.975-0.983 1.000HG25640.5920.653-0.5530.529 1.000Z508530.5140.616-0.6330.5970.614 1.000M32373-0.509-0.5900.602-0.580-0.619-0.874 1.000 Looking at the correlation values in table 2 we can see that the first four genes have an absolute correlation greater than 0.94. Not surprisingly highly correlated genes show the same misclassification pattern and in fact we find that the first four genes also have the same pattern of consistent outliers in Adenoma 1 and Normal 2. In order to increase the classification performance we propose to use more uncorrelated genes instead of just the top genes. We expect the phenomenon illustrated by this example to be a general one. By just using the k best ranking genes according to a test-statistic we would select highly correlated genes. Correlation can be a hint that the two genes belong to the same pathway, are coexpressed or are coming from the same chromosome. In general we expect high correlation to have a meaningful biological explanation. If, e.g., genes A and B are in the same pathway it could be that they have similar regulation and therefore similar expression profiles. If gene A has a good test score it is highly likely that gene B will, as well. Hence a typical feature selection scheme is likely to include both genes in a classifier, yet the pair of genes provides little additional information than either gene alone. Of course we could just select more genes in order to capture all relevant genes. But not only would more genes involve higher computational complexity for classification but it also can skew the result if we have a lot more genes from one pathway. Furthermore if there are several pathways involved in the perturbation but one pathway has the main influence, we will probably select all genes from this pathway. If we then have a limit for the number of genes we might end up with genes only from this pathway. If many genes are highly correlated we could describe this pathway with fewer genes and reach the same precision. Additionally, we could replace correlated genes from this pathway by genes from other pathways and possibly increase the prediction accuracy. The same issue might be true when selecting a lot of genes as well, but it is more compelling when we have a limited budget of genes and can only select a few genes.Our method for gene selection will therefore be to prefilter the gene set and drop genes that are very similar. For the remaining genes we will apply a common test statistic and pull out the highest-ranking genes. One way to find correlated genes would be to calculate the correlation between all genes. In our first method weselected from the best genes (best according to a test statistic) those that have a pair-wise correlation below a certain threshold. A simple greedy algorithm accomplishes this selection – the k-th gene selected is the gene with highest p-value among all genes whose correlation to each of the first k-1 is below the specified threshold. This method is called “Correlation” in the figures below. Greedy algorithms are of course simple, but often give results of poor overall quality due to their myopic decision-making. As an alternative allowing a more global view of the data, we also consider clustering algorithms. Clustering is very versatile as it can use different distancefunctions (Euclidean, Lk , Mahalanobis, and correlation), and different underlyingmodels, shapes and densities, which are not captured by just correlation. In this paper we compared clustering and correlation methods. We used a fuzzy clustering algorithm because it assigns a membership probability for a cluster for each gene and may therefore capture the fact that some genes are involved in several pathways. Although a cluster does not automatically correspond to a pathway it is a reasonable approximation that genes in the same cluster have something to do with each other or are directly or indirectly involved in the same pathway. Our basic approach is to cluster the genes, and then to select one or more representative genes from each cluster. The details how many genes from which cluster depend on the “quality” of each cluster and will be discussed below.2.6Assigning quality to clusterOnce we have done the clustering we know that genes in a cluster show similar expression profiles and might be involved in the same pathway. Since we want to have as many pathways as possible involved in our list of significant genes, we would like to sample from each cluster/pathway. But it would not be fair to treat each cluster and gene equally. The size of the clusters as well as the quality of a cluster play a role, i.e. how close together are the genes, how far away are they from the cluster center. If a cluster is very tight and dense it can be assumed that the members are very similar. On the other hand if a cluster has wide dispersion the members of the cluster are more heterogeneous. To capture the biggest possible variety of genes, it would therefore be favorable to take more genes from a cluster of bad quality than from a cluster with good quality. To determine the quality for the fuzzy clustering algorithm we used the membership probability for a gene. We said that an element belongs to the cluster to which it has the highest membership probability. The cluster quality is then assessed by looking at the average membership probability of its elements.A high cluster quality means low dispersion, and the closer the quality gets to 0 the more scattered the cluster becomes. In our first clustering algorithm we decided that no matter how bad the quality and how small the size of the cluster we should get at least one element from each cluster. Our reasoning is as follows. First, if thecluster size is very small but there is a very good gene in it, we do not want to miss that cluster. Second, by eliminating a cluster we lose all the information of that pathway, so getting at least one representative plays a role like pseudocounts. Third, if we have a cluster that is extremely correlated, we would have a very high quality score and therefore may not pick any gene from that cluster. But this one gene from that cluster might have had a very good contribution to the discrimination process.The drawback is that a cluster might represent a pathway that is totally unrelated to the discrimination we look for. If the cluster then has a bad quality we might pick a lot of genes from that cluster even though they are not informative. To counteract this problem we implemented the possibility to mask out and exclude clusters that have an average bad test statistic p-value (this method is called “Masked out Clustering” in the figures, whereas “Clustering” refers to the method where we look at all clusters and do not mask out any). Lastly we want to have genes that have a high discriminatory power, i.e. can explain the symptoms. This can be achieved by using an appropriate test statistic.3Results and DiscussionFor our experiments we selected three different publicly available microarray datasets, Alon9(40 Adenocarcinoma and 22 normal samples), Golub6(47 ALL and 25 AML leukemia samples) and Notterman16(18 tumor and 18 normal samples). We compared five different test statistics: Fisher5, Golub6, Park4, TNoM1, and t-test and ran our three different filtering algorithms described above: Correlation, Clustering, Masked out Clustering. The performance of the feature selection was calculated using SVM and LOOCV scores.For each possible combination of test statistic and clustering algorithm we evaluated the performance varying the number of clusters between 1 and 30 and the number of selected features between 2 and 100. We used the Euclidean distance metric and a fuzzy clustering softness of 1.2 (where 1 would be hard clustering and infinity is everything belonging to all clusters). For SVM we chose an RBF kernel function and used data normalization in the feature space.We also calculated the LOOCV performance using all available data (i.e. not reducing the number of genes but using all of them). The result was that LOOCV produced 6 false classifications in the Alon’s colon dataset, resulting in an error of 9.7%. In Golub’s leukemia dataset LOOCV produced 2 false classifications, resulting in an error of 2.8% and in Notterman’s carcinoma dataset LOOCV made 1 false classification, resulting in an error of 2.8%.Figure 1 shows a 3d plot of the LOOCV performance varying the number of clusters selected between 1 and 10 and the number of features chosen between 10 and 100 in steps of 10. The plot shows the clustering algorithm without masking out.Figure 1: LOOCV performance for Alon’s data set using clustering and conventional methodsThere are no values for 10 features and more than 10 clusters, as well as 20 features and more than 20 clusters, as one of our constraints is that each cluster has at least one member in the feature set. So we can never have more clusters than features selected.In the leftmost ribbon (starting in the lower left corner and going up to the top left corner) we can see the performance varying the number of features and using just one cluster (i.e. this is our standard comparison line, as this reflects just selecting features by test-statistic). The whole plot seems very flat once we have more than 30 features. But notice the darker spots in the middle (between 10 and 20 clusters), that reflect very low LOOCV scores. One reason that there is a high peak for less than 30 features is that the t-test selects highly correlated and therefore redundant genes, which makes it hard for the underlying SVM to learn a good classifier. The average correlation of the top 10 genes selected with the t-test is 0.85.Figure 2 compares different test statistics on a given data set using the first clustering algorithm. Notice that Fisher and Golub behave very similarly as do Park and TNoM, but t-test has (besides the big bulk at only a few features) a very flat and robust behavior. Fisher and Golub seem to have a higher variance in classification but their best classification performance is similar to t-test. They achieve their best results with 6-25 clusters. TNoM and Park achieve their best results for fewer clusters (in the range of 1-6) and in fact they seem not to benefit from the clusteringas much as t-test, Fisher or Golub do.Figure 2: Comparison of different test statisticsFor Notterman’s carcinoma dataset the standard classification process already achieves 0% error when using more than 10 features but we can still improve the classification when using 10 features or less. Using only that few features we still manage to have a 0% error with most of the test statistics. Due to space restrictions figures are not shown here but can be accessed online17.Now consider how the LOOCV performance of our clustered result compares to the conventional methods (depicted as normal). In figure 3 we plot the normal score, the clustered scores (the minimum error score over all trials with cluster size from 2 to 30), the clustered scores with masking out and the correlation scores for the LOOCV performance for each of the five test-statistics. Here we did not plot the number of errors (plots for this are available online17), that reflect the efficiency of the classification but a ROC18 (receiver operator curves) score (i.e., the area under the ROC graph, which takes both false negative and false positive errors into account and reflects the robustness of the classification). We can see that almost always the filtered performance is better than the conventional method. Another noticeable fact is that without clustering, TNoM would have on average the best LOOCV performance of the five scores for Alon’s colon dataset. An explanation might be that TNoM, as a nonparametric test, extracts less correlated genes andtherefore already does a good job in selecting different genes.Figure 3: Comparison of test-statistics and different prefilter methods for Alon’s data set In the top 30 t-test genes in Alon’s dataset, we have an average correlation of 0.79, whereas in the top 30 TNoM genes, we have only an average correlation of 0.56. Wilcoxon (also a nonparametric test) achieves the best result of all the tests (when comparing 30 features) and can reduce the absolute LOOCV error to 5.17 The average correlation of the top 30 Wilcoxon genes is 0.43.Doing the same comparison on Golub’s dataset yields figure 4. In Alon’s dataset it seemed that TNoM was on average the best test statistic whereas in Golub’s leukemia dataset Wilcoxon performs best. We still see that clustering can lower the error in most of the cases. A remarkable fact is that with clustering we achieve 0% error with the t-test when using more than 50 features. Notice that we had 2 errors when using all the data. Here, not only can feature selection reduce the number of genes to find, but it can also decrease the error.Although clustering for feature selection generally seems to improve the LOOCV error, the least improvements were obtained using it in conjunction with the Wilcoxon rank sum test and the best performance improvement was achieved using it together with t-tests. As illustrated above the reason for that could be that the t-test generally finds more correlated genes. The nonparametric tests do not take values into account and calculate their scores purely based on rank information what seemsto have a positive effect on selecting fewer correlated genes.Figure 4: Comparison of different prefilter methods for Golub’s data set4Conclusion and further researchIn this paper we presented three novel prefilter methods to increase classification performance with microarray data. There is no clear winner between the three proposed methods and it depends largely on the dataset and parameters used. All the proposed feature selection methods find a subset that has better LOOCV performance than the currently used approaches. One question not addressed here is how to find the correct number of clusters. It is pretty expensive to try all possible numbers for clusters to find a setting that provides us with a good LOOCV performance. One direction for future work would be to estimate the number of clusters using a BIC19 (Bayesian Information Criterion) score or switching over to model based clustering20.We addressed the problem of feature selection and outlined why feature selection has to be done and how it can be done without losing crucial information. The question not answered here is how many features/genes should be chosen in the end. One could argue to choose exactly that many genes as necessary to achieve the lowest LOOCV error. But in the end it comes down to a tradeoff between false positives and false negatives. The more genes we have in our set of interest (the feature set) the more genes might also be real candidates. The extreme would be to take all genes. Then we definitely have all candidates but also a very high percentage of false positives. The other extreme would be to take no gene at all. Then we would not mispredict anything to be a real gene but would have a very high false negative rate. The final answer on how many genes to select can only be answered by the biologists who must judge how much time they can invest in examining these genes further and which false positive/negative rate they willaccept.We feel, however, that for any fixed size the methods outlined here are likely to identify sets of genes that are stronger predictors than sets found by standard methods, which should be of significant value for diagnostic purposes as well as for guiding further exploration of the underlying biology.AcknowledgmentThanks to Bill Noble for his helpful suggestions. JJ and RS were supported in part by NIH grant NHGRI/K01-02350. WLR and JJ were supported in part by NSF DBI 62-2677.References1 A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini. Tissueclassification with gene expression profiles. RECOMB, (2000).2 J.L. Devore, Probability and Statistics for Engineering and the Sciences, 4th edition, Duxbury Press,(1995).3 Own unpublished results4 P.J. Park, M. Pagano, M. Bonetti: A nonparametric scoring algorithm for identifying informativegenes from microarray data. PSB:52-63, (2001).5 C.M. Bishop: Neural Networks for Pattern Recognition, Oxford University Press, (1995)6 T.R. Golub, D.K. Slonim, et al. Molecular classification of cancer: Class discovery and classprediction by gene expression monitoring. Science, 286:531-537, (1999).7 I. Lonnstedt and T. P. Speed. Replicated Microarray Data. Statistical Sinica, (2002).8 J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection forSVMs, Advances in Neural Information Processing Systems13. MIT Press, (2001).9 U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack and A.J. Levine: Broad patternsof gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays PNAS96:6745-6750, (1999).10 Y.H. Yang, M.J. Buckley, S. Dudoit, T.P. and Speed: Comparison of methods for image analysison cDNA microarray data. Technical report (2000)11 Y. H. Yang, S. Dudoit, P. Luu and T. P. Speed. Normalization for cDNA Microarray Data. SPIEBiOS, (2001).12 C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:273-297, (1995).13 /gist/14 J.C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters", Journal of Cybernetics, 3:32--57, (1973).15 A.K. Jain, R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, (1988).16 D.A. Notterman, U. Alon, A.J. Sierk, A.J. Levine: Transcriptional Gene Expression Profiles ofColorectal Adenoma, Adenocarcinoma and Normal Tissue Examined by Oligonucleotide Arrays, Cancer Research61:3124-3130, (2001).17 /homes/jj/psb18 C.E. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine, Vol 8, No. 4, 283-298, (1978).19 G. Schwarz: Estimating the dimension of a model. Annals of Statistics, 6:461-464 (1978).20 K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, Model-based clustering anddata transformation for gene expression data, Bioinformatics17:977-987 (2001).。