最新整理六年级下册数学试题-04倒推法解题(奥数专项训练四)
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。
第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。
即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。
练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。
列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。
练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。
用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。
这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517 。
擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。
这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是。
那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517。
擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
小学六年级下册最新经典奥数题及答案(最全)汇总小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
有些数学问题,从条件出发顺向思考很难找到答案,倘若倒过来考 虑,则容易得多。
而这种采用与事情发生过程相反的顺序思考的解题方 法叫做倒推法。
用倒推法分析数学问题,关键是要掌握数量之间运算的关系。
能用 倒推法求解的数学问题常常满足下列三个条件: (1)已知最后的结果;(2)已知在到达最终结果时每一步的具体过程或具体做法; (3)未知的是最初的数量。
用倒推法解题的步骤也是从最后得出的结果出发,按照原题运算的 逆运算,步步逆推,从而推算出原数。
[例1】 已知甲、乙、丙三个容器各盛水若干千克。
第一次把甲容器 的一部分水倒入乙、丙两容器,使乙、丙两容器内的水分别增加到原来的2 倍,第二次从乙容器把水倒入丙、甲两容器,使丙、甲两容器水分别增加到 第二次倒之前容器内水的2倍;第三次从丙容器把水倒入甲、乙两容器。
使甲、乙两容器内的水分别增加到第三次倒之前容器内水的2倍,这时各 容器内的水都为16千克。
问甲、乙、丙三个容器内原来各有水多少千 克?思路剖析根据题中条件,画一个表格,用倒推法进行逆运算。
所以由表1可知,甲、乙、丙三个容器原来的水依次为26千克、14千[例2] 某仓库原有化肥若干吨。
第一次运出原化肥的一半,第二次 运进450吨,第三次又运出现有化肥的一半又50吨,结果剩余化肥的2倍 是1200吨。
问仓库原有化肥多少吨? 思路剖析这道题由于原有化肥的总吨数是未知的,所以要想求解是很不容易 的。
根据题意画出图1。
根据图1用倒推法可知,“剩余化肥的2倍是1200吨”,就可以求出剩 余化肥的吨数;根据“第三次运出现有化肥的一半又50吨”。
和剩余化肥 的吨数,就可以求出现有化肥的一半是多少吨?进而可求出现有化肥的 吨数;用现有化肥的吨数减去第二次运进的450吨,就可以求出原有化肥 的一半是多少,最后再求出原有化肥多少吨? 解答(1)剩余化肥的吨数是:1200÷2=600(吨) (2)现有化肥的一半是:600+50=650(吨) (3)现有化肥的吨数是:650×2=1300(吨) (4)原有化肥的一半是:1300-450=850(吨)(5)原有化肥的吨数是.850×2=1700(吨)综合列式计算:[(1200÷2+50)×2-450]×2=[(600+50)×2-450]×2=(650×2-450)×2=(1300-450)×2=850×2=1700(吨)答:原有化肥为1700吨。
逆推问题(思维拓展提高卷)六年级下册小升初数学专项培优卷(通用版)一.选择题(共20小题)1.一箱苹果,第一天卖出全部的一半,第二天卖出剩下的一半,还剩下6个,原来这箱苹果有()个。
A.12B.18C.24D.302.一个数的4倍再乘9得216,这个数是()A.54B.24C.63.有两个书架,甲书架有书80本,乙书架有书50本,每次从甲书架拿出3本放入乙书架,拿()次后两个书架的书相等。
A.10B.5C.84.有一根绳子,第一次剪下一半又1米,第二次剪下剩下的一半又1米,还剩1米。
这根绳子原来有多长?()A.7米B.8米C.9米D.10米5.小明在计算a﹣30÷3时,先算减法,再算除法,结果为5,那么正确结果是()A.45B.55C.35D.656.甲杯中有水3升,乙杯中有水4升。
第一次先从甲杯中倒100毫升水到乙杯中,第二次再从乙杯中倒200毫升水到甲杯中,第三次再从甲杯中倒300毫升到乙杯中,第四次再从乙杯中倒400毫升到甲杯中,像这样下去,当倒第()次时甲、乙两杯水一样多。
A.5B.8C.107.元旦联欢会老师买了一条彩带装饰教室。
同学们第一次用去彩带的一半,第二次用去剩下的一半,第三次用去剩下彩带的一半,最后还剩8.45米。
这条彩带原来长()米。
A.33.8B.67.6C.135.28.明明在做一道减法题时(被减数是一个三位数),把减数79错写成97,算出的结果比正确答案()A.小18B.大18C.小22D.大229.《庄子•天下篇》中有一句话:“一尺之锤,日取其半,万世不竭。
”意思就是:一根一尺(尺,中国古代长度单位)长的木棒,今天取它的一半,明天取它剩下的一半,后天再取剩下的一半,……这样取下去,永远也取不完。
那么,第三天取的长度是这根木棒的( )A .14B .18C .116D .13210.王博士设计了一个程序如图:欣欣输入自己的年龄,得到的结果是18,欣欣的年龄是( )岁。
倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。
对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。
运用这种方法, 反向倒推过去, 反而易于解决问题。
【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。
这时, 鸡蛋都卖完了。
问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。
原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。
这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。
问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。
问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。
问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。
六年级奥数培优 应用题倒推法解题1、理解三类基本倒推法应用题的分析思考方法;2、会根据题目的特征画出合适的图示进行分析解答。
例题1、一个数乘以7后,再加上7,结果再除以7,最后再减7,此时结果为7.原来这个数是多少?举一反三1、一个数减去5,再乘以5,加上5,最后再除以5,结果得2.这个数原来是多少?2、王老师今年年龄除以4,再加上4,再乘以4,最后减去4,结果得44.王老师明年多少岁考点归纳学习思考例题2、一堆西瓜,第一次卖出总数的41又4个,第二次卖出余下的21又2个,第三次又卖出余下的21又2个,还剩2个。
这堆西瓜共有多少个?举一反三 1、一批水泥,第一天用去了21多1吨,第二天用去了余下的31少2吨,还剩下16吨。
原来水泥有多少吨?2、仓库存量若干吨,第一天运了总数的101,以后8天分别运了现有存量的,71,81,91……,21,31,运了9天后,仓库还剩2015吨。
仓库原存量多少吨?例题3、甲、乙各存款若干元,甲拿了存款的51给乙后,乙再拿出现有存款的41给甲,这时他们各有180元。
两人原存款多少元?举一反三1、有甲、乙两桶油,从甲桶中倒出31油给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有36千克。
原来甲、乙两个桶中各有油多少千克?2、甲、乙两瓶酒精共有200千克,甲倒出20%给乙后,乙又倒出这时酒精的25%给甲,结果两瓶酒精的重量相等。
原来甲、乙两瓶酒精各有多少千克?1、一个数除以8后,再加上8,最后再减去8得6.这个数原来是多少?2、一堆煤,第一天运了总数的40%后,第二天运了余下的40%少12吨,结果还剩42吨。
原来这批煤共有多少吨?3、甲、乙两筐梨共有240千克,第一次甲拿20%给乙,第二次乙又拿了这时的31给甲,此时两筐梨的重量比为3:2。
原来两筐梨的重量各是多少千克?自我检测。
解决问题的策略还原法、假设法、替换法一、知识梳理1、还原法(倒推法)从结果开始,一步一步倒推回去,每步倒推时所用的方法要刚好和原来相反,例如原来加的倒推回去就是减,原来减得倒回去就是加,原来乘的倒回去就是除,原来除的就倒回去乘,一直推到最初的数据。
2、替换与假设:“替”指的是替代,“换”指的是更换,替换就是将实际问题中的数量用别的数量来代替,从而使问题简化。
假设是指对条件和问题进行假定和预设,然后根据数量之间的关系,对假定和预设进行调整,从而得到问题的答案。
转化:把较复杂的问题变成较简单的问题,把新颖的问题变成已经解决的问题。
二、精讲例题例1、甲、乙两位师傅共做零件135个,如果从甲做的零件中拿36个给乙,而又从乙做的零件中拿出45个给甲,这时乙的零件个数是甲的1.5倍,原来甲、乙师傅各做零件多少个?分析:根据和倍问题先求出甲现有零件的个数,135:(1.5+1)=54 (个),再逆推出他原有零件的个数:54-45+36=45 (个),乙原有零件135-45=90 (个)。
例2、甲、乙、丙、丁各有棋子若干枚,甲先拿出自己棋子的一部分给乙、丙,使乙、丙每人的棋子各增加一倍,然后乙也把自己的棋子的一部分以同样的方式给丙、丁,丙也将自己的棋子的一部分以这样的方式给了甲、丁,最后丁也将自己的棋子的一部分以这样的方式给了甲、乙。
这时四人的棋子都是16枚。
原来甲、乙、丙、丁四人各有棋子多少枚?分析:最后一次四人的棋子都是16枚,每次变化中,有一人的棋子数未动,有两人的棋子数增加一倍,倒推时应除以“2”,另一个人的棋子数减少了两人增加的总数。
我们可以用列表法进行倒推:例3、王师傅和李师傅一起打一份稿件。
王师傅打5分钟,李师傅打6分钟,两人一共打了757个字。
已知王师傅每分钟比李师傅多打15个字。
王师傅每分钟打多少个字?李师傅每分钟打多少个字?分析:王师傅每分钟比李师傅多打15个字,王师傅5分钟就比李师傅多打了15*5=75个字,757-75=682,也就是李师傅在11(5+6)分钟打了682个字,每分钟打682/11=62个字,王师傅每分钟打15+62=77个字。
练习一(倒推法)A组1、一个数加上1,乘以8,减去8,结果还是8,这个数是。
2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。
那么甲数原来是。
4、三堆苹果各有若干个。
先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后再从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆。
这时三堆苹果都正好是16个。
原来第一堆苹果有个。
5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒里的珠宝数各增加一倍;第二次从乙盒里拿出一些珠宝放入甲丙两盒内,使甲丙两盒里的珠宝数各增加一倍;第三次从丙盒里拿出一些珠宝放入甲乙两盒内,使甲乙两盒里的珠宝数各增加一倍。
这时三个盒里都是48颗珠宝。
最初甲盒子里有颗珠宝。
6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板数各增加一倍,后来乙把自己的铜板拿出一部分给了甲丙,使甲丙的铜板数各增加一倍,最后丙也把自己的铜板拿出一部分给了甲乙,使甲乙的铜板数各增加一倍。
这时三人的铜板数都是8枚。
原来最少的人有枚铜板。
7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。
如果最后两个数分别是16、64,那么第一个数是。
8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。
那么覆盖半个池塘需要天。
9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。
(吉林省金翅杯小学生数学竞赛试题)10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要小时。
小学数学《用倒推法解题》练习题(含答案)【例1】阿呆做了这样一道题:某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?小朋友,你知道答案吗?分析:(倒推法)我们可以从最后的结果6倒着往前推。
最后是“除以6,结果还是6”,如果没有除以6,那被除数应是6×6=36;再看倒数第2步,“减去6”得36,如果没有减去6,那被减数应是36+6=42;然后看倒数第3步,“乘以6”得42,如果没有乘以6时,另一个因数应是42÷6=7;最后看第1步,“某数加上6”得7,如果没有加上时,某数是7-6=1.即原数为:(6×6+6)÷6-6=1.建议:让学生验算一遍,确保答案正确.【例2】牛老师带着37名同学到野外春游。
休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。
”聪明的你知道牛老师今年多少岁吗?分析:(倒推法)我们可以从最后的结果“参加活动的总人数”即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少 ? 没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38-8=30;没除以2时应是:30×2=60;没减去16时应是:60+16=76;没乘以2时应是:76÷2=38,即[(38-8)×2+16]÷ 2=38(岁).说明:解这种还原问题的关键是从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘。
列式时还要注意运算顺序,正确使用括号.【例3】小超人去超市买东西,用去了口袋里钱的一半,于是他又去自动取款机上取出1000元,买了一套衣服花掉袋中钱的一半,还剩下780元。
问小超人最初口袋中有多少钱?分析:(倒推法)即780×2-1000=560(元)……第一次用后余下的钱560×2=1120(元)……原有的钱【例4】一群蚂蚁搬家,原存一堆食物。
用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。
这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517 。
擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
倒推法解题专题训练————————————————————————————————作者:————————————————————————————————日期:倒推法解题专题训练知识梳理1、用倒推法解题就是根据题目的叙述过程,从最后的结果入手,采用倒推的方法,逐步找到题目的答案。
2、用倒推法解题时,要采用逆向思维和运算方式,原来加的用减,乘的用除。
例题精讲:1、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是多少?解析:从最后的结果往前逆推,结果是691,这是一个数的3倍减5得到的,这个数应该是(691+5)÷3=232,这是经过3次后的结果;同样可知,经过2次后的结果为(232+5)÷ 3=79;经过1次后的结果为(79+5) ÷3=28;因此,原数为(28+5) ÷3==11。
2、一只猴子偷吃一棵桃树上的桃子。
第一天偷吃了,以后八天分别偷吃了当天现有桃子的…,最后树上还剩下10个桃子。
树上原桃子多少个?解析:可以从最后树上的10个桃子依次向前倒推:10(1-)(1-)(1-)(1-)(1-)(1-)(1-)(1-)(1-)=10=100(个)3、李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了几本书?解析:最后李老师还剩2本书,因此,他到第36位同学家之前应有(2-1)×2=2本书;同样,他到35位同学家之前应有(2-1)×2=2本书;…;由上此可知,他到每位同学家之前都有2本书,故李老师原来拿了2本书。
专题特训:1、小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年多少岁?2、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?3、一块冰,每小时失去其质量的一半,八小时之后其质量为千克,那么一开始这块冰的质量是多少千克?4、修一段公路,第一天修了全路的多2千米,第二天修了余下的少1千米,这时还剩下20米没有修,这条公路有多长?5、甲、乙两人各有钱若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有240元,两人原来各有多少钱?6、一瓶盐水,第一次倒出后又倒回瓶中50千克,第二次倒出瓶中剩下盐水的,第三次倒出150克,这时瓶中还剩下120克盐水,原来瓶子中有多少千克盐水?7、小明和小聪共有小球200个,如果小明取出给小聪,然后小聪又从现有球中取出给小明,这时小明和小聪的小球一样多。
用倒推法解题姓名:专题精析:“一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是多少呢?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答“还原问题”一般采用倒推法,简单的说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步一步倒着想,直到问题解决。
同时,可利用线段图、表格帮助理解题意。
温故而知新在下面的方框里填上合适的数□ + 100 = 500 □ - 200 = 600 □× 40 = 2000 □÷ 50 = 60□ + 100 - 50 = 400 □× 100 ÷ 20 = 40王牌例题一:一个数加上5,减去7,乘以4,除以6得18,这个数是多少?疯狂操练1.一个数减去8,加上4,乘以5,除以4得25,求这个数。
2.一个数扩大3倍,再增加70,然后减少50,得80,求这个数。
王牌例题二:陈老师说:“把我的年龄数减去2,除以5,加上8,乘以6,正好是72.”,同学们,你能推算出陈老师的年龄吗?疯狂操练1.小西今年的年龄乘以7,加上4,除以6,减去7,再除以3,正好等于1,。
请你算一算小西今年几岁?2.有一位老人,把他今年的年龄加上16,用5除,再减去10,最后用10乘恰好是100岁,这位老人今年多少岁?3.小明问小敏,“你今年几岁?”小敏回答说:“用我的年龄数减去8,乘以7,加上6,除以 5,正好等于4,”小敏今年几岁?王牌例题三:小红、小丽、小华三人分苹果,小红分得的比总数的一半多1个,小丽分得的比剩下的一半多1个,小华分得10个。
问原来有多少个苹果?疯狂操练1.农贸市场一农妇卖鸡蛋,第一次卖出总数的一半零8个,第二次卖出剩下的一半零4个,第三次卖出剩余的一半零5个,这时还剩下4个鸡蛋,问这农妇原来有鸡蛋多少个?2.某人到银行取存款,第一次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时还剩下125元,他原来有存款多少元?3.修路队修一条公路,第一天修了全长的一半少160米,第二天修了第一天剩下的一半少60米,第三天修了第二天剩下的一半多30米,这时还剩140米没有修。
用倒推法解题
姓名:
专题精析:
“一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是多少呢?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答“还原问题”一般采用倒推法,简单的说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步一步倒着想,直到问题解决。
同时,可利用线段图、表格帮助理解题意。
温故而知新
在下面的方框里填上合适的数
□ + 100 = 500 □ - 200 = 600 □× 40 = 2000 □÷ 50 = 60
□ + 100 - 50 = 400 □× 100 ÷ 20 = 40
王牌例题一:一个数加上5,减去7,乘以4,除以6得18,这个数是多少?
疯狂操练
1.一个数减去8,加上4,乘以5,除以4得25,求这个数。
2.一个数扩大3倍,再增加70,然后减少50,得80,求这个数。
王牌例题二:陈老师说:“把我的年龄数减去2,除以5,加上8,乘以6,正好是72.”,同学们,你能推算出陈老师的年龄吗?
疯狂操练
1.小西今年的年龄乘以7,加上4,除以6,减去7,再除以3,正好等于1,。
请你算一算小西今年几岁?
2.有一位老人,把他今年的年龄加上16,用5除,再减去10,最后用10乘恰好是100岁,这位老人今年多少岁?
3.小明问小敏,“你今年几岁?”小敏回答说:“用我的年龄数减去8,乘以7,加上6,除以 5,正好等于4,”小敏今年几岁?
王牌例题三:小红、小丽、小华三人分苹果,小红分得的比总数的一半多1个,小丽分得的比剩下的一半多1个,小华分得10个。
问原来有多少个苹果?
疯狂操练
1.农贸市场一农妇卖鸡蛋,第一次卖出总数的一半零8个,第二次卖出剩下的一半零4个,第三次卖出剩余的一半零5个,这时还剩下4个鸡蛋,问这农妇原来有鸡蛋多少个?
2.某人到银行取存款,第一次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时还剩下125元,他原来有存款多少元?
3.修路队修一条公路,第一天修了全长的一半少160米,第二天修了第一天剩下的一半少60米,第三天修了第二天剩下的一半多30米,这时还剩140米没有修。
这条公路全长多少米?
王牌例题四:甲、乙、丙三人各有连环画若干本,如果甲给乙5本,乙给丙10本,丙给甲 15本,那么三人现在所有的连环画都是35本,他们原来各有多少本?
疯狂操练
1.甲、乙、丙三个组共有图书120本。
如果乙组向甲组借4本后,又送给丙组6本,结果三个组所有的图书刚好相等,问甲、乙、丙三个组原来有图书多少本?
课后作业
1.一个数减去5,加上7,除以4,乘以6得24.这个数是多少?
2.小江今年的年龄除以4,加上4,乘9,加上7,减去20得50,小江今年多少岁?
3.李大伯在农贸市场卖苹果,第一次卖出总数的一半零4个,第二次卖出剩下的一半零2个,这时剩下10个,问李大伯原来有苹果多少个?。