第二节 真核生物转录
- 格式:ppt
- 大小:2.90 MB
- 文档页数:57
真核生物基因转录过程真核生物基因转录是指DNA上的信息被复制成RNA分子上的信息,其步骤由信使RNA合成(mRNA)、转录因子(TFs)和转录机制三部分组成。
首先,mRNA就是包含了DNA上信息的RNA分子,也是转录过程的第一步。
早期的研究发现,mRNA的合成受到转录因子的调控,称为前体mRNA(pre mRNA)。
在DNA上开始mRNA合成的过程,DNA上的基因被转录因子识别,转录因子将DNA的胞嘧啶核酸(A,T,C,G)改变为mRNA上的胞糖核酸(A,U,C,G),并将mRNA分子牵引到细胞核中,这就是基因转录的第一步。
其次,转录因子(TFs)是基因转录的关键因素。
它们是一种特殊的蛋白质,它们识别DNA上特定的序列,引起DNA上的基因激活或抑制,而这些蛋白质也可以控制基因转录活性,保证基因得到有效表达。
最后,转录机制是基因转录过程的核心。
它涉及到RNApolymeraseII酶的参与,它结合到DNA上,并将DNA上的信息复制到 mRNA 上,即它识别 DNA苷结构,对碱基对匹配,把 DNA上的信息(A,T,C,G)复制成 mRNA 上的信息(A,U,C,G),这一过程也被称为 DNA核酸脱氧过程。
此外,基因转录后的信息(mRNA)会经过核糖体处理,得到最终的mRNA分子。
在核糖体处理过程中,RNA会受到核糖体蛋白质的调控,从而影响RNA加工,翻译和稳定性等,从而产生不同的转录产物,如外显子、内含子和抗性内含子等,同时保证mRNA的有效表达。
基因转录是真核生物的一个重要的生物过程,它涉及到细胞内DNA上信息的合成,包括mRNA的合成,转录因子的调控,转录机制的参与以及核糖体处理等步骤。
它可以确保DNA上的信息在细胞中被正确地表达出来,实现真核生物的生长发育等生理功能。
另一方面,基因转录过程也是药物开发中重要的药效目标,可以调控细胞内信号传导,影响细胞表型等,从而实现药物的靶点功效。
因此,研究真核生物基因转录过程,对于了解基因表达调控的机制,发展新的治疗药物都是非常重要的。
真核生物转录元件组成及其分类
真核生物转录元件是指在基因转录过程中与RNA聚合酶和调控因子结合的特定DNA序列,用于调控基因的转录。
它们包括启动子、增强子、沉默区和辅助区等。
1. 启动子:启动子位于基因的转录起始点上游,这是RNA聚合酶与DNA结合的起点。
启动子中一般包含TATA盒子和CAAT盒子等特定DNA序列,它们可以吸引转录因子与RNA聚合酶II结合并激活基因的转录。
2. 增强子:增强子位于启动子上游,它们可以增强启动子的活性,从而提高转录速率。
增强子一般由多个转录因子结合而成,它们可以通过相互作用来协同作用,实现调控基因的转录。
3. 沉默区:沉默区位于基因的转录起始点下游,它们可以阻止RNA聚合酶的结合,从而抑制基因的转录。
沉默区一般包括转录终止位点和多个转录抑制因子结合的DNA序列。
4. 辅助区:辅助区分布在基因的远端、内含子和外显子中,它们可以调节基因的表达水平和组织特异性。
辅助区包括增强子和增强子类似物,它们可以通过转录因子结合来调控基因的转录。
根据其作用和位置的不同,转录元件可以分为启动元件、增强元件和沉默元件等。
启动元件包括启动子和促进元件,主要用于启动基因的转录。
增强元件包括增强子和增强子类似物,主要用于增强基因的表达。
沉默元件包括沉默区和抑制元件,主要用于抑制基因的转录。
关于真核生物转录过程真核生物转录过程是指在真核细胞中,通过RNA聚合酶酶解DNA分子并合成RNA分子的过程。
转录是基因表达的第一步,能够将DNA中的遗传信息转化为RNA信使分子,后续再由RNA转化为蛋白质。
真核生物的转录过程与原核生物有很大的不同。
在真核生物中,合成RNA的过程与DNA合成RNA的地点是分离的,真核生物的转录需要通过核孔将合成的mRNA运输到细胞质进行翻译过程。
此外,真核生物的转录还涉及到基因调控的复杂过程,包括启动子和转录因子的结合等。
真核生物转录的过程可以分为三个主要的步骤:启动、延伸和终止。
启动是转录的第一步,也是调控基因表达的关键步骤。
在启动过程中,转录因子结合到DNA上的启动子区域,形成转录起始复合体。
转录起始复合体由RNA聚合酶、一组基本转录因子和其他辅助蛋白质组成。
转录起始复合体的组装过程是一个动态的过程,涉及到DNA的解旋、转录因子的结合和清除等一系列步骤。
延伸是转录的第二步,也是合成RNA分子的过程。
在这一步骤中,核酸链从DNA上解旋,并且RNA聚合酶将核苷酸逐一加入正在形成的RNA链上。
RNA的合成是由模板链上的DNA决定的。
具体来说,在DNA的双链中,开放的链称为模板链,而不开放的链则被称为非模板链。
RNA聚合酶沿着模板链进行按序合成RNA,与模板链配对的碱基由RNA聚合酶选择合成所需的相应RNA碱基。
终止是转录的最后一步。
在转录过程中,当RNA聚合酶碰到终止信号,其解离并释放出合成的RNA链。
真核终止信号的识别与原核终止信号的机制也有所不同。
在真核生物中,终止信号距离转录起始点相对较远,通常由一个富含腺嘌呤的序列组成。
转录动态改变时,转录因子的离开和结合轮番发生,使得RNA聚合酶能够顺利释放合成的RNA链。
总的来说,真核生物的转录过程复杂,需要多个转录因子的参与。
转录除了可以合成编码蛋白质所需的mRNA外,还可以合成非编码RNA和微小RNA等多种类型的RNA。
真核生物转录起始过程
真核生物的转录起始过程主要包括以下步骤:
1. 准备工作:在转录开始之前,转录因子需要结合到DNA上
的转录起始位点。
这些转录因子包括RNA聚合酶和转录辅助
因子。
转录因子会辨认和结合到特定的DNA序列上。
2. 开启DNA:转录因子的结合会导致DNA的结构发生变化,使得DNA两条链之间的键断裂,形成一个开放的DNA片段,这个片段被称为转录起始复合物。
3. 启动转录:一旦DNA被打开,RNA聚合酶就可以结合到转录起始复合物上,并开始合成RNA链。
RNA聚合酶会
“读”DNA的模板链,根据模板链中的信息,合成与DNA模板
链相互互补的RNA链。
4. 终止转录:转录过程在到达终止信号时结束。
终止信号会指示RNA聚合酶停止合成RNA链,并松开DNA模板链。
终止
信号可以是一个特定的DNA序列,也可以是转录因子的结合。
整个转录起始过程是一个复杂而精确的调控过程,各种转录因子的结合和相互作用会影响RNA聚合酶的活性和转录速度,
从而控制基因转录的起始和终止。
这对于调控真核生物的基因表达非常重要。
第二节真核基因转录水平的调控一、真核生物的RNA聚合酶有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。
二、真核基因顺式作用元件(一)、顺式作用元件概念指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。
(二)、种类启动子、增强子、静止子1、启动子的结构和功能启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。
但真核同启动子间不像原核那样有明显共同一致的序列。
而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。
RNA聚合酶Ⅱ启动子结构1)TATA框(TATA frame):其一致顺序为TATAA(TAA(T。
TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。
对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。
TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。
2)CAAT框(CAAT frame):位置在-75附近,一致序列为GGC(TCAATCT。
CAAT框可能控制着转录起始的频率。
(3)GC框在-90bp左右的GGGCGG序列称为GC框。
一个在-30—+15即核心启动子(core promoter element,另一为上游启动子区(upstream promoter element在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。
基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子2、增强子的结构和功能增强子(enhancer):又称为远上游序列(far upstream sequence 。
它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。
真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27)。
⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。
所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。
⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链。
⒊真核生物RNA聚合酶较多在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。
三种RNA聚合酶都是由10个以上亚基组成的复合酶。
RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA 以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA 聚合酶Ⅲ催化tRNA和小核RNA的合成。
⒋真核生物RNA聚合酶不能独立转录RNA 。
原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。
在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。
另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。
第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。
如果该序列缺失会极大地降低生物的活体转录水平。
第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。