八年级数学(下)第三学月考试题及答案及答题卷
- 格式:docx
- 大小:380.88 KB
- 文档页数:7
春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是A. △ABC ≌△DEFB. ∠DEF =90°C. EC =CFD. AC =DF2. 函数中自变量x 的取值范围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 25. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是A. 3000元B. 300元C. 30%D. 900元 6. 下列命题错误的是 A . 有三条边相等的三角形全等 B . 有两条边和一个角对应相等的三角形全等C. 有一条边和一个角对应相等的等腰三角形全等D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对.A. 2B. 3C. 4D. 58. 如果把分式ba ab+2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为 A. 5cm B. 8cm C. 9cm D. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有 ①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°.A. 1个 B .2个 C .3个 D .4个11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m =. 18.已知点A(2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x的取值范围 . 三、解答题(每题6分,共24分)21. 计算:20090-2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC 中,∠C =90°,按下列 要求作图.(尺规作图,保留痕迹,不写作法)①作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;②连结CF ,作∠CFB 的平分线,交BC于点G . 四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD 中,AB ∥DC ,AC 平分∠BCD ,AE ∥BC. 求证:四边形AECB 是菱形.五、几何证明题(本大题共9分)26. 如图,在等边△DAC 和等边△EBC 中,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 三点在同一条直线上.求证:(1)AE =BD ;(2)CM =CN.六、解答题(本大题共9分)27. 如图,反比例函数y =xm(x >0)的图象经过A 、B 两点,且A 点的坐标为(2,-4),点B 的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式; (2)若AB 所在的直线的解析式为 y =kx +b (k ≠0),求出k 和b 的值.(3)求△ABO 的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是 .(2)甲同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的极差是 .(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2009年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分) 13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5)注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值范围2分.三、解答题(每题6分,共24分)21.(共6分)解:20090-2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x x x x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分 =)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分另解:原式=13)1)(1()1(2+-+-+-x xx x x ………………………………………2分 =1311+-++-x xx x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分 x (x +3)-(x 2-9)=3. ………………………………………2分 解这个整式方程,得x =-2. ………………………………………………………………1分 检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分 24.(共6分)作出了AB 边的垂直平分线给3分; 作出了∠CFB 的平分线给3分. 注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分 又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,内错角相等), ……………………1分 ∴∠ACB =∠BAC (等量代换), …………………………………………1分 ∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分. 五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE , 即∠ACE =∠DCB. …………………2分 在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),八年级期末考试数学试题(第Ⅱ卷) 第11页(共8页)∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-b k b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分 S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分 =4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分八年级期末考试数学试题(第Ⅱ卷) 第12页(共8页) ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M (6,0),N (0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分 ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视八年级期末考试数学试题(第Ⅱ卷)第13页(共8页)。
洪山区2023—2024学年度第二学期期末质量检测八年级数学试卷2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效、4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.若式子a+1有意义,则a的取值范围是()A.a≥1B.a≤-1C.a≠-1D.a≥-12.下列各式计算正确的是()A.2+2=4B.6÷3=2C.35×25=65D.8―2=23.下表记录了甲、乙、丙、丁四位选手各10次射击成绩的数据信息.选手甲乙丙丁平均数(环)9.69.69.39.3方差(环²)0.0340.0320.0340.032请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁4.△ABC的三边分别为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.a=1,b=2,c=5B.a=3,b=4,c=5C.c²―a²=b²D.∠B:∠C:∠A=1:3:45.在Rt△ABC中,∠BAC=90°,∠B=60°,AC=3,则AB=()A.1B.2C.3D.236.若一次函数y=2x+b的图象不经过第二象限,则b的取值范围为()A.b<0B.b≤0C.b≥0D.b>07.已知四边形ABCD,下列条件能判定它是平行四边形的是()A.AB∥CD,AB=CDB.∠A=∠D,∠B=∠CC.AB∥CD,AD=BCD.AB=CD,∠A=∠C8.一个有进水管和出水管的容器,从某时刻开始3min内只进水不出水,在随后的5min内既进水又出水,最后的5min 只出水不进水,每分钟的进水量和出水量不变.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则在整个过程中,容器内水量最多有()L.A.9.5B.10C.11D.129.如图,函数y =|kx ―b |(k ≠0)的图像与x 、y 轴分别交于点B 和A (0,3)两点,与函数y =12x 交于点C 、D ,若D 点纵坐标为1,则|kx ―b |≤12x 的解集为()A .56≤x ≤52B .56≤x ≤2C .65≤x ≤2D .65≤x ≤5210.如图,有5块正方形连在一起的钢板余料,要求分割成若干小块后能拼接成与原图形面积相等的正方形,下列四种分割的方法符合要求的有()种?(沿虚线分割,忽略接缝不计)A.1B.2C.3D.4第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算9的结果为______12.某次比赛中,赵海的得分为:演讲内容90分,演讲能力91分,演讲效果93分,若演讲内容、演讲能力、演讲效果按照2:2:1的比确定,则赵海的最终成绩是______分.13.某水库的水位在最近5小时内持续下降,水库的初始水位高度为10米,水位以每小时0.2米的速度匀速下降,则该水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为______.14.如图,矩形ABCD的对角线AC、BD交于点O,过点O作OF⊥AC交BC于点F.若AB=12,AD=18,则FC长为______.15.已知直线l:y=kx―k+1,下列四个结论:①直线一定经过第一象限;②关于x、y的方程组{y=kx―k+1x+y=2的解为{x=1y=1;③若点A(x₁,y₁),B(x₂,y₂)在直线l上,当x₁<x₂时,y₁>y₂;④若直线l向下平移2个.其中正确的是______.(填写序号)单位后过点(2,m),且不等式kx―k+1<m的解集为x>5,则k=―2316.如图,在平行四边形ABCD中,AB=5,AD=4,∠B=60°,点E,F分别为AB,BC边上的一点,连接EF.点B关于EF的对称点P恰好落在CD上.当BE最小时,求PF的长为______.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)计算:(1)(26―4)÷2;―48.(2)27+61318.(本题满分8分)如图,点P(x,y)在第一象限,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S.(1)当点P的横坐标为5时,△OPA的面积为多少?(2)若△OPA的面积大于9,请求出x的取值范围.19.(本题满分8分)某校对初中生进行综合素质评价,划分为A,B,C,D四个等级,现从全体学生中随机抽取部分学生,调查他们的等级评定情况,将收集的数据整理后,制作了如下不完整的统计表和统计图.等级结果人数A优秀24B良好18C合格aD待合格b请根据图中提供的信息解答下列问题:(1)本次抽取的学生共有______人,表中a的值为______;(2)所抽取学生等级的众数落在______等级(填“A”,“B”,“C”或“D”);(3)若该校共有900名学生,请估计其中B等级的学生人数.20.(本题满分8分)已知四边形ABCD,(1)如图(1),若AC=BD,点E、F、G、H分别为AB、BC、CD、DA的中点,判断四边形EFGH的形状,并说明理由.(2)如图(2),若AC⊥BD于O,AB=4,CD=6,求BC²+AD²的值.21.(本题满分8分)如图是由小正方形组成的5×7网格,每个小正方形顶点叫做格点.三角形ABC的三个顶点都在格点上.仅用无刻度的直尺在给定网格中完成画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,作△ABC的高AD;在AB边上找一点E,使得DE=BE;(2)在图(2)中,P是边AB上一点,∠ABC=α.先将线段AB绕点B顺时针旋转2α,得到线段BH,画出线段BH;再画点Q,使P,Q两点关于直线BC对称.22.(本题满分10分)为响应节能减排的号召,某品牌汽车4S店准备购进A型和B型两种不同型号电动汽车共30辆进行销售.两种型号汽车的进价和售价如下表:进价(万元/辆)售价(万元/辆)A型1617.8B型2729.6(1)如果该4S店购进30辆两种型号电动汽车共花费612万元,那么购进A和B型号电动汽车各多少辆?(2)为保证A型电动汽车购进量不少于B型电动汽车购进量的2倍但不超过B型电动汽车购进量的4倍,那么30辆车全部售出后,求购进多少辆A型电动汽车可使销售利润最大,最大利润是多少?(3)在(2)的条件下,实际销售时,政府大力补贴,A型电动汽车的进价下调a万元(0<a<1),请你设计出销售利润最大的进货方案.23.(本题满分10分)在矩形ABCD中,AD=4,E为BC边上一点,将ΔCDE沿DE折叠得△FDE,(1)如图(1),若CD=42,点F在AB边上,求AF长度;(2)如图(2),若点F在矩形ABCD外部,DF,EF分别与AB于点P、T,且CD=2EC,PF=BE,求CE 长度;(3)如图(3),若CD=AD=4,取AD中点K,作KQ⊥KF且KQ=KF,当AQ取最小值时,直接写出BF 长度.24.(本题满分12分)如图,平面直角坐标系中,点A,B的坐标分别为(0,2),(-4,0),以AB为边作菱形ABCD,菱形中心为坐标原点,点C在y轴负半轴上,点D在x轴正半轴上.(1)直接写出D点坐标______;直线AD的函数解析式______;(2)①在直线AB上找一点E,连CE,若∠ECO+∠ODC=45°,求点E的坐标;②点E为AB边上的任一点,将点E绕原点O顺时针旋转90°得到点Q,试证明点Q在一条定直线上运动,若EQ中点为T,求出O T最小值.答案一、选择题1.A 2.B 3.A 4.D 5.D 6.C 7.C 8.B 9.C 10.A二、填空题11.12.13.8814.2915.①③④16.三、解答题17.(1)解:原式(2)解:原式18.(1)解:四边形为菱形.理由如下:如图,连接,交于点,四边形是菱形,,又,又,四边形为平行四边形,平行四边形为菱形.(2)已知,,在中,由勾股定理得,,19.解:(1)由题意得,(名),答:一共抽取了200名学生;(2)(名),2321y x =+72=+-===AECF AC BD O Q ABCD ,,AC BD AO OC BO OD ∴⊥==BE FD =Q ,BE BO FD DO EO OF ∴-=-∴=AO OC =Q ∴AECF Q AC BD ⊥∴AECF 5,12AD EF ==1,2ED BD ED FB ==Q 1112344OD EF ∴==⨯=Rt ADO △4AO ==8AC ∴=1242ABCD S BD AC ∴=⋅=菱形4020%200÷=20030%60⨯=补全条形统计图如下:(3)(名),答:全校喜欢篮球的大约有1050名学生.20.解:(1)把代入中,得解得:,与的函数关系式为:;(2)当弹簧长度为时,即,解得:,当弹簧长度为时,所挂物体的质量为.21.解:(1)(2)(3)(每小题2分)(4.22.解:(1)由题意可知:(2)由题意得,解之得又,为整数,300070/2001050⨯=0,15;2,19x y x y ====y kx b =+219,15k b b +=⎧⎨=⎩215k b =⎧⎨=⎩∴y x 215y x =+20cm 21520y x =+=2.5x =∴20cm 2.5kg 400200(12)300(2)250(8)W x x x x =+⨯-+⨯-+⨯-2503800.W x ∴=+25038005000x +≤ 4.8x ≤20,2 4.8x x -≥∴≤≤Q x可取,共有三种调运方案.(3)中,是的一次函数,又,则随的值增大而增大,当时,的值最小,最小值是元.此时的调运方案是:市运往市0台,运往市6台;市运往市10台,运往市2台23.解:(1)(2)①②结论:.理由如下:如图,过点作,交与点.由轴对称知,,在正方形中,,又,为等腰直角三角形,,在Rt 中,由勾股定理得,,.24.解:(1)由得,即,,设的解析式为,将的坐标代入解析式,得∴x 2,3,4Q 2503800W x =+W x 2500≥W x 2x =W 250238004300W =⨯+=B C D A C D 45AGD ∠=︒135AGD ∠=︒FG DG -=A AM AG ⊥FD M ,,AE BF AB AF AFB ABF ⊥=∠=∠Q ABCD ,90AB AD BAD =∠=︒AD AF ∴=AFD ADF∴∠=∠90AFB ABF AFD ADF ∠+∠+∠+∠=︒45BFD ∴∠=︒9045AGF BFD ∴∠=︒-∠=︒AMG ∴△,135AM AG AGD AMF ∴=∠=∠=︒(AAS)AMF AGD ∴△≌△FM DG∴=FG DG MG∴-=AMG △222AM AG MG +=AM AG =Q MG ∴=FG DG ∴-=2(2)0a -=2,6a b ==(2,2)A -(0,6)B 21y kx b =+,A B解得的解析式为(2)作,则到的距离等于到的距离,,过,的解析式为,又在直线上,点的坐标为,当在的左侧时,求得点的坐标为,点的坐标为或.(3)存在.如图,若直线与轴交于点,过点作,交轴于点,过点作,交于点,过点作轴,作点关于轴的对称点,连接交于点.轴,,,,22,6k b b -+=⎧⎨=⎩26k b =⎧⎨=⎩∴2126y x =+BP AO ∥P AO B AO AOP AOBS S ∆∆∴=Q PB AO ∥PB (0,6)B ∴PB 6y x =-+P 8y =2,x ∴=-∴P (2,8)-P AO P (14,8)-∴P (2,8)-(14,8)-21x C B 45ABN ∠=︒x N C DC CB ⊥BN D D DE x ⊥N y F BF AO M BO x ⊥Q 90BOC CED BCD ∴∠=∠=∠=︒90CBO BCO ECD BCO ∠+∠=∠+∠=︒CBO ECD∴∠=∠45,ABN DC CB ∠=︒⊥Q CB CD∴=(AAS)CBO DCE ∴△≌△6,3CE OB DE CO ∴====(3,3)D ∴-设的解析式为,将代入解析式可得.解得直线的解析式为,当时,,点关于轴的对称点的坐标为.设的解析式为,将代入解析式可得.解得直线的解析式为,联立,解得BD 11y k x b =+(0,6),(3,3)B D -111336k b b +=-⎧⎨=⎩113,6k b =-=∴BD 36y x =-+0y =2,(2,0)x N =∴∴N y F (2,0)-BF 22y k x b =+(0,6),(2,0)B F -222206k b b -+=⎧⎨=⎩223,6k b ==∴BF 36y x =+36y x y x=+⎧⎨=-⎩33,22x y =-=33,.22M ⎛⎫∴- ⎪⎝⎭。
浙教版八年级数学下册单元质量检测卷(一)第3章数据分析初步姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,76.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 816.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?21.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5 a中位数b 6方差 3.45 4.65优秀率30% c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为x)分数段0≤x<80 80≤x<85 85≤x<90 90≤x<95 95≤x≤100频数0 5 25 30 40 请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.小知识难度系数的计算公式为:L=,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4﹣0.7之间的题为中档题;L在0.2﹣0.4之间的题为较难题.解答下列问题:(1)m=,n=,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?24.2019年9月,在祖国母亲70华诞即将来临之际,某校团委组织全校2000名学生参加“中国共产党党史”知识大赛.大赛结束后,为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,最低分50分,满分100分)作为样本进行统计,制成如图不完整的统计图和如下不完整的频数分布表:频数分布表成绩x(分)频数(人)50≤x<60 1060≤x<70 3070≤x<80 4080≤x<90 n90≤x≤100 50根据所给信息,解答下列问题:(1)n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数落在哪个分数段?(4)若成绩在80分或80分以上为“优”,请你估计该校参加本次比赛的2000名学生中成绩为“优”的学生有多少人?25.我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表.组别投进个数人数A0≤x<8 10B8≤x<16 15C16≤x<24 30D24≤x<32 mE32≤x<40 n根据以上信息完成下列问题.①本次抽取的学生人数为多少?②统计表中的m=.③扇形统计图中E组所占的百分比;④补全频数分布直方图.⑤扇形统计图中“C组”所对应的圆心角的度数.⑥本次比赛中投篮个数的中位数落在哪一组.⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅【答案】C【分析】根据平均数的定义列式计算即可.【解答】解:(42+48+45+46+49)÷5=46(幅).即这组数据的平均数是46幅.故选:C.【知识点】算术平均数2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%【答案】D【分析】求出该组数据的平均数、中位数、众数、方差,再进行判断即可.【解答】解:平均数为:(94.3%+96.1%+94.3%+91.7%+93.5%)=93.98%.因此选项A不符合题意;这组数据有波动,因此方差不为0,因此选项B不符合题意;这组数据的中位数是94.3%,因此选项C不符合题意;这组数据出现次数最多的数是94.3%,所以众数是94.3%,因此选项D符合题意;故选:D.【知识点】算术平均数、中位数、众数、方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】直接利用方差的意义求解可得答案.【解答】解:∵S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.【知识点】算术平均数、方差4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差【答案】B【分析】根据众数,中位数,平均数,方差的定义判断即可.【解答】解:∵数据6,7,9,9,9,0,3中,9出现了3次,∴这组数据的众数为9,去了一个9后,这组数据中,9出现了2次,众数仍然是9,∴众数没有变化,平均数,中位数,方差都发生了变化,故选:B.【知识点】算术平均数、统计量的选择、众数、中位数、方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,7【答案】A【分析】根据中位数、众数的意义即可求出答案.【解答】解:学生一周课外阅读时间的出现次数最多的是7小时,因此众数是7;将40名学生的读书时间从小到大排列后处在中间位置的两个数都是8小时,因此中位数是8,故选:A.【知识点】众数、中位数6.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【答案】D【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故选:D.【知识点】方差、算术平均数7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定【答案】B【分析】利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.【解答】解:A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;C、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意;D、若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则甲组数据比乙组数据稳定,不符合题意;故选:B.【知识点】概率的意义、方差、全面调查与抽样调查、众数、中位数8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【解答】解:①根据频数分布直方图,可得众数为60﹣80元范围,故每人乘坐地铁的月均花费最集中的区域在60﹣80元范围内,故①错误;②每人乘坐地铁的月均花费的平均数==87.6元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.【知识点】加权平均数、中位数、频数(率)分布直方图9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④【答案】B【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①这7名同学所捐的零花钱的平均数是,错误;②这7名同学所捐的零花钱的中位数是100,正确;③这7名同学所捐的零花钱的众数是100,正确;④由这7名同学所捐的零花钱的中位数是100,不能推断该校全体同学所捐的零花钱的中位数一定是100,错误;故选:B.【知识点】众数、算术平均数、中位数10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3【答案】C【分析】本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.【解答】解:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;综上,故选:C.【知识点】算术平均数二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.【答案】4.5【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:×(1+3+x+5+4+6)=4,x=5,将这组数据按小到大排列:1,3,4,5,5,6,故中位数=4.5,故答案为4.5.【知识点】中位数、算术平均数12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.【答案】91【分析】利用加权平均数的定义列式计算即可.【解答】解:根据题意得:小红一学期的数学期末总评成绩是=91(分),故答案为:91.【知识点】加权平均数13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.【答案】1.61【分析】直接利用加权平均数的定义列式计算可得.【解答】解:这些运动员的平均成绩为=1.61(m),故答案为:1.61.【知识点】加权平均数14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).【答案】<【分析】根据方差的意义,直观判断即可,【解答】解:从统计图中可以直观得出,射击手甲的成绩比较稳定,离散程度较小,而射击手乙的成绩离散程度较大,不稳定,所有甲的方差小于乙的方差,故答案为:<.【知识点】方差、折线统计图15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 8【答案】甲【分析】根据方差的意义即可得出答案.【解答】解:∵S甲2<S乙2,∴本题中成绩比较稳定的是甲.故答案为:甲.【知识点】方差、算术平均数16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.【知识点】算术平均数、方差、众数17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】【第1空】6.8【第2空】6.5【第3空】6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;【解答】解:观察条形图,可知这组样本数据的平均数是:=6.8,即这组样本数据的平均数为6.8(t).在这组样本数据中,6.5出现了4次,出现的次数最多,这组数据的众数是6.5(t).将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有=6.5,即这组数据的中位数是6.5(t).故答案为:6.8,6.5,6.5.【知识点】众数、中位数、加权平均数、条形统计图18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.【分析】(1)根据平均数的定义计算即可.(2)根据题意列出一元一次不等式组解决问题即可.【解答】解:(1)M{(﹣2)2,22,﹣22}==;(2)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.故x的取值范围为﹣2≤x≤4.故答案为:;﹣2≤x≤4.【知识点】解一元一次不等式组、实数大小比较、算术平均数三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.【答案】【第1空】8【第2空】8【分析】(1)根据中位数、众数的意义,找出出现次数最多的数,即为众数;排序后处在中间位置的两个数的平均数是中位数.【解答】解:(1)“答对10道题”的人数为20﹣4﹣8﹣6=2(人),答对8道题出现的次数最多,因此答对题目的众数是8;将20名学生的成绩从小到大排列后,处在第10、11位的两个数都是8,因此中位数是8,故答案为:8,8;(2)“答对10道题”的人数为2人,补全统计图如图所示:【知识点】条形统计图、众数、中位数20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体。
2023~2024学年第二学期八年级期末学业诊断数学注意事项:1.本试卷全卷共6页,满分100分,考试时间上午8:00—9:30.2.答卷前,学生务必将自己的姓名、考试编号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.一、选择题(本大题共10个小题.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.通过手机银行,用户可以随时随地进行各种银行业务操作.下面是某手机银行服务项目的图标,其文字上方的图案是中心对称图形的是()A .B .C .D .2.若分式a a +2有意义,则a 的取值范围是()A .a =2B .a ≠0C .a ≠-2D .a =-23.在四边形ABCD 中,AD =BC ,添加下列条件后仍不能判定四边形ABCD 为平行四边形的是()A .AB =CD B .C .D .∠A +∠B =180°4.下列从左边到右边的变形中,属于因式分解的是()A .2a ³b ²=a ²b ⋅2abB .a 2+a =a 2(1+1a )C .a ²―2a +1=(a ―1)²D .a²-4+a=(a+2)(a-2)+a 5.要将5xy 20x 2y 化成最简分式,应将分式的分子分母同时约去它们的公因式,这个公因式为()A .xB .5xC .xyD .5xy6.如图,将△ABC 沿射线BA 平移6个单位长度得到△DEF ,点A ,B ,C 分别平移到了点D ,E ,F ,当点E 落在线段AB 上时,连接CF .若CF =2AE ,则线段AB 的长度为()(第6题图)A .8B .9C .10D .127.在Rt △ABC 中,∠C =90°,AD 平分∠CAB 交BC 于点D .若BC =8,BD =5,则点D 到AB的距离为()AB CD ∥AD BC∥(第7题图)A.3B.4C.5D.68.如图,▱ABCD的对角线AC与BD相交于点O.若BC=5,∠ABC=45°,∠ACB=90°,则BD的长度为()(第8题图)A.55B.10C.53D.529.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,AC的中点,∠ABC的平分线交DE于点F,∠ACB的平分线交DE于点G.若AB=8,AC=6,则线段GF的长度为()(第9题图)A.1B.32C.2D.5210.实验室的一个容器内盛有150克食盐水,其中含盐10克.如何处理能将该容器内食盐水含盐的百分比提高到原来的3倍.晓华根据这一情景中的数量关系列出方程3×10150=10150―x,则未知数x表示的意义是()(第10题图)A.增加的水量B.蒸发掉的水量C.加入的食盐量D.减少的食盐量二、填空题(本大题共5个小题.把答案写在答题卡相应位置.)11.不等式-3x>6的解集为______.12.已知点A(-1.b)与B(a,2)点关于原点对称,则a+b=______.13.“交木如井.画以藻文”.中国古代的匠人们极尽精巧之能事,营造出穹顶上的绝美艺术——藻井.如图,是一副“藻井”的图案、其外轮廓为正八边形.这个正八边形的每个内角的度数为______°.(第13题图)14.如图.一次函数y =ax +b (a ,b 为常数.a ≠0)的图象分别与x 轴,y 轴交于点A (―5,0),B (0,3),则关于x 的不等式αx +b ≥0的解集为______.(第14题图)15.已知.在Rt △ABC 中,∠BAC =90°,AB =4,AC =2,将Rt △ABC 绕点C 逆时针旋转,点A ,B 的对应点分别为点A ',B '.当点A '落在∠BAC 的角平分线上时,连接BB ′与∠BAC 的角平分线相交于点P ,则点P 到AB 的距离为______.(第15题图)三、解答题(本大题共8个小题.解答应写出必要的文字说明、演算步骤或推理过程.)16.分解因式:(1)a ³―4a ²b +4ab ²;(2)x ²(x ―y )+y ²(y ―x ).17.解不等式组:{2x ―1>5.①3x +12―1≥x .②并将其解集表示在如图所示的数轴上.18.先化简,再求值:(1―x +1x ―3)÷x 2―9x 2―6x +9,其中x =-1,19.下面是小亮同学解方程12―x =3―x ―1x ―2的过程,请阅读并完成相应任务.任务:(1)小亮同学的求解过程从第______步开始出现错误,错误的原因是______;(2)请你改正并写出完整的解方程过程;(3)解分式方程产生增根的原因是______.20.如图,在▱ABCD中,AE平分∠BAD交对角线BD于点E,CF平分∠BCD交对角线BD 于点F、∠BCD连接AF,CE.求证:AF=CE.21.习总书记指出,中华优秀传统文化是中华民族的“根”和“魂”、为了大力弘扬中华优秀传统文化,某校计划组织600名师生前往山西老陈醋的发源地——清徐研学.现准备租用A,B两种型号的客车若干辆,为安全起见,每名师生都需有座且每一辆客车都不得超载.已知每辆A型客车比每辆B型客车的乘客座位数多25%,若每辆客车均坐满,则单独租用A型客车的数量比单独租用B型客车的数量少3辆.(1)求每辆A型客车和每辆B型客车的乘客座位数;(2)由于实际参加研学活动的人数比原计划增加了35人、学校决定同时租用A、B两种型号的客车共14辆,为确保所有参加活动的师生都有座位(可以坐不满),求最多租用B型客车多少辆?22.阅读下列材料,完成相应任务.等周线问题:一个平面图形的周长能被一条直线平分吗?答案是肯定的.由于一个平面图形的周长是可以度量的,那就一定能度量其一半.过这一半的两个端点就能作出这条直线.定义:一条直线平分一个平面图形的周长,我们称这条直线为这个平面图形的等周线.例如,如图1,已知一个圆,点O是它的圆心,过圆心的每一条直线都是它的等周线.操作实验:如图2,在▱ABCD中,小雨发现用无刻度的直尺就能画出任意平行四边形的一条等周线.深入探究:小雨继续思考,能否通过尺规作图,求作任意三角形的一条等周线呢?情形1:当等周线经过三角形的一个顶点时:已知:如图3,△ABC.求作:直线m,使直线m经过点A且平分△ABC的周长.小雨的想法是:以点B为圆心,以BA的长为半径作弧,交直线BC于点D(点D在点B的左侧).通过“截长补短”,将平分周长的问题转化为平分线段的问题.情形2:当等周线不经过三角形的顶点时:利用小雨的思路同样可以作出此时三角形的等周线;发现结论:通过操作实验我们可以发现一个平面图形有无数条等周线.任务:(1)在图2中,请你用无刻度的直尺画出▱ABCD的一条等周线(保留作图痕迹,不写画法,指出所求);(2)如图3是小雨用尺规所作的不完整的图形,请你将小雨的图形补全.(保留作图痕迹,不写作法,指出所求);(3)结论应用:如图4,在△ABC中,∠B=45°,∠C=15°,AC=2,点Q为BC的中点,直线PQ是△ABC 的等周线,请你直接写出线段PQ的长度.23.综合与实践问题情境:“综合与实践”课上,老师提出如下问题:如图1,在‖□ABCD中,∠ADC=90°,点O是边AD的中点,连接AC.保持‖□ABCD不动,将△ADC从图1的位置开始,绕点0顺时针旋转得到△EFG,,点A,D,C的对应点分别为点E,F,G.当线段AB与线段FG相交于点M(点M不与点A,B,F,G重合)时,连接OM.老师要求各个小组结合所学的图形变换的知识展开数学探究.初步思考:(1)如图2,连接FD,“勤学”小组在旋转的过程中发现FD‖OM,请你证明这一结论;操作探究:(2)如图3,连接BG,“善思”小组在旋转的过程中发现OM垂直平分BG,请你证明这一结论;拓展延伸:(3)已知AD=22,CD=2,,在旋转的过程中,当以点F,C,D为顶点的三角形是等腰三角形时,请直接写出此时线段AM的长度.2023~2024学年第二学期八年级期末学业诊断数学试题参考答案及等级评定建议一、选择题(本大题共10道小题,每小题3分,共30分)题号12345678910选项D C B C D B A A C B二、填空题(本大题共5道小题,每小题3分,共15分)11.12.13.13514.15.3三、解答题(本大题共8道小题,满分55分)16.(每小题4分,共8分)解:(1)原式.(2)原式.17.(本题4分)解:解不等式①,得.解不等式②,得.不等式组的解集为.将不等式组的解集表示在数轴上如下:18.(本题5分)解:原式.当时,原式.19.(本题7分)(1)一;方程两边同乘以最简公分母时,漏乘了不含分母的项“3”.(2)原方程可化为.方程两边都乘以去分母,得.2x <-1-5x ≥-()()222442a a ab b a a b =-+=-()()()()()()22222x x y y x y x y x y x y x y =---=--=-+3x >1x ≥∴3x >()()()23313333x x x x x x x --+⎛⎫=-⋅ ⎪--+-⎝⎭434333x x x x --=⋅=--++1x =-4213=-=--+11322x x x -=+--()2x -()1321x x =-+-整理,得.解,得.检验:当时,,所以是原分式方程的增根,所以原方程无解.(3)去分母时,在分式方程两边同乘最简公分母,将其转化为整式方程,若该整式方程的解恰好使最简公分母为零,就产生增根.20.(本题5分)证明:四边形是平行四边形,,,..平分,平分,,...,..四边形为平行四边形..21.(本题9分)解:(1)设每辆型客车乘客座位数为个,则每辆型客车乘客座位数为个.根据题意,得.解,得.经检验,是原方程的根,且符合题意..答:每辆型客车的乘客座位数为50个,每辆型客车的乘客座位数为40个.(2)设租用型客车辆,则租用型客车辆.根据题意,得.解这个不等式,得.因为为整数,且取最大值,所以.答:最多租用型客车数量6辆.22.(本题7分)(1)结论:直线即为的一条等周线.(2)152x =-2x =2x =20x -=2x = ABCD AD BC ∴=BAD DCB ∠=∠AD BC ∥ADE CBF ∴∠=∠AE BAD ∠CF DCB ∠12DAE BAD ∴∠=∠12BCF DCB ∠=∠DAE BCF ∴∠=∠DAE BCF ∴≌△△AE CF ∴=AED CFB ∠=∠AE CF ∴∥∴AECF AF CE ∴=B x A ()125%x +()6006003125%x x-=+40x =40x =()125% 1.254050x ∴+=⨯=A B B a A ()14a -()40501460035a a +-≥+6.5a ≤a a 6a =B a ABCD结论:直线即为的一条等周线.(323.(本题10分)(1)证明:如图,将绕点顺时针旋转得到,,,.,.点是边的中点,..四边形是平行四边形,..又,..在Rt 与Rt 中,..是的一个外角,....(2)证明:如图,延长交于点.由(1)得,,,.将绕点顺时针旋转得到,.四边形是平行四边形,...即.,,.垂直平分.m ABC △ ADC △O EFG △ADC EFG ∴∠=∠OD OF =12∴∠=∠90ADC =︒∠ 90EFG ∴∠=︒ O AD OA OD ∴=OA OF ∴= ABCD AB CD ∴∥180BAD ADC ∴∠+∠=︒90ADC ∠=︒1809090BAD ︒∴-︒∠==︒90BAD EFG ∴∠=∠=︒ OAM △OFM △,,OM OM OA OF =⎧⎨=⎩Rt Rt OAM OFM ∴≌△△34∴∠=∠AOF ∠ OFD △3412AOF ∴∠=∠+∠=∠+∠2321∴∠=∠31∴∠=∠FD OM ∴∥OM BG N Rt Rt OAM OFM ≌△△AM FM ∴=12∠=∠ ADC △O EFG △CD GF ∴= ABCD AB CD ∴=AB GF ∴=AB AM GF MF ∴-=-BM GM =13∠=∠ 24∠=∠34∴∠=∠OM ∴BG(3)或.【说明】以上各题的其他解法,请参照此标准评分.1AM =2。
2023-2024学年山东省济南市历城区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.)1.(4分)《国家宝藏》节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A.B.C.D.2.(4分)如果x<y,那么下列不等式正确的是()A.﹣x﹣1<﹣y﹣1B.x+1>y+1C.﹣2x<﹣2y D.2x<2y3.(4分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.54.(4分)如图,在直角坐标系中,菱形OABC的顶点A的坐标为(﹣2,0),∠AOC=60°.将菱形OABC 沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,其中点B′的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(﹣,1)D.(﹣,﹣1)5.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E.若CD =1,则AB的长为()A.B.C.D.6.(4分)关于x的一元二次方程ax2﹣4x+1=0有实数根,则a的取值范围是()A.a≤4且a≠0B.a≤4C.a<4且a≠0D.a<47.(4分)如图,AC是平行四边形ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC 的大小是()A.24°B.26°C.28°D.30°8.(4分)如图,在平面直角坐标系中,函数y=ax+b和y=kx的图象交于点P,甲乙两位同学给出的下列结论:甲说:关于x的不等式ax+b>﹣4的解集为x>0;乙说:当x>4时,ax+b<kx;其中正确的结论有()A.甲乙都正确B.甲正确,乙错误C.乙正确,甲错误D.甲乙都错误9.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6.将△ABC绕点B旋转得△A′BC′,分别取AA′,BC′的中点E,F,则EF的取值范围是()A.1≤EF≤9B.C.D.1<EF<910.(4分)如图,正方形ABCD边长为,E从B出发沿对角线BD向D运动,连接CE,将线段CE 绕C点顺时针旋转90°得到CF,连接DF,EF,设BE=m,下列说法:①△DEF是直角三角形;②=12.5;④取EF中点G,连接BG,CG,当m=4时,;③有且只有一个实数m,使得S△DEF△BCG的面积随着m的增大而增大.正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.(4分)因式分解:a2﹣9=.12.(4分)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m=.13.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线交AB和AC于点D,E.若CE=3,则线段AE的长度等于.14.(4分)近来房地产市场进入寒冬期,某楼盘原价为每平方米10000元,连续两次降价后售价为8100元,则平均每次降价的百分率是.15.(4分)如图,在平行四边形ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F 为圆心,大于的长度为半径作弧,交于点G,连接AG并延长交BC于点E,若AE=12,BF=8,则AB的长为.16.(4分)如图,矩形ABCD中,点E是AB上一点,AE=1,BE=3,AD=6,点H是AD边上的动点,以EH为边作菱形EFGH,使顶点F落在BC上,连接CG,则△FCG面积的最小值为.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并写出它的所有整数解.18.(6分)先化简:,再从﹣1,0,1,2中选取一个适当的数代入求值.19.(10分)解分式方程:(1);(2).20.(8分)解下列方程.(1)x2﹣6x+5=0;(2)x2+4x﹣1=0.21.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:DE=BF.22.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,旋转中心的坐标为;(4)以A,B,C,D为顶点的四边形是平行四边形且点D是y轴上一点,则点D的坐标是.23.(8分)已知四边形ABCD是边长为8cm的正方形,P,Q是正方形边上的两个动点,点P从点A出发,以2cm/s的速度沿A→B→C方向运动,点Q同时从点D出发以1cm/s速度沿D→C方向运动.设点P 运动的时间为t(0<t<8).(1)如图1,点P在AB边上,PQ,AC相交于点O,当PQ,AC互相平分时,求t的值;(2)如图2,点P在BC边上,AP,BQ相交于点H,当AP⊥BQ时,求t的值.24.(10分)根据如表所示素材,探索完成任务.如何确定图书销售单价及怎样进货以获取最大利润素材1某书店为了迎接“读书节”决定购进A,B两种新书,两种图书的进价分别是每本18元、每本12元.素材2已知A种图书的标价是B种图书标价的1.5倍,若顾客用540元按标价购买图书,能单独购买A种图书的数量恰好比单独购买B种图书的数量少10本.素材3书店准备用不超过28200元购进A,B两种图书共2000本,且A种图书不少于600本,经市场调查后调整销售方案为:A种图书按照标价的8折销售,B种图书按标价销售.问题解决任务1探求图书的标价请运用适当方法,求出A,B两种图书的标价.任务2确定如何获得最大利润书店应怎样进货才能获得最大利润?25.(12分)求代数式x2﹣4x+3的最小值时,我们通常运用“a2≥0”这个结论对代数式进行配方来解决.比如x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,∵(x﹣2)2≥0,∴(x﹣2)2﹣1≥﹣1,∴x2﹣4x+3的最小值是﹣1,试利用“配方法”解决下列问题:(1)填空:x2+6x+13=(x+)2+;(2)如图1所示的是一组邻边长分别为5,2a+9的长方形,其面积为S1;如图2所示的是边长为a+7的正方形,其面积为S2,a>0,请比较S1与S2的大小,并说明理由.(3)如图3,一个地块一边靠墙(墙足够长),另外三边用59m长的篱笆围成一个矩形场地,并且与墙平行的边AB加建1m宽的门(用其他材料).设BC=x m,矩形ABCD的面积为y m2.当x为何值时,矩形场地的面积最大?最大值为多少平方米?26.(12分)【探索发现】(1)如图1,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等,边A1O与边AB相交于点E,边C1O与边CB相交于点F,连接EF.在实验与探究中,小新发现无论正方形A1B1C1O绕点O怎样转动,AE,CF,EF之间一直存在某种数量关系,小新发现通过证明△AOE≌△BOF即可推导出来.①请你猜想AE,CF,EF之间的数量关系是.②小新对图1的进一步研究中发现,延长EO与DC交于一点G,通过证明△AOE≌△COG也可推导出AE,CF,EF之间的数量关系,请你证明△AOE≌△COG.【类比迁移】(2)如图2,矩形ABCD的中心O是矩形A1B1C1O的一个顶点,A1O与边AB相交于点E,C1O与边CB相交于点F,连接EF,矩形A1B1C1O可绕着点O旋转,判断AE,CF,EF之间的数量关系并进行证明;【拓展应用】(3)如图3,在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,点D是边AB的中点,∠EDF=90°,它的两条边DE和DF分别与直线AC,BC相交于点E,F,∠EDF可绕着点D旋转,当AE=4cm时,请直接写出线段CF的长度.2023-2024学年山东省济南市历城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.)1.【分析】根据中心对称图形的定义和图案特点即可解答.【解答】解:A、不是中心对称图形,故选项错误,不符合题意;B、是中心对称图形,故选项正确,符合题意;C、不是中心对称图形,故本选项错误,不符合题意;D、不是中心对称图形,故本选项错误,不符合题意.故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式x<y的两边同时乘﹣1,不等号的方向改变,即﹣x>﹣y,两边再同时减去1,即﹣x﹣1>﹣y﹣1,不符合题意;B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.故选:D.【点评】本题主要考查了不等式的性质.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.3.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.4.【分析】过点B作BE⊥x轴于点E,根据菱形的性质得出AB=2,∠EAB=∠AOC=60°,于是求出AE 的长,在Rt△ABE中根据勾股定理求出BE的长,从而得出点B的坐标,再根据平移规律即可得出点B′的坐标.【解答】解:过点B作BE⊥x轴于点E,∴∠BEA=90°,∵点A的坐标为(﹣2,0),∴OA=2,∵四边形OABC是菱形,∴AB=OA=2,AB∥OC,∴∠EAB=∠AOC=60°,∴∠ABE=30°,∴,由勾股定理得,∴OE=AE+OA=1+2=3,∴点B的坐标是,将菱形OABC沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,∴点B′的坐标为,故选:A.【点评】本题考查了菱形的性质,平面直角坐标系中点的平移规律,求出点B的坐标,根据平移规律得出点B′的坐标是解题的关键.5.【分析】由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,即可得AB.【解答】解:由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,得BE=DE=1,BD==,得CB=1+,得AB=CB=2+.故选:C.【点评】本题主要考查了勾股定理,角平分线的性质,等腰直角三角形,解题关键是找准直角三角形.6.【分析】根据一元二次方程根的判别式,即可求解.【解答】解:∵关于x的一元二次方程ax2﹣4x+1=0有实数根,∴Δ=(﹣4)2﹣4a≥0且a≠0,解得:a≤4且a≠0.故选:A.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程ax2+bx+c=0(a≠0),当Δ=b2﹣4ac>0时,方程有两个不相等的实数根;当Δ=b2﹣4ac=0时,方程有两个相等的实数根;当Δ=b2﹣4ac<0时,方程没有实数根是解题的关键.7.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB =∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故选:B.【点评】本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.8.【分析】根据所给函数图象,利用数形结合的数学思想对甲,乙两人的说法作出判断即可.【解答】解:由函数图象可知,当x>0时,一次函数y=ax+b的图象在直线y=﹣4的上方,即ax+b>﹣4,所以关于x的不等式ax+b>﹣4的解集为x>0.故甲的结论正确.由函数图象可知,当x<4时,一次函数的图象在正比例函数图象的下方,即ax+b<kx,所以x<4时,ax+b<kx.故乙的结论错误.故选:B.【点评】本题主要考查了一次函数与一元一次不等式及两条直线相交或平行问题,巧用数形结合的数学思想是解题的关键.9.【分析】利用勾股定理求出AB的长,在根据旋转的性质可得A'C'=AC=8,A'B=AB=10,BC'=BC=6,利用中位线的性质可求EG=5,FG=4,再根据三角形的三边关系即可求出结果.【解答】解:取A'B的中点G,连接EG、FG,∵∠C=90°,AC=8,BC=6,∴AB===10,由旋转的性质可知:A'C'=AC=8,A'B=AB=10,BC'=BC=6,∵点E、F、G分别是AA'、BC'、A'B的中点,∴EG是△A'AB的中位线,FG是Rt△BCA′的中位线,∴EG=5,FG=4,当点E、F、G不共线时,EG﹣FG<EF<EG+FG,即1<EF<9,当点G在线段EF上时,EF=EG+FG=5+4=9,当点F在线段EG上时,EF=EG﹣FG=5﹣4=1,综上所述,1≤EF≤9,故选:A.【点评】本题考查了旋转的性质、三角形中线的性质、三角形三边关系及勾股定理,熟练掌握旋转的性质和三角形中线的性质求出EG、FG的值是解题的关键.10.【分析】根据正方形的性质得到BC=DC=5,∠BCD=90°,求得∠CBE=∠CDE=45°,根据旋转的性质得到CE=CF,∠ECF=90°,求得∠BCE=∠DCF=90°﹣∠DCE,根据全等三角形的性质得到EDF=∠CDE+∠CDF=45°+45°=90°,求得△DEF是直角三角形,故①正确;根据勾股定理得到BD==BC=×5=10,BE=DF=m=4,求得DE=BD﹣BE=10﹣4=6,得到EF===2,故②正确;根据三角形的面积公式列方程得到m=5,推=12.5,故③正确;连接DG,作GH⊥CD于点H,则∠GHD=∠出有且只有一个实数m,使得S△DEFBCD=90°,得到CH与△BCG的边BC上的高相等,根据三角形的面积公式得到S△BCG=BC•CH=×5×=,推出△BCG的面积不随着m的增大而增大,故④错误.【解答】解:∵四边形ABCD是边长为5的正方形,∴BC =DC =5,∠BCD =90°,∴∠CBE =∠CDE =45°,∵将线段CE 绕C 点顺时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,∴∠BCE =∠DCF =90°﹣∠DCE ,在△BCE 和△DCF 中,,∴△BCE ≌△DCF (SAS ),∴∠CBE =∠CDF =45°,BE =DF =m ,∴∠EDF =∠CDE +∠CDF =45°+45°=90°,∴△DEF 是直角三角形,故①正确;∵BD ==BC =×5=10,BE =DF =m =4,∴DE =BD ﹣BE =10﹣4=6,∴EF ===2,故②正确;∵DF •DE =S △DEF ,且DF =m ,DE =10﹣m ,S △DEF =12.5,∴m (10﹣m )=12.5,解得m =5,∴有且只有一个实数m ,使得S △DEF =12.5,故③正确;连接DG ,作GH ⊥CD 于点H ,则∠GHD =∠BCD =90°,∴GH ∥BC ,∴CH 与△BCG 的边BC 上的高相等,∵∠EDF =∠ECF =90°,点G 为EF 的中点,∴DG =CG =EF ,∴CH=DH=DC=×5=,=BC•CH=×5×=,∴S△BCG∴△BCG的面积不随着m的增大而增大,故④错误,故选:C.【点评】此题重点考查旋转的性质,正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,证明△BCE≌△DCF是解题的关键.二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.12.【分析】把x=1代入一元二次方程得到1+m=3=0,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故答案为:﹣4.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.【分析】连接BE,先求出∠ABC=60°,根据线段垂直平分线性质得AE=BE,则∠A=∠ABE=30°,进而得∠CBE=30°,由此得BE=2CE=6,据此可求出AE的长.【解答】解:连接BE,如图所示:在△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∴DE是线段AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△CBE中,CE=3,∠CBE=30°,∴BE=2CE=6,∴AE=BE=6.【点评】此题主要考查了线段垂直平分线的性质,含有30°角的直角三角形的性质,熟练掌握线段垂直平分线的性质,含有30°角的直角三角形的性质是解决问题的关键.14.【分析】设平均每次降价的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:设平均每次降价的百分率为x,依题意得:10000(1﹣x)2=8100,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】设AE与BF相交于点O,由作图过程可知,AB=AF,AO⊥BF,可得OB=OF==4,AO平分∠BAF,结合平行四边形的性质可得AB=BE,由等腰三角形的性质可得OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,进而可得答案.【解答】解:设AE与BF相交于点O,由作图过程可知,AB=AF,AE⊥BF,∴OB=OF==4,AO平分∠BAF,∴∠FAE=∠BAE.∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴△ABE为等腰三角形,∵BO⊥AE,∴OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,∴AB=.故答案为:.【点评】本题考查作图—基本作图、平行四边形的性质、等腰三角形的性质、勾股定理,熟练掌握平行四边形的性质、等腰三角形的性质、勾股定理是解答本题的关键.16.【分析】通过辅助线构造Rt△IFG,由△AHE≌△IFG推出△FCG的底边FC上的高IG=AE=1,然后根据动点H的位置,以及直角三角形三边的关系,计算出线段FC的最小值,即可求出答案.【解答】解:如图,过点G作BC的垂线,交BC延长线于点I.∵四边形EFGH为菱形,∴FG=EH=EF,FG∥EH.四边形ABCD为矩形,则AD∥BC,连接FH,∴∠AHF=∠HFI,∠EHF=∠HFG,∴∠AHF﹣∠EHF=∠HFI﹣∠HFG,即∠AHE=∠IFG,在△AHE和△IFG中,∠A=∠FIG,∠AHE=∠IFG,EH=FG,∴△AHE≌△IFG.∴GI=AE=1.=FC•GI=FC.∵S△FCG的最小值即FC的最小值.∴S△FCG在Rt△AHE和Rt△EBF中,AE和BE为定值,AH的最大值为AD,则EH的最大值为ED.∵ED===.∴EH和EF的最大值为.∵BF2+BE2=EF2,∴BF的最大值:==.又∵FC=BC﹣BF=AD﹣BF,∴FC的最小值为:6﹣.的最小值为:FC=×(6﹣)=3﹣.∴S△FCG故△FCG面积的最小值为3﹣.【点评】本题考查了矩形、菱形的性质,以及全等三角形的判定和性质.构造△∠IFG与△AHE全等,得出IG为定值,将△FCG面积的最小值转化为线段FC的最小值是解题的关键.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.【分析】分别求出各不等式的解集,再求出其公共解集,写出它的所有整数解即可.【解答】解:,由①得,x<1;由②得,x≥﹣,故不等式组的解集为:﹣≤x<1,它的所有整数解为:﹣1,0.【点评】本题考查的是解一元一次不等式组,熟知解一元一次不等式组的一般步骤是解题的关键.18.【分析】先因式分解,通分,去括号化简,再选值计算即可.【解答】解:===,∵x﹣1≠0,x﹣2≠0∴x≠1,x≠2∴当x=﹣1时,原式=;当x=0时,原式=.【点评】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.19.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2(x+2)=3(x﹣2),去括号得:2x+4=3x﹣6,移项合并得:﹣x=﹣10,解得:x=10,检验:把x=10代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=10;(2)去分母得:2(x﹣4)+1=x﹣3,去括号得:2x﹣8+1=x﹣3,移项得:2x﹣x=﹣3+8﹣1,合并同类项得:x=4,检验:把x=4代入得:x﹣4=0,∴x=4是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【分析】利用因式分解法及配方法对所给方程进行求解即可.【解答】解:(1)x2﹣6x+5=0,(x﹣1)(x﹣5)=0,则x﹣1=0或x﹣5=0,所以x1=1,x2=5.(2)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,(x+2)2=5,则x+2=,所以.【点评】本题主要考查了解一元二次方程﹣因式分解法及解一元二次方程﹣配方法,熟知因式分解法及配方法解一元二次方程的步骤是解题的关键.21.【分析】首先利用平行四边形的性质,证出AD=CB,AD∥CB,进而证出∠DAE=∠BCF,再结合已知证得△ADE≌△CBF,最后利用全等三角形的性质证出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题考查的是平行四边形的性质,全等三角形的性质与判定,找到图中的全等三角形是解本题的关键.22.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用中心对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)作出旋转中心M,可得结论;(4)根据题目要求以及平行四边形的判定作出点D即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)旋转中心M的坐标为(﹣3,0);故答案为:(﹣3,0);(4)点D的坐标是(0,6).故答案为:(0,6).【点评】本题考查作图﹣旋转变换,平移变换,平行四边形的判定等知识,解题的关键是掌握旋转变换,平移变换的性质.23.【分析】(1)根据题意用t表示CQ与AP,证明四边形APCQ为平行四边形,得AP=CQ,由此列出t 的方程即可;(2)根据题意用t表示CQ与BP,证明△ABP≌△BCQ得BP=CQ,由此列出t的方程即可.【解答】解:(1)由题意得DQ=t cm,AP=2t cm,∵四边形ABCD是边长为8cm的正方形,∴CQ=(8﹣t)cm,当PQ,AC互相平分时,四边形APCQ为平行四边形,∴AP=CQ,∴2t=8﹣t,解得t=,即t的值为s;(2)∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠BCQ=90°,∵AP⊥BQ,∴∠BAP+∠ABH=∠ABH+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP≌△BCQ(ASA),∴BP=CQ,∵BP=2t﹣AB=2t﹣8,CQ=8﹣t,∴2t﹣8=8﹣t,解得t=,即t的值为s.【点评】本题主要考查了正方形的性质,全等三角形的性质与判定,行程问题,平行四边形的性质与判定,关键是正确列出t的方程.24.【分析】任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元,根据“购买数量=金额÷标价”列方程并求解即可;任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本,根据“A种图书进价×购进A种图书数量+B种图书进价×购进B种图书数量≤28200”和“A种图书不少于600本”列关于m的一元一次不等式组并求解;设获得的利润是w元,根据“获得的利润=(A种图书售价﹣A种图书进价)×购进A种图书数量+(B种图书售价﹣B种图书进价)×购进B种图书数量”写出w关于m的函数关系式,根据该函数的增减性和m的取值范围,确定当m取何值时w的值最大,并求出此时2000﹣m的值即可.【解答】解:任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元.根据题意,得﹣=10,解得x=18,经检验,x=18是所列分式方程的解,1.5×18=27(元),∴A种图书的标价是27元,B种图书的标价是18元.任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本.根据题意,得,解得600≤m≤700.由题意可得,A种图书的售价是0.8×27=21.6(元),B种图书的售价是18元,设获得的利润是w元,则w=(21.6﹣18)m+(18﹣12)(2000﹣m)=﹣2.4m+12000,∵﹣2.4<0,∴w随m的减小而增大,∵600≤m≤700,∴当m=600时,w值最大,2000﹣600=1400(本),∴购进A种图书600本、B种图书1400本可获得最大利润.【点评】本题考查一次函数和分式方程的应用,掌握分式方程和一元一次不等式组的解法及一次函数的增减性是解题的关键.25.【分析】(1)根据完全平方公式求解;(2)先根据矩形的面积公式表示S1,S2,再根据作差法求解;(3)根据矩形的面积公式列出函数关系式,再配方求解.【解答】解:(1)x2+6x+13=x2+6x+9+4=(x+3)2+4,故答案为:3,4;(2)S2>S1;理由:∵S1=5(2a+9)=10a+45,S2=(a+7)2=a2+14a+49,∴S2﹣S1=a2+14a+49﹣10a﹣45=a2+4a+4=(a+2)2>0,∴S2>S1;(3)由题意得:y=x(59﹣2x+1)=﹣2x2+60x=﹣2(x﹣15)2+450,∴当x=15时,y有最大值,为450平方米.【点评】本题考查了配方法的应用,掌握完全平方公式和非负数的性质是解题的关键.26.【分析】(1)①先证明△AOE≌△BOF(ASA),可得AE=BF,推出BE=CF,再运用勾股定理即可证得结论;②延长EO交DC于点G,由正方形性质可得OA=OC,∠OAE=∠OCG=45°,再利用ASA可证得△AOE≌△COG;(2)延长EO交CD于点G,连接FG,可证得△AEO≌△CGO(AAS),得出AE=CG,OE=OG,再由线段垂直平分线的性质可得EF=FG,再运用勾股定理即可求得答案;(3)设CF=x cm,分两种情况讨论:①当点E在线段AC上时,②当点E在CA延长线上时,结合勾股定理,即可求解.【解答】(1)①解:猜想:AE2+CF2=EF2,理由如下:如图1,∵四边形ABCD和四边形A1B1C1O均为正方形,∴OA=OB,AB=BC,∠OAE=∠OBF=45°,∠AOB=∠A1OC1=90°,∴∠AOB﹣∠BOE=∠A1OC1﹣∠BOE,即∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在Rt△BEF中,BF2+BE2=EF2,∴AE2+CF2=EF2,故答案为:AE2+CF2=EF2.②证明:如图1′,延长EO交DC于点G,∵四边形ABCD为正方形,∴OA=OC,∠OAE=∠OCG=45°,在△AOE和△COG中,,∴△AOE≌△COG(ASA).(2)解:结论:AE2+CF2=EF2,证明:如图2,延长EO交CD于点G,连接FG,∵O是矩形ABCD的中心,∴点O是AC的中点.∴AO=CO,∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CGO,∴△AEO≌△CGO(AAS),∴AE=CG,OE=OG,∵四边形A1B1C1O是矩形,∴∠A1OC1=90°,即OF⊥EG,∴OF垂直平分EG,∴EF=FG,在Rt△FCG中,CG2+CF2=GF2,∴AE2+CF2=EF2;(3)解:设CF=x cm,①当E在线段AC上时,如图3,连接EF,∵AE=4cm,AC=5cm,BC=12cm,∴CE=1cm,在Rt△FCE中,∠C=90°,∴CE2+CF2=EF2,∴12+x2=EF2,又由(2)易知EF2=AE2十BF2,∴EF2=42+BF2,∴12+x2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;②当点E在CA延长线上时,如图4,过点B作BG⊥BC,交ED的延长线于G,连接EF,GF,同理可证EF2=AE2十BF2,∴EF2=42+(12﹣x)2,在Rt△FCE中,EF2=x2+(5+4)2,∴x2+(5+4)2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;综上所述,线段CF的长度为cm或cm.【点评】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形根据勾股定理列方程解决问题。
2023年部编版八年级数学下册期末考试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.设42-的整数部分为a ,小数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。
重庆南开中学2020-2021学年度下学期3月月考数学试题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 下列各式是分式的是( ) A. 2a b+ B. 219a bc C. xπ D. 22y x 【答案】D【解析】【分析】根据分式的定义对各选项分别进行判断,即可得出结论.【详解】解:A 、2a b+是整式,故此选项不符合题意;B 、219a bc 是整式,故此选项不符合题意;C 、xπ是整式,故此选项不符合题意;D 、22y x 是分式,故此选项符合题意.故选:D .【点睛】此题考查了分式的判断,熟练掌握分式的定义是解题的关键.2. 若分式211a -有意义,则a 的取值范围是( )A. 1a =且1a =-B. 1a ≠且1a ≠-C. 1a ≠D. 1a ≥【答案】B【解析】【分析】令分母不为0,得到关于a 的不等式,解不等式即可. 【详解】解:因为分式211a -有意义,所以210a -≠,所以21a ≠,则1a ≠且1a ≠-,故选B .【点睛】本题考查了分式有意义的条件,解题关键是令分母不为0,考查了学生对概念的理解与应用. 3. 下列各式从左到右的变形中,属于分解因式的是( )A. 22=(2)mn mn mn n ++B. 22(+)()x y x y x y -=-C. 2245=(2)1x x x ++++D. 3231(1)a a a a+=+ 【答案】A【解析】【分析】根据因式分解的概念分别进行判断,即可得出结论.【详解】解:A 、22=(2)mn mn mn n ++,是因式分解,故此选项符合题意; B 、22(+)()x y x y x y -=-,是整式乘法,故此选不项符合题意;C 、2245=(2)1x x x ++++,不是因式分解,故此选项不符合题意;D 、3231(1)a a a a+=+,不是因式分解,故此选项不符合题意. 故选:A .【点睛】此题考查了因式分解的判断,掌握因式分解的概念是解题的关键.4. 下列说法中不正确的是( )A. 平行四边形的对角相等B. 菱形的邻边相等C. 平行四边形的对角线互相平分D. 菱形的对角线互相垂直且相等 【答案】D【解析】【分析】根据平行四边形与菱形的性质分别进行判断,即可得出结论.【详解】解:A 、平行四边形的对角相等,此说法正确,故此选项不符合题意;B 、菱形的四条边都相等,故此选项说法正确,不符合题意;C 、平行四边形的对角线互相平分,此说法正确,故此选项不符合题意;D 、菱形的对角线互相垂直平分,故此选项说法错误,符合题意.故选:D .【点睛】此题考查了平行四边形与菱形的性质,熟练掌握平行四边形与菱形的性质是解题的关键.5. 多项式322+6+9x x y xy 与339x y xy -的公因式是( )A. 2(3)x x y +B. (3)x x y +C. (3)xy x y +D. (3)x x y -【答案】B【解析】 【分析】先把两个多项式进行因式分解,再根据公因式的概念进行判断,即可得出结论.【详解】解:∵322+6+9x x y xy ()2269x x xy y =++()23x x y =+,339x y xy - ()229xy x y =-()()33xy x y x y =+-,∴多项式322+6+9x x y xy 与339x y xy -的公因式是(3)x x y +. 故选:B .【点睛】本题主要考查了公因式的判断,掌握因式分解的方法及公因式的概念是解题的关键. 6. 若24(2)25xk x --+是一个完全平方式,则k 的值为( ) A. 18B. 8C. 18-或22D. 8-或12 【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】解:∵24(2)25xk x --+是一个完全平方式,∴k -2=±20, 解得:k =-18或k =22,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7. 在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A. 2B. 2-C. 6D. 6- 【答案】A【解析】【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】解:设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.8. 如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若=23EF ,8BD =,则菱形ABCD 的周长为( )A. 27B. 16C. 7D. 32【答案】C【解析】 【分析】首先利用三角形的中位线定理得出AC ,再利用菱形的性质和勾股定理求出菱形的边长,即可计算出菱形ABCD 的周长.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,EF =23, ∴AC =2EF =43,∵四边形ABCD 是菱形,8BD =,∴AC ⊥BD ,OA =12AC =23,OB =12BD =4, ∴AB =22OA OB +=27,∴菱形ABCD 的周长为:274⨯=87.故选:C .【点睛】此题考查了菱形的性质,三角形的中位线定理及勾股定理等知识,熟练掌握菱形的性质是解题的关键.9. 如图,菱形ABCD 的边长为9,面积为183,P 、E 分别为线段BD 、BC 上的动点,则PE PC +的最小值为( )3 B. 23 C. 33 D. 9【答案】B【解析】 【分析】过A 作AE BC ⊥于,E 交BD 于,P 由菱形在轴对称性质可得:,PC PA = 可得,PC PE PA PE AE +=+= 此时PE PC +最短,再利用菱形的面积公式可得答案.【详解】解:过A 作AE BC ⊥于,E 交BD 于,P由菱形在轴对称性质可得:,PC PA =,PC PE PA PE AE ∴+=+=∴ 此时PE PC +最短,菱形ABCD 的边长为9,面积为183,183,BC AE ∴=9183,AE ∴=23,AE ∴=所以PE PC +的最小值是2 3.故选:.B【点睛】本题考查的是勾股定理的应用,菱形的性质,利用轴对称求解线段和的最小值,掌握以上知识是解题的关键.10. 将若干个小菱形按如图的规律排列:第(1)个图形有1个小菱形,第(2)个图形有3个小菱形,第(3)个图形有6个小菱形,…,则第(20)个图形有( )个小菱形,A. 190B. 200C. 210D. 220【答案】C【解析】【分析】仔细观察图形知:第(1)个图形有1个小菱形,第(2)个图形有3=1+2个,第(3)个图形有6=1+2+3个,…由此得到规律求得第(20)个图形中小菱形的个数即可.【详解】解:第(1)个图形有1(个)菱形,第(2)个图形有3=1+2(个),第(3)个图形有6=1+2+3(个),第(4)个图形有10=1+2+3+4(个),…第n 个图形有1+2+3+4+…+n =(1)2n n + (个)小菱形, ∴第(20)个图形有20212102⨯=(个)小菱形. 故选:C .【点睛】本题考查了规律型问题,解题的关键是仔细观察图形并找到有关图形个数的规律.11. 甲、乙两车从A 地出发匀速驶向B 地.甲先出发1小时后,乙再沿相同路线出发.在整个行驶过程中,甲、乙两车之间的距离s (km )与甲车行驶的时间t (h )的函数关系如图所示,给出下列说法:①甲的速度为80km /h ;②乙的速度为100km /h ;③甲车从A 地到B 地,共用时14h ;④AB 两地相距1200km ;⑤当甲车出发经过10h 与3134h ,甲乙两车相距100km .其中说法正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:①根据乙出发前两人相距80km 可得甲的速度为:80801=(km/h ),故①正确; ②∵()(51)80v v -⨯-=乙甲(km )∴(80)(51)80v -⨯-=乙(km )∴=100v 乙(km/h ),故②正确;③ 乙车到达B 地行驶的时间为:160(51)(10080)+-=-12小时, ∴A 、B 两地的距离为:S=12=1200v ⨯乙(km) ∴1200===1580S t v 甲甲(h),故③错误; ④由③知,AB 两地相距1200km ,故④正确;⑤甲车出发经过10h 时,甲乙两车相距:()(105)(10080)5100v v -⨯-=-⨯=乙甲(km ); 甲车出发经过3134h 时,甲乙两车相距:316080[13(58)]1004-⨯-+=(km ),故⑤正确, 所以,正确的说法有:①②④⑤共4个,故选:C【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.12. 已知关于x 的不等式组251333x x x a +⎧>+⎪⎨⎪≥-⎩有解,且关于y 的分式方程9433y a a y y +-=---有正整数解,则所有满足条件的整数a 的值的个数为( )A. 2B. 3C. 4D. 5 【答案】A【解析】【分析】根据分式方程的解为正整数即可得出a >32-,且a ≠3,根据不等式组有解,即可得a <9,找出所有符合条件的正整数,a 的个数为2. 【详解】解:解方程9433y a a y y +-=---得:233a y +=, ∵分式方程的解为正整数,∴2a +3>0,即a >-32, 又y ≠3, ∴233a +≠3,即a ≠3, 则a >32-,且a ≠3,251333x x x a +⎧>+⎪⎨⎪≥-⎩①②, 解不等式①,得x <2,解不等式②,得x ≥33a -, ∵此不等式组有解, ∴33a -<2, 解得a <9,综上,a 的取值范围是32-<a <9,且a ≠3, 则符合题意的整数a 的值有0,6共2个,故选:A .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为正整数结合不等式组有解,找出32-<a <9,且a ≠3是解题的关键. 二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案直接填在答题卡中对应的横线上.13. 当x =___________时,分式211x x -+的值为0 【答案】12. 【解析】【分析】根据分式的值为0的条件求解即可. 【详解】解:∵分式211x x -+的值为0 ∴21010x x -=⎧⎨+≠⎩ 解得,12x =, ∴当12x =时,分式211x x -+的值为0 故答案为:12. 【点睛】此题主要考查了分式值为0的条件,正确把握相关性质是解答此题的关键.14. 若关于x 的分式方程2111a x x =+--有增根,则a =__________. 【答案】2【解析】 【分析】先将分式方程去分母转化为整式方程,根据分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值. 【详解】解:2111a x x =+--, 去分母,得 a =2+x −1,∵分式方程有增根,∴x −1=0,解得x =1,将x =1代入整式方程,得a =2,故答案为:2.【点睛】此题考查了分式方程无解问题,解答此类问题可按如下步骤进行:①化分式方程为整式方程;②确定增根;③把增根代入整式方程,计算后即可求得相关字母的值.15. 多项式2222627a ab b b -+-+的最小值为________.【答案】18.【解析】【分析】利用公式法进行因式分解,根据非负性确定最小值.【详解】解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --≥≥,, ∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点睛】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.16. 2021年重庆“体考”预计在四月份进行,某班为了解同学们每周参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间(小时) 4 5 6 7人数 1 4 3 2则这10名同学每周参加体育锻炼时间的平均数是________小时.【答案】5.6【解析】【分析】根据平均数的计算方法列式计算,即可得出结果.【详解】解:这10名同学每周参加体育锻炼时间的平均数415463725.610x⨯+⨯+⨯+⨯==(小时),故答案为:5.6.【点睛】本题考查了平均数,掌握平均数的定义及计算方法是解题的关键.17. 如图,在平面直角坐标系中,四边形OABC为矩形,B点坐标为(10,4),将矩形沿直线EF翻折,使得点A正好与BC边上的点D(2,4)重合,则点B的对应点G的纵坐标为_______.【答案】6.4【解析】【分析】根据折叠得到的相等的线段及勾股定理可得OE,GE的长,进而做GM⊥OC于点M,可得GM的长,及OM的长,根据点G所在象限可得相应坐标.【详解】解:∵四边形OABC为矩形,B点坐标为(10,4),∴OC=AB=4,OA=BC=10,∠B=90°,∵D点坐标为(2,4),∴CD=2,∴DB=8由折叠可得GD=BA=4,BE=GE,∠DGE=∠B=90°,设DE为x,则GE=8-x,在Rt△GDE中,∵DE2=GD2+GE2,∴x2=(8-x)2+42,∴x =5,∴DE =5,GE =3,过G 点作GM ⊥DE 于M , ∵1122⨯=⨯GM DE DG EG ∴1154322⨯=⨯⨯GM ∴ 2.4=GM∴点B 的对应点G 的纵坐标为:4+2.4=6.4.故答案为:6.4.【点睛】本题考查了折叠问题的相关知识以及矩形的性质,根据折叠前后的对应线段相等及勾股定理得到GM 的值是解决本题的突破点.18. 为保障某贫困山区小学的学生有充足的学习文具,某小区向住户募集了2330支钢笔,1060本笔记本和若干套尺规套装,小区工作人员将这些物资分成了甲、乙丙三类包裹进行发放,一个甲类包裹里有25支钢笔,10本笔记本和4套尺规套装,一个乙类包裹里有16支钢笔,8本笔记本和7套尺规套装,一个丙类包裹里有20支钢笔,6本笔记本和3套尺规套装.已知甲、乙、丙三类包裹的数量都为正整数,并且甲类的个数低于28个,乙类个数低于106个,那么所有包裹里尺规套装的总套数为_________套.【答案】835【解析】【分析】设甲类包裹有x 个,乙类包裹有y 个,丙类包裹有z 个,根据题意列出x 、y 、z 的三元一次方程组,用z 表示x 、y ,进而由x 、y 的取值范围列出z 的不等式组求得z 的取值范围,再根据x 、y 与z 的关系式和x 、y 为整数求得z 的整数值,从而求出x 、y 的值,再进行计算即可.【详解】解:设甲类包裹有x 个,乙类包裹有y 个,丙类包裹有z 个,根据题意,得251620233010861060x y z x y z ++=⎧⎨++=⎩①② , ①-②×2,得5+8=210x z ,解得8=425z x -. 将8=425z x -代入②,得()21082861060y z z ++=-, 解得5=80+4z y . ∴8=4255=80+4z x z y ⎧-⎪⎪⎨⎪⎪⎩. ∵x <28,y <106, ∴842285580+1064z z ⎧-<⎪⎪⎨⎪<⎪⎩, 解得:708<z <1045. ∵z 为整数,∴z 的取值范围为:9≤z ≤20的整数.又∵x 、y 均为整数,∴8z 与5z 既为5的倍数,又为4的倍数,∴z =20.当z =20时,8=42105z x -=,5=80+1054z y =, ∴所有包裹里尺规套装的总套数为: 4107105320835⨯+⨯+⨯=(套).故答案:835.【点睛】本题主要考查了三元一次方程组及一元一次不等式组的应用,关键是正确列出方程组与不等式组,正确求不定方程的特殊解.三、计算题,(本大题共2个小题,19题12分,20题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 因式分解:(1)224m m -(2)2()9()a x y y x -+-(3)4268x x -+(4)22()(8)16x x x x ++-+【答案】(1)2(2)m m -;(2)()(3)(3)x y a a --+;(3)2(2)(2)(2)x x x --+; (4) 22(4)x x +-.【解析】【分析】(1)用提公因式法分解因式.(2)先提取公因式,然后用平方差公式分解因式.(3)先用十字相乘法,然后用平方差公式分解因式.(4)用换元法,把2x x +看做t ,原式写成2816t t -+的形式,用完全平方法分解因式,再把t 换成2x x +即可.【详解】(1)224m m -2(2)m m =-.(2)2()9()a x y y x -+-2()9()a x y x y =---2()(9)x y a =--()(3)(3)x y a a =--+.(3)4268x x -+22(2)(4)x x =--2(2)(2)(2)x x x =--+.(4)22()(8)16x x x x ++-+222()8()16x x x x =+-++22(4)x x =+-.【点睛】本题考查了提公因式法分解因式,综合提公因式和公式法分解因式,十字相乘法分解因式,换元法分解因式,运用适当的方法进行因式分解是解题关键.20. 解方程:(1)651(1)x x x x +=++(2)242211x x x x +=-+ 【答案】(1)1x =;(2)该方程无解.【解析】【分析】(1)先将方程两边同时乘以最简公分母,得到整式方程,解整式方程后检验即可;(2)先去分母,两边同时乘以()21x-,得到整式方程,解整式方程后检验,发现原分式方程的分母为0,因此得出该分式方程无解. 【详解】解:(1)()6511x x x x +=++ 方程两边同时乘以()1x x +,得:65x x =+移项得:65x x -=合并同类项得:55x =系数化为1得:1x =检验:当1x =时,()10x x +≠,所以 1x =是该方程的解.(2)242211x x x x +=-+ 方程两边同时乘以()21x -,得:()()242121x x x x +-=-去括号得:2242222x x x x +-=-移项,合并同类项得:22x =-解得1x =-检验:当1x =-时,210x -=,所以 1x =-不是该方程得解,所以该方程无解.【点睛】本题考查了分式方程的解法,解分式方程的第一步是将它化为整式方程,因此要先确定最简公分母,化为整式方程后再按照去括号、移项、合并同类项、系数化为1的步骤解整式方程,最后不要忘记检验,因此解题关键是将方程两边同时乘以最简公分母,化为整式方程求解,考查了学生对解分式方程步骤的掌握与应用.四、解答题:(本大题共5个小题,21题8分,21-24题每小题10分,25-26题每小题12分,共62分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21. 如图,在平行四边形ABCD 中,AD AB >.(1)用尺规作图的方法,作出AB 边的中垂线,交AB 边于点E 、BC 边于点F (要求:保留作图痕迹,不写作法,要下结论);(2)连接AF ,若140BAD ∠=︒,求DAF ∠的度数.【答案】(1)画图见解析,(2)100︒;【解析】【分析】(1)按照垂直平分线的作法作图即可;(2)根据平行四边形性质可求∠B ,根据垂直平分线性质可求∠F AB ,进而可求DAF ∠.【详解】解:(1)如图所示,直线EF 即所求.(2) ∵AD ∥BC ,∴∠B +BAD ∠=180°,∵140BAD ∠=︒,∴∠B =40°,∵EF 垂直平分AB ,∴BF=AF ,∴∠BAF =∠B =40°,14040100DAF ∠=︒-︒=︒;【点睛】本题考查了垂直平分线的作法和性质,平行四边形的性质,解题关键是准确画图,熟练运用它们的性质进行推理计算.22. 小融同学根据学习函数的经验,对函数|1|y m x x n =-++的图象与性质进行了探究.下表是小融探究过程中的部分信息: x … 3-2- 1- 0 1 2 3 … y … 2 1 0 1- 2- a 4 …请按要求完成下列各小题:(1)该函数的解析式为 ,a 的值为 ;(2)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象; (3)结合函数的图象,解决下列问题:①写出该函数的一条性质: ;②如图,在同一坐标系中是一次函数1y x =-的图象,根据图象回答,当|1|1m x x n x -++<-时,自变量x 的取值范围为 .【答案】(1)213y x x =-+-,1a =(2)详见解析;(3)①当x >1时,y 随x 的增大而增大(答案不唯一);②x 的取值范围:0<x <2.【解析】【分析】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++求出m 、n 的值即可求得函数的解析式,将x=2代入所求函数解析式即可求得a ;(2)先描出各点,再顺次连接各点即可;(3)①根据图象即可求解(答案不唯一);②根据图象可知|1|1m x x n x -++<-时即为函数213y x x =-+-的图象在函数y=x -1图象下方部分x 的取值范围.【详解】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++可得:2=3131212m n m n ⎧---+⎪⎨=---+⎪⎩,整理得:5=433m n m n +⎧⎨=+⎩, 解得:=23m n ⎧⎨=-⎩ ∴函数的解析式为:213y x x =-+-将x=2代入213y x x =-+-可得:221231y =⨯-+-=,即1a =; (2)该函数的图象如图所示:(3)①由函数图象可知:当x >1时,y 随x 的增大而增大,故答案为:当x >1时,y 随x 的增大而增大(答案不唯一)②由(2可知:|1|1m x x n x -++<-时,即为函数213y x x =-+-的图象在函数y=x -1图象下方部分 ∴自变量x 的取值范围为:0<x <2.【点睛】本题考查一次函数图象图象及其性质,一次函数图象上点的坐标特征,利用数形结合的思想,正确画出函数图象是解题的关键.23. 若一个正整数a 可以表示为(1)(2)a b b =+-,其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28(61)(62)74=+⨯-=⨯.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(1)b -整除,其中b 为大于2的正整数,求a 的值;(3)m 的“十字点”为p ,n 的“十字点”为q ,当18m n -=时,求p q +的值.【答案】(1)40,12;(2)4;(3)10【解析】【分析】(1)根据十字点的定义(1)(2)a b b =+-计算即可;(2)先根据(1)(2)a b b =+-得出()()2(12)(11)=b 1+b 12=-+-----a b b ,再根据a 能被(1)b -整除,得出b 的值,即可求出a 的值;(3)根据已知得出m (p 1)(p 2)=+-(p >2且为正整数),n (q 1)(q 2)=+-(q >2且为正整数),再根据18m n -=得出()()p q-1p q =18+-,从而得出163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩,解之即可得出a 、b ,继而得出答案.【详解】解:(1)“十字点”为7的“十字数”(71)(72)=85=40=+-⨯a ,∵130(121)(122)=1310=+-⨯,∴130的“十字点”为12;(2)∵b 是a 的“十字点”,∴(1)(2)a b b =+-(b >2且为正整数),∴()()2(12)(11)=b 1+b 12=-+-----a b b ,∵a 能被(1)b -整除,∴(1)b -能整除2,∴b -1=1或b -1=2,∵b >2,∴b =3,∴(31)(32)=4=+-a ;(3)∵m 的“十字点”为p ,∴m (p 1)(p 2)=+-(p >2且为正整数),∵n 的“十字点”为q ,∴n (q 1)(q 2)=+-(q >2且为正整数),∵18m n -=,∴(p 1)(p 2)(q 1)(q 2)=18+--+-,∴22p -p-2-q +q+2=18,∴(p q)(p q)(p-q)=18+--,∴()()p q-1p q =18+-,∵180>-=m n ,p >2,q >2且p 、q 为正整数;∴p >q ,p+q >4;∴p+q -1>3;∵18=3×6=2×9,∴163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩; 解得:52p q =⎧⎨=⎩(不合题意舍去),64p q =⎧⎨=⎩; ∴=10+p q【点睛】本题考查因式分解的应用;能够理解题意,根据题中所给条件将数进行正确的拆解是解题的关键. 24. 开学初,南开中学在某旗舰店购进一定数量的连通管与机械天平,购买连通管花费了1200元,购买机械天平花费了900元,且购买连通管数量是购买机械天平数量的2倍,已知购买一个机械天平比购买一个连通管多花10元.(1)求购买一个连通管、一个机械天平各需多少元?(请列分式方程作答)(2)学期末,为了补充实验器材的损耗,学校决定再次购进连通管与机械天平共50个,恰逢原旗舰店对两种商品的售价进行调整,其中连通管售价比第一次购买时提高了10%,机械天平按第一次购买时售价的9折出售,若此次购买连通管与机械天平的总费用不超过1262元,则此次最多可购买多少个机械天平?【答案】(1)购买连通管需20元,一个机械天平需30元;(2)南开中学此次最多可以购买32个机械天平.【解析】【分析】(1)设购买连通管需x 元,一个机械天平需(x +10)元,根据“购买连通管数量是购买机械天平数量的2倍”列出分式方程即可求出结论;(2)设南开中学此次最多购买a 个机械天平,则购买(50-a )个连通管,根据“连通管售价比第一次购买时提高了10%,机械天平按第一次购买时售价的9折出售,若此次购买连通管与机械天平的总费用不超过1262元”列出一元一次不等式即可求出结论.详解】解:(1)设购买连通管需x 元,一个机械天平需(x +10)元,根据题意得,1200900210x x =⨯+ 解得,x =20经检验,x =20是原方程的根,∴x +10=20+10=30答:购买连通管需20元,一个机械天平需30元;(2)设南开中学此次购买a 个机械天平,则购买(50-a )个连通管,根据题意得,20(1+10%)(50)+300.91262a a ⨯-⨯≤解得:2325a ≤ ∵a 是整数,∴a 的最大值为32,答:南开中学此次最多可以购买32个机械天平.【点睛】此题考查 的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解答此题的关键.25. 如图1,已知直线1:5l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线l 2与y 轴交于点(0,1)C -,与直线l 1交于点D (2,t ).(1)求直线l 2的解析式;(2)如图2,若点P 在直线l 1上,过点P 作//PQ y 轴交l 2于点Q ,交x 轴于点G ,使2PCGQCG S S ∆∆=,求此时P 点的坐标;(3)将直线1:5l y x =-+向左平移10个单位得到直线l 3交x 轴于点E ,点F 是点C 关于原点的对称点,过点F 作直线4//l x 轴.在直线l 4上是否存在动点M ,使得MCE 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)21y x =-,(2)(4,9)P -;(3)11(,1)5M -或M ,(M 或(0,1)M 【解析】【分析】(1)把点D 坐标代入直线1:5l y x =-+求出t 的值,运用待定系数法求出l 2即可;(2)根据三角形面积公式求解即可;(3)设(,1)M a 则MC ME CE ====分ME MC =,CE MC =,ME CE =三种情况列式求解即可.【详解】解:(1)∵D (2,t )在直线1:5l y x =-+∴:253t -+=,∴D (2,3)设直线2l 的解析式为y kx b =+,将点C ,D 代入得,123b k b =-⎧⎨+=⎩ 解得,21k b =⎧⎨=-⎩所以,线2l 的解析式为21y x =-(2)设(,5)P a a -∵PQ//x 轴,∴G(a,0),Q(a ,2a-1) ∵1||2PCG S PG a ∆=,1||2QCG S OQ a ∆=且2PCG QCG S S ∆∆= ∴2PG QG =∴5|21|a a -=-解得,4a =-,2a =(舍去)∴(4,9)P -(3)存在,理由如下:对于直线1:5l y x =-+当0x =时,5y =;当0y =时,5x =∴(5,0),(0,5)A B ,∴(5,0),(0,5)E N --如图,∵31//l l∴3:5l y x =--又∵(0,1)C -∴(0,1)F∴4l 的解析式为:1y =设(,1)M a 则222222222,(5)1,51MC MF FC a ME a CE =+=+=++=+当MCE ∆为等腰三角形,有:①ME MC =2222(5)12,a a ++=+ 解得,115a =-,即11(,1)5M - ②CE MC =2222251a ++解得:22a =或22a =-即(22,1)M ,(22,1)M -③ME CE =时,2222(5)151a ++=+解得,0a =或10a =-(舍去)即(0,1)M综上,点M 的坐标为:11(,1)5M -或(22,1)M ,(22,1)M -或(0,1)M . 【点睛】本题为一次函数综合运用题,解题的关键是熟练掌握待定系数法求函数解析式、等腰三角形的性质等知识,其中(3)要注意分类求解,避免遗漏.26. 在Rt △ABC 中,90ABC ∠=︒,以AB 为边作Rt ABD △,90ADB ∠=︒,30ABD ∠=︒,AC 与BD 于点E .(1)如图1,若30CAB ∠=︒,23AD =CE 的长度;(2)如图2,若45CAB ∠=︒,延长DA 至点F ,连接CF 交BD 于点H ,若点H 为CF 的中点,证明12DH AF =; (3)如图3,若60CAB ∠=︒,2AB =,将ADB △绕点A 逆时针旋转得到△AMN ,连接CN ,取CN 的中点G ,连接BG .在△AMN 旋转过程中,当12BG CN =最大时,直接写出△ANC 的面积. 【答案】(1)4;(2)见解析;(3)3【解析】【分析】(1)过点E 作EF ⊥AB ,垂足为F ,由∠EBA=∠EAB=30°,AD=3得EA=EB ,AF=FB ,AB=3设BC=x ,则AC=2x ,根据勾股定理,得2222(2)3AC BC x x x --=,解得x=4,证明△CBE 是等边三角形即可;(2)过点C 作CQ ∥FD ,交BD 于点Q ,证明△FDH ≌△CQH ,△BAD ≌△CBQ ,利用等式的性质证明即可; (3)当B 、A ,N 三点共线时,BG 是直角三角形斜边CN 上的中线,满足了12BG CN =,AN=AB=2,计算三角形的面积即可.【详解】(1)如图1,过点E 作EF ⊥AB ,垂足为F ,∵∠EBA=∠EAB=30°,AD=23,∴EA=EB ,AF=FB ,AB=43,设BC=x ,则AC=2x ,根据勾股定理,得AB=2222(2)3AC BC x x x -=-=,解得x=4即BC=4,∵∠EBA=∠EAB=30°,∴∠EBC=∠ECB=60°,∴△CBE 是等边三角形,∴EC=BC=4;(2)过点C 作CQ ∥FD ,交BD 于点Q ,∵BD ⊥AD ,∴CQ ⊥BD ,∴∠FDH=∠CQH ,∵∠FHD=∠CHQ ,CH=FH ,∴△FDH ≌△CQH ,∴DH=HQ ,FD=CQ ,∵∠ABD=30°,∴∠DAB=∠QBC=60°,∠QCB=30°,∴∠ABD=∠BCQ ,∵45CAB ∠=︒=∠BCA ,∴BA=CB ,∴△BAD≌△CBQ,∴AD=BQ,BD=CQ,∴BD=FD,∴BD-BQ=FD-AD,∴DQ=FA,∴DH+HQ=FA,∴2DH=FA,∴12DH AF=;(3)根据题意,得当B、A,N三点共线时,BG是直角三角形斜边CN上的中线,∴12BG CN=,∴AN=AB=2,∵∠BCA=30°,∴AC=4,根据勾股定理,得22224223AC BA-=-,∴△ANC 的面积为11222AN BC •=⨯⨯ 【点睛】本题考查了含有特殊角的直角三角形的性质,三角形的全等,勾股定理,平行线的性质,灵活构造平行线,运用三角形中点模型证明全等,是解题的关键点之一.。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
北师大版八年级数学下册第三章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是()A B C D2.观察下列四个图形,中心对称图形是()A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是()A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的()A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是()A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为()A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有()A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b的值为( )A .-2B .1C .32D .2 第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为 .第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是 .13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′ .14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为 .15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号: .第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是 cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为.三、解答题(共66分)19.(6分)将已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a=-1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位长度,再向上平移1个单位长度后得到点N,当点N 在第三象限时,求a的取值范围.23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a-b)与点Q(2a-9,2b-9)也是通过上述变换得到的对应点,求a,b的值.24.(12分)(鼓楼区期末)如图,在Rt△ABC中,∠C=90°,∠CAB=35°,BC=7.线段AD由线段AC绕点A按逆时针方向旋转125°得到,△EFG由△ABC沿CB 方向平移得到,且直线EF过点 D.(1)求∠DAE的大小;(2)求DE的长.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是(C)A B C D2.观察下列四个图形,中心对称图形是(C)A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是(C)A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的(D)A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是(D)A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形(C)A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点 D.如果∠D=40°,则∠BAC的度数为(B)A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为(C)A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有 (B )A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b 的值为 (D ) A .-2 B .1 C .32D .2第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为B 1C 1.第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是(-2,1).13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′(2,0).14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为72度. 15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号:②③.第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是16cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是2 2 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为30°或90°或150°.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案 C C C D D C B C B D二、填空题(每小题3分,共24分)得分:________11.__B1C1__ 12.__(-2,1)__13.__(2,0)__ 14.__72度__15.__②③__ 16.__16__17.__2 2 __ 18.__30°或90°或150°__三、解答题(共66分)19.(6分)已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.解:(1)点A1和点B为对应点,∴对称中心为A1B的中点,∴对称中心的坐标为(0,2.5).(2)在△ABC中,AB=2,C到AB的距离为 3 .即点C到y轴的距离为 3 ,∴点C的坐标为(- 3 ,3),点C1的坐标为( 3 ,2).22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a =-1时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,当点N 在第三象限时,求a 的取值范围.解:(1)当a =-1时,点M 的坐标为(-1,2), 所以M 在第二象限,所以应填“二”.(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,点M 的坐标为(a ,-2a),所以N 点的坐标为 (a -2,-2a +1). 因为N 点在第三象限,所以⎩⎪⎨⎪⎧a -2<0,-2a +1<0,解得12<a<2,所以a 的取值范围为12 <a<2.23.(10分)如图,三角形DEF 是三角形ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a +3b ,4a -b)与点Q(2a -9,2b -9)也是通过上述变换得到的对应点,求a ,b 的值.解:(1)点A 的坐标为(2,3),点D 的坐标为(-2,-3),点B 的坐标为(1,2),点E 的坐标为(-1,-2),点C 的坐标为(3,1),点F 的坐标为(-3,-1),对应点的横、纵坐标分别互为相反数.(2)由(1),得⎩⎪⎨⎪⎧a +3b +2a -9=0,4a -b +2b -9=0, 解得⎩⎪⎨⎪⎧a =2,b =1,答:a 的值为2,b 的值为1.24.(12分)(鼓楼区期末)如图,在Rt △ABC 中,∠C =90°,∠CAB =35°,BC =7.线段AD 由线段AC 绕点A 按逆时针方向旋转125°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点 D. (1)求∠DAE 的大小; (2)求DE 的长.解:(1)∵△EFG 是 由△ABC 沿CB 方向 平移得到,∴AE∥CF,∴∠EAC+∠C=180°.∵∠C=90°,∴∠EAC=90°.又线段AD是由线段AC绕点A按逆时针方向旋转125°得到,即∠DAC=125°,∴∠DAE=35°.(2)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,EF∥AB,∴∠AED=∠F=∠ABC.又∵∠DAE=∠BAC=35°,AD=AC,∴△ADE≌△ACB(AAS),∴DE=BC=7.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴CO=CD,∠OCD=60°,∴△COD 是等边三角形.(2)解:当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°, ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 则△AOD 是直角三角形.(3)解:①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α, ∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO) =180°-(190°-α+α-60°) =50°,∴α-60°=50°, ∴α=110°;③要使OD =AD.需∠OAD =∠AOD.∵∠AOD =360°-110°-60°-α=190°-α, ∠OAD =180°-(α-60°)2 =120°-α2,∴190°-α=120°-α2 ,解得α=140°.综上所述,当α的度数为125°,110°或140°时, △AOD 是等腰三角形.。
初二数学练习一注意:1.选择题答案请用2B 铅笔填涂在答题卡相应位置上.2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形既是轴对称图形,也是中心对称图形的是( )A .B .C .D .2.已知四边形ABCD 是平行四边形,下列条件中能判定这个平行四边形为矩形的是()A .B .C .D .3.当)AB .C .D4.如图,正方形纸片ABCD 的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、(,,),若,,则正方形ABCD 的面积S 等于( )(第4题图)A .34B .89C .74D .1095.如图,在一张矩形纸片ABCD 中,,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的点H 处,点D 落在点G 处,连接CE ,CH .有以下四个结论:①四边形CFHE 是菱形;②CE 平分;③线段BF 的取值范围为;④当点H 与点A 重合时,.以上结论中,其中正确结论的个数有( )A C ∠=∠AB ∠=∠AB BC =AC BD⊥0a <1l 2l 3l 4l 1h 2h 3h 10h >20h >30h >15h =22h =4AB =8BC =DCH ∠34BF ≤≤5EF =(第5题图)A .1个B .2个C .3个D .4个6.如图,已知菱形ABCD 与菱形AEFG 全等,菱形AEFG 可以看作是菱形ABCD 经过怎样的图形变化得到?下列结论:①经过1次平移和1次旋转;②经过1次平移和1次翻折;③经过1次旋转,且平面内可以作为旋转中心的点共有3个.其中所有正确结论的序号是( )(第6题图)A .②③B .①③C .①②D .①②③二、填空题(本大题共10小题,每小题2分,共20分)7.在整数20240320中,数字“0”出现的频率是______.8.直角三角形中,直角边a ,b ,斜边为c ,则______(填>,<,=).9.与最接近的整数是______.10.如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是______.(填“甲”或“乙”)(第10题图)11.在一个不透明的袋子中装有仅颜色不同的4个红球,6个黑球,现在再放入个黑球并摇匀.若随机摸出一个球是黑球的可能性大小是,则m 的值为______.12.在中,,,D 是AC 延长线上的的一点,,M 是边BC 上33a b +3c 7-()1m m >45Rt ABC △90BAC ∠=︒3AB AC ==1CD =的一点(不与端点B ,C 重合),以CD ,CM 为邻边作,连接AN ,并取AN 的中点P ,连接PM ,则PM 的取值范围是______.(第12题图)13.如图,A 、B 两点的坐标分别为、,C 是平面直角坐标系内一点.若四边形OABC 是平行四边形,则点C 的坐标为______.(第13题图)14.如图,在中,,,P 是内一点,若,,,则PB 的长为______.(第14题图)15.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使,且,若是边长为3的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,则的最小值为______.(第15题图)CMND ()4,0()6,3ABC △90BAC ∠=︒AB AC =ABC △1PA =2PC =135APC ∠=︒DE AD =BE DC ⊥ADB △PM PN +16.如图,矩形ABCD 中,,,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .设点P 为边FG 的中点,连接PB 、PE 、在矩形ABCD 旋转过程中,的面积存在最大值,这个最大值为______.(第16题图)三、解答题(本大题共10小题,共68分,请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1(218.工厂质检员对甲员工近期生产的产品进行抽检,统计合格的件数,得到表格:抽取件数(件)501002003005001000合格频数4994192285m 950合格频率0.980.940.960.950.95n(1)表格中m 的值为______,n 的值为______;(2)估计任抽一件该产品是不合格品的概率为______;(3)该工厂规定,若每被抽检出一件不合格产品,需在相应员工奖金中扣除给工厂2元的材料损失费,今天甲员工被抽检了460件产品,估计要在他奖金中扣除多少材料损失费?19.如图,在中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)当,则当______°时,四边形BECD 是矩形.20.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A 、B 两个等级(A 级优于B 级),相应数据的统计图如下:3AB =2BC =()0180a a ︒<<︒BEP △-ABCD 50A ∠=︒BOD ∠=根据所给信息,解决下列问题:(1)______,______;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B 级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.21.(1)请用直尺(不带刻度)和圆规在图中作菱形BDEF ,要求点D 、E 、F 分别在边BC ,AC 和AB 上.(不写作法,保留作图痕迹);(2)若,,,则菱形BDEF 的边长为______.22.一些含根号的式子可以写成另一个式子的平方,如.设(其中a 、b 、m 、n 均为正整数),则有.∴,.这样可以把部分的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若,用含m 、n 的式子分别表示a 、b .得:______,______.(223.如图,在矩形ABCD 中,,,点M 为边DC 中点,连接AM ,过B 作于点连接CP 并延长交AD 于点E .a =b =60ABC ∠=︒75BAC ∠=︒AB =(231+=+(2a m +=+2222a m n +=++222a m n =+2b mn =a +(2a m +=+a =b =6AB =4AD =BP AM ⊥(1)求证:.(2)求AE 的长.24.如图①,在四边形ABCD 中,,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线交于点M 、N .(1)求证:;(2)如图②,在四边形ADBC 中,AB 与CD 相交于点O ,,E 、F 分别是BC 、AD 的中点,连结EF ,分别交DC 、AB 于点M 、N ,判断的形状.25.如图,在正方形ABCD 中,,E 是射线AC 上的一点,连接DE ,过点E 作,交直线AB 于点F .以DE 、EF 为邻边作矩形DEFG ,连接AG.AE EP =AB CD =BME CNE ∠=∠AB CD =OMN △4AB =EF ED ⊥(1)求证:矩形DEFG 是正方形;(2)如图1,当E 点在对角线AC 上时,求的值;(3)当时,求DE 的长.26.我们知道,四边形有两组对边,两组对角,两条对角线,已经研究了,如果四边形满足下列条件之一:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分,那么这个四边形是平行四边形.由此,进一步探究……(1)如图①,在四边形ABCD 中,,.求证:四边形ABCD 是平行四边形.(2)命题:如果四边形满足一组对边平行且另一组对边相等,那么这个四边形是平行四边形.如果这个命题是真命题,请证明;否则,请画出一个反例示意图,并标明所满足的条件.(3)命题:如果四边形满足一组对边相等且一条对角线平分另一条对角线,那么这个四边形是平行四边形.(Ⅰ)小明认为这是假命题,尝试画出反例,如图②,他先画出四边形ABCD 的一条边AB ,一条对角线BD .请你利用无刻度直尺和圆规在图②中画出反例.(保留作图痕迹,不写作法,可以有必要的文字说明)(Ⅱ)小明进一步探索发现,在四边形ABCD 中,,对角线AC 、BD 相交于点O ,且,,,对于满足条件的平行四边形ABCD 的个数随着AB 长度的变化而变化,直接写出平行四边形ABCD 的个数及对应的AB的长的取值范围.AG AE+CE =A C ∠=∠B D ∠=∠AB CD =OB OD =8BD =60AOB ∠=︒。
八年级数学人教新课标版(2012教材)下学期期末试卷(答题时间:90分钟) 一、选择题 1. 如果2(21)a =1−2a ,则( )A. a <12B. a ≤12C. a >12D. a ≥122. 某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同。
若知道某位选手的得分。
要判断他能否获奖,在下列ll 名选手成绩的统计量中,只需知道( )A. 平均数B. 众数C. 中位数D. 无法判断 3. 计算(2-1)(2+1)2的结果是( ) A. 2+1 B. 3(2-1) C. 1D. -1 4. 如图,正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 1B.2 C. 1.5 D. 2 5. 一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过( ) A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限*6. 你喜欢看篮球比赛吗?美国休斯敦火箭队为了能够重塑昔日辉煌,在这个夏天的转会市场上引爆了一个“重磅炸弹”,他们用弗朗西斯交换来两届得分王麦格雷迪,下表为休斯球龄(年)1 2 3 6 7 9 10 12 13 人数 41 2 3 1 1 2 2 1 A. 1,6 B. 6,1 C. 1,1 D. 6,3*7. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定*8. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A. 1.5B. 2C. 2.25D. 2.5**9. 把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A. 1<m <7 B. 3<m <4 C. m >1 D. m <4**10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A. 1B. 2C. 4-22D. 32-4二、填空题 11. 某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是________。
人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。
A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( )。
A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。
A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。
A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。
A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。
A.24B.16C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。
通州区2022—2023学年第二学期八年级期末质量检测数学试卷2023年6月考生须知1.本试卷共6页,共三道大题,27个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 五边形的外角和等于()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和等于360°解答.【详解】解:五边形的外角和是360°.故选B.【点睛】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.2. 志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A .不是中心对称图形,故此选项不符合题意;B .是中心对称图形,故此选项符合题意;C .不是中心对称图形,故此选项不符合题意;D .不是中心对称图形,故此选项不符合题意;故选B .【点睛】本题主要考查了中心对称图形的定义,解题的关键在于能够熟练掌握中心对称图形的定义. 3. 用配方法解方程2430x x --=,配方后方程是( )A. 2(2)7x -=B. 2(2)7x +=C. 2(2)1x -=D. 2(2)1x +=【答案】A【解析】 【分析】将方程常数移到右边,再配方—方程两边同时加上4即可得到答案.【详解】解:方程2430x x --=,移项得:243x x -=,配方得:2447x x -+=,即()227x -=,故选:A .【点睛】此题考查了解一元二次方程的方法—配方法,熟练掌握完全平方公式是解题的关键.4. 矩形具有而菱形不具有的性质是( ).A. 两组对边分别平行B. 对角线相等C. 对角线互相平分D. 两组对角分别相等 【答案】B【解析】【分析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:【详解】A .矩形与菱形的两组对边都分别平行,故本选项错误,不符合题意;B .矩形的对角线相等,菱形的对角线不相等,故本选项正确,符合题意;C .矩形与菱形的对角线都互相平分,故本选项错误,不符合题意;D .矩形与菱形的两组对角都分别相等,故本选项错误,不符合题意.故选B .5. 某工厂由于管理水平提高,生产成本逐月下降.原来每件产品的成本是1600元,两个月后降至900元,的若产品成本的月平均降低率为x ,下面所列方程正确的是( )A. ()216001900x -=.B. ()160012900x -=.C. ()216001900x-=D. ()16001900x -= 【答案】A【解析】【分析】根据原价(1)n x ⨯+=现价直接列式求解即可得到答案;【详解】解:由题意可得, ()216001900x -=,故选A .【点睛】本题考查一元二次方程解决平均变化的实际应用题,解题的关键是熟练掌握平均变化的等量关系式原价(1)n x ⨯+=现价.6. 已知一次函数2y x =-+ ,那么下列结论正确的是( )A. y 的值随 x 的值增大而增大B. 图象经过第一、二、三象限C. 图象必经过点()0,2D. 当2x < 时,y <0 【答案】C【解析】【分析】根据一次函数的性质逐项进行分析即可.【详解】解:A 、由于一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,故该选项不符合题意;B 、一次函数y =-x +2的k =-1<0,b =2>0,所以该函数过一、二、四象限,故该选项不符合题意;C 、将(0,2)代入y =-x +2中得2=0+2,等式成立,所以(0,2)在y =-x +2上,故该选项符合题意;D 、一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,所以当x <2时,y >0,故该选项不符合题意.故选:C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的相关知识是解题的关键.7. 方差的统计含义:表示一组数据的每个数( )A. 偏离它的众数的差的平均值B. 偏离它的平均数的差的绝对值的平均值C. 偏离它的中位数的差的平方数的平均值D. 偏离它的平均数的差的平方数的平均值【答案】D【解析】【分析】根据方差的含义求解即可.【详解】解:方差的统计含义:表示一组数据的每个数偏离它的平均数的差的平方数的平均值,故选:D.【点睛】题目主要考查方差的定义,理解此定义是解题关键.8. 下面的四个问题中都有两个变量:变量y与变量x之间的函数关系可以用如图所示的图象的是()A. 汽车从A地匀速行驶到B地,汽车的行驶路程y与行驶时间xB. 用长度一定的绳子围成一个矩形,矩形的一条边长y与另一条边长xC. 将水匀速注入水箱中,水箱中的水量y与注水时间xD. 在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x【答案】B【解析】【分析】A根据汽车的行驶路程y随行驶时间x的增加而增加判断即可;B根据矩形的周长公式判断即可.C根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;【详解】解:汽车从A地匀速行驶到B地,根据汽车的行驶路程y随行驶时间x的增加而增加,故A不符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形的一条边长y随另一条边长x的增加而减少,是一次函数关系,故B符合题意;将水匀速注入水箱中,,根据水箱中的水量y随注水时间x的增加而增加,故C不符合题意;在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x成正比例;故D不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是B.故选:B.【点睛】本题考查了利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共8个小题,每小题2分,共16分)9. 在平面直角坐标系xoy 中,点()3,4A -和点()3,4B 关于______轴对称.【答案】y【解析】【分析】根据两点纵坐标相同,横坐标互为相反数即可得到答案;【详解】解:∵点()3,4A -和点()3,4B 两点纵坐标相同,横坐标互为相反数,∴A 、B 两点关于y 轴对称,故答案为:y .【点睛】本题考查坐标系中关于坐标轴对称点的特征:关于谁对称谁不变,另一个互为相反数. 10. 函数6y x -x 的取值范围是_______.【答案】x≥6.【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,即可解答. 【详解】6x -60x -≥,∴6x ≥.故答案为:6x ≥. 考点:1.函数自变量的取值范围;2.二次根式有意义的条件. 11. 如图所示,某居民小区为了美化居住环境,要在一块三角形ABC 空地上围一个四边形花坛BCFE ,已知点E 、F 分别是边AB AC 、的中点,量得16BC =米,则EF 的长是______米. 【答案】8 【解析】 【分析】由题意知,EF 是ABC 的中位线,根据12EF BC =,计算求解即可. 【详解】解:由题意知,EF 是ABC 的中位线,的∴182EF BC ==, 故答案为:8.【点睛】本题考查了中位线.解题的关键在于熟练掌握中位线的性质,平行于底边且等于底边的一半. 12. 已知关于x 的方程x 2+3x +k =0的一个根是-1,则k 的值是_____.【答案】2【解析】【分析】将=1x -代入x 2+3x +k =0中,即可求出k 的值.【详解】解:将=1x -代入x 2+3x +k =0中可得:()()21310k -+⨯-+=解得2k =故答案为:2.【点睛】本题考查的是一元二次方程的根,即方程的解的定义:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.13. 已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是_____..【答案】1【解析】【详解】解:∵关于x 的一元二次方程220x x m ++=有两个相等的实数根,∴∆=0,∴4﹣4m=0,∴m=1,故答案为1.14. 《九章算术》是中国传统数学最重要的著作,在《九章算术》中的勾股卷中有这样一道题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思为:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原处竹子3尺远,则原处还有几尺的竹子?这个问题中,如果设原处还有x 尺的竹子,则可列方程为______.(注:1丈=10尺)【答案】()22910x x +=-【解析】【分析】竹子折断后刚好构成一个直角三角形,设竹子折断处离地面x 尺,则斜边长为()10x -尺,利用勾股定理求解即可.【详解】解:设竹子折断处离地面x 尺,则斜边长为()10x -尺,根据勾股定理:()222310x x +=-,故答案为:()222310x x +=-. 【点睛】本题考查了勾股定理,熟练掌握勾股定理的方程思想是解题的关键,学会数形结合将实际转化成数字问题.15. 下表记录了四名运动员100米短跑几次选拔赛的成绩,现要选一名成绩好且发挥稳定的运动员参加市运动会100米短跑项目,应选择______. 甲 乙 丙 丁平均数(秒) 12.2 12.1 12.2 12.1方差6.3 5.2 5.8 6.1【答案】乙【解析】【分析】先比较平均数,平均数相同时选择方差较小的参加比赛.【详解】解:...平均数非常接近,但乙的方差最小,.选择乙参加比赛.故答案为乙.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16. 如图,在ABCD Y 中,O 为AC 的中点,点E ,M 为ABCD Y 同一边上任意两个不重合的动点(不与端点重合),EO MO ,的延长线分别与ABCD Y 的另一边交于点F ,N ,连接EN MF ,,下面四个推断:.EF MN =.EN MF ∥.若ABCD Y 是菱形,则至少存在一个四边形ENFM 是菱形.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形其中,所有正确的有______.(填写序号)【答案】..##④②【解析】【分析】由“ASA ”可证EAO FCO ≌,EAO FCO ≌,可证四边形EMFN 是平行四边形,可得EN MF ∥,EF 与MN 不一定相等,故.错误,.正确,由菱形的判定和性质和矩形的判定可判断.错误,.正确.【详解】解:如图1,.O 为ABCD Y 对角线AC 的中点,.OA OC =,AD BC ∥,.EAO FCO ∠=∠,在.AOE 和.COF 中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,.()ASA AOE COF ≌△△,.AE CF =,同理可得:AM CN =,.AM AE CN CF -=-,即EM FN =;又.EM FN ∥,.四边形EMFN 是平行四边形,.EN MF ,故.正确;根据现有条件无法证明EF MN =,故.错误.若平行四边形ABCD 是菱形,则AC BD ⊥,.90AOD ∠=︒,.点E ,M 为AD 边上任意两个不重合的动点(不与端点重合),.90EOM ∠<︒,.四边形EMFN 不可能是菱形,故.不正确;如图2,当OE OM =时,则EF MN =,∵四边形EMFN 是平行四边形,.边形EMFN 是矩形,又.存在无数个点E 、M 满足OE OM =,.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形,故.正确;故答案为:.④.【点睛】本题考查了矩形的判定,菱形的判定和性质,平行四边形的性质与判定,全等三角形的判定和性质,证明四边形ENFM 是平行四边形是解题的关键.三、解答题(本题共68分,第17题10分;第18、20、22、23、25每题5分;第19、21、24每题6分;第26题8分;第27题7分)解答应写出文字说明、演算步骤或证明过程. 17. 解方程:(1)23270x -=;(2)2420x x --=【答案】(1)13x =,23x =-(2)126x =,226x =【解析】【分析】(1)利用直接开平方法,即可解方程;(2)利用配方法,即可解方程.【小问1详解】解:23270x -=,移项得 2327x =,系数化为1得29x =解得13x =,23x =-【小问2详解】解:2420x x --=,移项得2x 4x 2-=,配方得2446x x -+=,即()226x -=, 开方得26x -= 解得126x =,226x =【点睛】本题考查了解一元二次方程,熟练挑选正确地方法解一元二次方程是解题的关键. 18. 一次函数()0y kx b k =+≠的图像经过点()0,2和()2,2-.(1)求这个一次函数的表达式;(2)画出该函数的图像;(3)结合图像回答:当0y <时,x 的取值范围是______.【答案】(1)22y x =-+(2)图见解析 (3)1x >【解析】【分析】(1)将两点代入函数解析式求解即可得到答案;(2)描出两点,过两点画直线即可得到答案;(3)根据图像找到x 轴下方图像的图像规律即可得到答案;【小问1详解】解:将点()0,2和()2,2-代入()0y kx b k =+≠可得,222b k b =⎧⎨+=-⎩, 解得:22b k =⎧⎨=-⎩, ∴22y x =-+;【小问2详解】在直角坐标系中描出点()0,2和()2,2-,过两点画直线如下图所示,;【小问3详解】解:根据图像可得,当0y =时,220x -+=,1x =,∴当0y <时,x 的取值范围是1x >,故答案为:1x >;【点睛】本题考查求一次函数解析式,画一次函数图像,根据一次函数与不等式的关系结合图像求解,解题的关键是求出解析式正确画出图像.19. 下面是小乐设计的“利用已知矩形作一个内角为45°角的菱形”的尺规作图过程.已知:矩形ABCD .求作:菱形AEFD ,使45EAD ∠=︒.作法:.作BAD ∠的角平分线AP ;.以点A 为圆心,以AD 长为半径作弧,交射线AP 于点E ;.分别以点E 、D 为圆心,以AD 长为半径作弧,两弧交于点F ,连结EF 、DF .则四边形AEFD 即为所求作的菱形.(1)请你用直尺和圆规,依作法补全图形(保留作图痕迹);(2)填空:.四边形AEFD 是菱形的依据__________________;.连结BE 、CF ,四边形BEFC 的形状是______,依据是__________________.【答案】(1)见解析 (2).四条边都相等的四边形是菱形;.平行四边形,一组对边平行且相等的四边形是平行四边形【解析】【分析】(1)根据作法可知:AD AE EF DF ===,由此即可得出四边形是菱形(2)根据菱形和矩形性质可证明EF BC ∥,EF BC =,继而判定四边形BEFC 是平行四边形.【小问1详解】解:如图所示,,【小问2详解】.由作法可知:AD AE EF DF ===,.四边形AEFD 是菱形,依据是:四条边都相等的四边形是菱形;.连结BE 、CF ,.四边形AEFD 是菱形,.AD EF =,AD EF ,.在矩形ABCD 中,AD BC =,AD BC ∥,.EF BC ∥,EF BC =,.四边形BEFC 是平行四边形,依据是:一组对边平行且相等的四边形是平行四边形。
2023年春季学期八年级下册3月份月考模拟考试数学试题卷(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(共12题,每题3分,共36分)1.下列式子中,属于最简二次根式的是()ABC D 2.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,233.下列运算,结果正确的是()A =B .3=C 3=D =4.下列为勾股数的是()A .2,3,4B .5,12,13C .6,7,8D5)A BC D 6.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米.A .0.4B .0.6C .0.7D .0.87.如图,数轴上点A 对应的数是-1,点C 对应的数是-3,BC ⊥AC ,垂足为C ,且BC =1,以A 为圆心,AB 长为半径画弧,交数轴于点D ,则点D 表示的数为()A .1-B C .1-D8.已知三角形三边长为a ,b ,c 2|8|(6)0b c -+-=,则ABC 是()A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形9是整数,则正整数n 的最小值是()A .2B .3C .4D .510.实数a ,b 在数轴上对应点的位置如图所示,化简|a |)A .﹣2a +bB .2a ﹣bC .﹣bD .b11.ABC ∆的三边长分别为,,a b c ,下列条件:①A B C ∠=∠-∠;②::3:4:5A B C ∠∠∠=;③()()2a b c b c =+-;④::5:12:13a b c =.其中能判断ABC ∆是直角三角形的个数有()A .1个B .2个C .3个D .4个12.如图所示,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第2个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第3个等腰Rt △ADE ……以此类推,第2022个等腰直角三角形的斜边长是()AB .2C .10112D .2022二、填空题(共4题,每题2分,共8分)13有意义,则x 的取值范围是___________.14.命题“等边三角形的三个内角相等”的逆命题是____________.15.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为_______cm .16()250b +-=,那么以a,b 为边长的直角三角形的第三边长为_______.三、解答题(共8题,共56分)17.(8分)计算:(1)-(2)11|(4)4π-⎛⎫-- ⎪⎝⎭18.(6分)先化简,再求值:222222211a a a a aa a a --++÷--,其中a 1.19.(6分)为了求出湖两岸A ,B 两点之间的距离,观测者小林在点C 设桩,使△ABC 恰好为直角三角形(∠B =90°),如图所示,通过测量得AC 长为160m ,BC 长为128m ,请求出图中A 、B 两点之间的距离.20.(7分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的,如图,为了安全起见,爆破点C周围半径400距离为600米,与公路上另一停靠站B的距离为800米,且CA CB米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.(7分)已知x=2y=(1)x2+2xy+y2;(2)x2﹣y2.23.(8分)如图,在R t△ABC中,∠C=90°,BC=8,AC=6,将△ABC沿AE折叠使点C恰好落在AB边上的点F 处.求BE的长.24.(8这样的式子,其实我们还可以将其进一步化简:===)()22212111-===-像这样,把代数式中分母化为有理数过程叫做分母有理化.化简:n为正整数);(3)+。
2022-2023学年第二学期反馈练习初二年级数学学科2023.3注意事项:1.本试卷满分100分,考试时间100分钟:2.所有的答案均应书写在答题卷上,按照题号顺序答在相应的位置,超出答题区域书写的答案无效:书写在试题卷上、草稿纸上的答案无效:3.字体工整,笔迹清楚。
保持答题纸卷面清洁。
一.选择题(共10小题,每题2分).1.下列图形中是中心对称图形但不是轴对称图形的是( )2.下列运算正确的是( )A.-x -y -x +y =x -y x +y B.a 2-b 2(a -b 2=a +bC.a 2-b 2(a -b )2=a -bD .x -11-x2=-1x +13.如果把分式3x +2yx +y中的x ,y 的值都扩大为原来的3倍,那么分式的值( )A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.保持不变4.如图,在平行四边形ABCD 中,∠A -∠B =50°,则∠A 的度数是()A.130° B.115°C.65°D.50°5.如图,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A.点A 与点A ′是对称点 B.BO =B ′O C.∠AOB =∠A ′OB ′D.∠ACB =∠C ′A ′B ′6.如图,AC 为菱形ABCD 的对角线,已知∠ADC =140°,则∠BCA 等于( )A.40°B.30°C.20°D.15°7.如图,四边形ABCD 的对角线交于点O ,下列条件不能判断四边形ABCD 是平行四边形( )A.OA =OC ,OB =OD B.AB =CD ,AO =CO C.AB =CD ,AD =BCD.∠BAD =∠BCD ,AB ∥CDABCD第4题图ABCOACB第5题图ABCDO第7题图ABCD第6题图8.如图,在△ABC 中,AD ⊥BC 于D ,E ,F 分别是AB ,AC 的中点,连接DE ,DF ,当△ABC 满足下列哪个条件时,四边形AEDF 为菱形( )A.AB =ACB.∠B =∠AC.BD =DFD.DE ⊥DF9.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为( )A.48B.24C.12D.610.在如图所示的平面直角坐标系中,△OA 1B 1是边长为4的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n B 2n +1.(n 是正整数)的顶点A 2n +1的坐标是( )A .(8n +2,23)B .(8n -2,23)C .(4n +1,3)D .(4n -1,3)二.填空题(共8小题,每题3分。
2021-2022学年树人八下第一次月考数学2022.3.19一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.纸.相.应.位.置.上)1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是(▲)A.B.C.D.2.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有(▲)①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.4个B.3个C.2个D.1个3.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是(▲)A.80 B.90 C.144 D.2004.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠DEC的度数是(▲)A.25° B.30° C.40° D.50°5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(▲)A.AB∥DC,AD∥BC B.AB∥DC,∠DAB=∠DCBC.AO=CO,AB=DC D.AB∥DC,DO=BO6.如图,平面内三点A 、B、C,AB=4√2,AC=3√2,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是(▲)A.5 B.5√2 C.7 D.7√2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题.纸.相.应.位.置.上)1.已知一组数据有60个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是▲ .2.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100 300 400 600 1000 2000 3000发芽的频数m96 284 380 571 948 1902 2848发芽的频率mn0.960 0.947 0.950 0.952 0.948 0.951 0.949那么这种油菜籽发芽的概率是▲(结果精确到0.01).9.如图,在等边△ABC中,AC=10,点O在AC上,且AO=4,点P是AB上一动点,连接OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是▲ .第5题第4题第3题第6题10.用反证法证明:“多边形中最多有三个锐角”的第一步是:假设 ▲ .11.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中16粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 ▲ 粒.12.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若217APD S cm ,227BQC S cm ,则阴影部分的面积为 ▲ .13.矩形ABCD 与矩形CEFG 如图放置,点B 、C 、E 共线,点C 、D 、G 共线,连接AF ,取AF 的中点H ,连接GH .若BC =EF =3,CD =CE =1,则GH = ▲ .14.如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ∥x 轴,AD =4,∠A =60°.将 菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是 ▲ . 15.如图,在△ABC 中,∠C =90°,AC =6,BC =8,点D 在AB 边上,DE ⊥AC ,DF ⊥BC ,垂足分别为点E 、F ,连接EF ,则线段EF 的最小值等于 ▲ .16.在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =4x +1以每秒2个单位的速度向下平移,经过 ▲ 秒该直线可将平行四边形OABC 的面积分为1:3两部分.三、解答题(本大题共9小题,共68分.请在答.题.纸.指.定.区.域.内作答,解答时应写全过程) 17.(本题满分8分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了八年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:A (0≤x <10),B (10≤x <20),C (20≤x <30),D (30≤x <40),E (x≥40),并将调查结果绘制了如图两幅不完整的统计图:第9题第12题第13题第14题第15题第16题根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若从八年级随机抽取一名学生,估计这名学生寒假在家做家务的总时间不低于20小时的概率.18.(本题满分6分)中秋节来临之际,小鹿家的蛋糕店开始出售月饼,于是制作了四个边长为50cm的正方形.广告牌准备挂在门店上,分别写着“中秋快乐”四个字,其中一个写着“秋”字的广告牌如图①.在将广告牌挂上去之前,小鹿想知道上面的“秋”字的面积是多大,但由于字体不规则无法直接测量,所以小鹿用如下的方法来估算“秋”字的面积:将一把黄豆随机撒在广告牌上,计算出在“秋”字区域内的黄豆颗数所占总颗数的频率,进而估算出“秋”字的面积占整个广告牌的比例,从而计算出面积.小鹿一共试验了10次,她将每一次得到的频率结果绘制成如图②所示的折线统计图.(1)一粒黄豆落在“秋”字区域是 (填“随机事件”“必然事件”“不可能事件”);(2)通过统计图估计黄豆落在“秋”字区域的概率为(精确到0.1);(3)请估计广告牌中“秋”字的面积.19.(本题满分6分)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.20.(本题满分8分)已知:如图,在□ABCD中,E,F分别是AB,CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.21.(本题满分8分)如图,等腰△ABC中,AB=AC,AD⊥BC交BC于D点,E点是AB的中点,分别过D,E两点作线段AC的垂线,垂足分别为G,F两点.(1)求证:四边形DEFG为矩形;(2)若AB=10,EF=4,求CG的长.22.(本题满分8分)已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.在图1中,只用圆规.....在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;在图2中,只用圆规.....在直线l外画出一点P,使得点A,P所在直线与直线l平行.23.(本题满分 6 分)如图,四边形ABCD 中,已知AB=CD,点E、F 分别为AD、BC 的中点,延长BA、CD,分别交射线FE 于P、Q 两点.求证:∠BPF=∠CQF.24.(本题满分 10 分)在 Rt△ABC 中,∠ACB=90°点D 是边AB 上的一个动点,连接CD.作AE∥DC,CE ∥AB,连接ED.(1)如图 1,当CD⊥AB 时,求证:AC=ED;(2)如图 2,当D 是AB 的中点时,①四边形ADCE 的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE 的面积为 .25.(本题满分 8 分)四边形ABCD 为正方形,点E 为线段AC 上一点,连接DE,过点E 作EF⊥DE,交射线BC 于点F,以DE、EF 为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG 是正方形;(2)若AB=2 2,CE=2,求CG 的长;(3)当线段DE 与正方形ABCD 的某条边的夹角是 40°时,直接写出∠EFC 的度数.2021-2022学年树人八下第一次月考数学2022.3.19解析版一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.纸.相.应.位.置.上)1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是(B)A.B.C.D.2.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有(C)①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.4个B.3个C.2个D.1个3.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是(A)A.80 B.90 C.144 D.2004.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠DEC的度数是(D)A.25° B.30° C.40° D.50°5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(C)A.AB∥DC,AD∥BC B.AB∥DC,∠DAB=∠DCBC.AO=CO,AB=DC D.AB∥DC,DO=BO6.如图,平面内三点A 、B、C,AB=4√2,AC=3√2,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是(C)A.5 B.5√2 C.7 D.7√2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题.纸.相.应.位.置.上)1.已知一组数据有60个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是▲202.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100 300 400 600 1000 2000 3000发芽的频数m96 284 380 571 948 1902 2848发芽的频率mn0.960 0.947 0.950 0.952 0.948 0.951 0.949那么这种油菜籽发芽的概率是▲0.95(结果精确到0.01).9.如图,在等边△ABC中,AC=10,点O在AC上,且AO=4,点P是AB上一动点,连接OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是▲6 .10.用反证法证明:“多边形中最多有三个锐角”的第一步是:假设至少有四个角是锐角▲ .第5题第4题第3题第6题11.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中16粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为625粒.12. 如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若217APDS cm,227BQCS cm,则阴影部分的面积为▲44 .13.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=2.14.如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴,AD=4,∠A=60°.将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是▲ .023,15.如图,在△ABC中,∠C=90°,AC=6,BC=8,点D在AB边上,DE⊥AC,DF⊥BC,垂足分别为点E、F,连接EF,则线段EF的最小值等于▲ .4.816.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过▲ 秒该直线可将平行四边形OABC的面积分为1:3两部分.4或8三、解答题(本大题共9小题,共68分.请在答.题.纸.指.定.区.域.内作答,解答时应写全过程)17.(本题满分8分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了八年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40),并将调查结果绘制了如图两幅不完整的统计图:第14题第15题第9题第12题第13题第16题根据统计图提供的信息,解答下列问题: (1)本次共调查了 名学生; 50(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m = 32 ,类别D 所对应的扇形圆心角α的度数是 57.6 度;(4)若从八年级随机抽取一名学生,估计这名学生寒假在家做家务的总时间不低于20小时的概率.18.(本题满分6分)中秋节来临之际,小鹿家的蛋糕店开始出售月饼,于是制作了四个边长为50cm 的正方形.广告牌准备挂在门店上,分别写着“中秋快乐”四个字,其中一个写着“秋”字的广告牌如图①.在将广告牌挂上去之前,小鹿想知道上面的“秋”字的面积是多大,但由于字体不规则无法直接测量,所以小鹿用如下的方法来估算“秋”字的面积:将一把黄豆随机撒在广告牌上,计算出在“秋”字区域内的黄豆颗数所占总颗数的频率,进而估算出“秋”字的面积占整个广告牌的比例,从而计算出面积.小鹿一共试验了10次,她将每一次得到的频率结果绘制成如图②所示的折线统计图.(1)一粒黄豆落在“秋”字区域是 随机 (填“随机事件”“必然事件”“不可能事件”); (2)通过统计图估计黄豆落在“秋”字区域的概率为 0.2 (精确到0.1); (3)请估计广告牌中“秋”字的面积.500cm 281019.(本题满分6分)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;( a-3,b-7)(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.( -1.5,-2.5)20.(本题满分8分)已知:如图,在□ABCD中,E,F分别是AB,CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.答案:21.(本题满分8分)如图,等腰△ABC中,AB=AC,AD⊥BC交BC于D点,E点是AB的中点,分别过D,E两点作线段AC的垂线,垂足分别为G,F两点.(1)求证:四边形DEFG为矩形;(2)若AB=10,EF=4,求CG的长.答案:22.(本题满分8分)已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.在图1中,只用圆规.....在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;在图2中,只用圆规.....在直线l外画出一点P,使得点A,P所在直线与直线l平行.答案:23.(本题满分 6 分)如图,四边形ABCD 中,已知AB=CD,点E、F 分别为AD、BC 的中点,延长BA、CD,分别交射线FE 于P、Q 两点.求证:∠BPF=∠CQF.答案:24.(本题满分 10 分)在 Rt△ABC 中,∠ACB=90°点D 是边AB 上的一个动点,连接CD.作AE∥DC,CE ∥AB,连接ED.(1)如图 1,当CD⊥AB 时,求证:AC=ED;(2)如图 2,当D 是AB 的中点时,①四边形ADCE 的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE 的面积为 .答案:25.(本题满分 8 分)四边形ABCD 为正方形,点E 为线段AC 上一点,连接DE,过点E 作EF ⊥DE,交射线BC于点F,以DE、EF 为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2 2,CE=2,求CG 的长;(3)当线段DE 与正方形ABCD 的某条边的夹角是 40°时,直接写出∠EFC 的度数.答案:14。
八年级数学月考试题(总分150分 120分钟完卷)一、 选择题。
(每小题3分,共36分)。
1、若3,111--+=-ba ab ba b a则的值是( )A -2B 2C 3D -32、把分式方程12121=----xx x ,的两边同时乘以x-2,约去分母,得( )A 1-(1-x)=1B 1+(1-x)=1 c 1-(1-x)=x-2 D 1+(1-x)=x-2 3、已知k ba c ca b cb a =+=+=+,则直线y=kx+2k 一定经过( )A 第1、2象限B 第2、3象限C 第3、4象限D 第 1、4象限4、已知反比例函数xk y=的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定5、函数y x m =+与(0)m ym x=≠在同一坐标系内的图象可以是( )6、已知P 为函数y =x2图像上一点,且P 到原点的距离为2,则符合条件的点P 数为( )A.0个B.2个C.4个D.无数个7、如图2,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边……依此不断连接下去.通过观察与研究,写出第2008个正方形的边长a 2008为( )A.a 2008=4200712⎛⎫⎪⎝⎭B. a 2008=220072⎛⎫⎪⎪⎝⎭C. a 2008=4200812⎛⎫⎪⎝⎭D. a 2008=220082⎛⎝⎭8、已知,如图3,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D .12cm 29、适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580;④;25,24,7===c b a⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个10、下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有( )个A 、1B 、2C 、3D 、4 11、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形12、如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )A .xB .C . XD .12 34 5 图2 …(图3)A .B .C .D .二、填空题 (每小题4分,共24分)。
13、()231200841-+⎪⎭⎫⎝⎛--+-=14、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于 .15、已知点P (1,a )在反比例函数y =kx(k ≠0)的图象上,其中a =m 2+2m +3(m 为实数),则这个函数的图象在第______象限.16、如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:㎝),在上盖中开有一孔便于插吸管,吸管长为13㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露 在盒外面的管长为h ㎝,则h 的最小值大约为_______㎝. (精确到个位,参考数据:1.7,2.2≈≈≈)17、如下图,若梯形的两底长分别为4cm 和9cm ,两条对角线长分别为5cm 和12cm , 则该梯形的面积为 cm 2。
18、如图,l 是四形形ABCD 的对称轴,如果AD ∥BC ,有下列结论:①AB ∥CD②AB =BC ③AB ⊥BC ④AO =OC 其中正确的结论是 。
(把你认为正确..的结论的序号都填上)三、解答题 。
19、(每小题8分,共16分) (1) 已知bab a b ab a b a ---+=-2232,311求的值(2) 若0<x<1,且xx xx 1,61-=+求 的值20、(12分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求A O B △的面积.21.(12分) 如图,A 城气象台测得台风中心在A 城正西方向 320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向 移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么? (2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?xo y y x =l l k y x=(2)A a ,k A105 6吸管E AB22、(12分)阅读下面材料,并解决问题:(1)如图10,等边△ABC 内有一点P 若点P 到顶点A ,B ,C 的距离分别为3,4,5则∠APB =______,由于PA ,PB 不在一个三角形中,为了解决本题我们可以将△ABP 绕顶点A 旋转到△ACP ′处,此时△ACP ′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题: 已知如图11,△ABC 中,∠CAB =90°,AB =AC ,E 、F 为 BC 上的点且∠EAF =45°,求证:EF 2=BE 2+FC 2.23、(12分)如图,已知直线12yx =与双曲线(0)k y k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值; (2)若双曲线(0)k y k x=>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)k y k x=>于两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.24、(12分)如图,在等腰梯形ABCD 中,AD ∥BC , M 、N 分别为AD 、BC 的中点, E 、F 分别是BM 、CM 的中点。
(1)求证:△ABM ≌△DCM 。
(2)四边形MENF 是什么图形?请证明你的结论。
(3) 若四边形MENF 是正方形,则梯形的高与底边BC 有何数量关系?并请说明理由。
25、(14分)如图所示,在直角坐标系中,正方形ABOD 的边长为a ,O 为原点,点B 在X 轴的负半轴上,点D 在y 轴的正半轴上,直线OM 的解析式为x y 2=, 直线CN 过x 轴上的一点C (a 53-,0)且与OM 平行,现正方形以每秒为10a 的速度匀速沿x 轴正方向平行移动,设运动时间为t 秒,正方形被夹在直线CE 和OF间的部分为S ,(1)求点A 、B 、D 的坐标; (2)求梯形ECOD 的面积;(3)40<≤t 时,写出S 与t 的函数关系式FEN MD CBA P 'C PB A 图10图11 F E C B Ax八年级数学月考参考答案一、 选择题1---5 ADBAB 6-10 CBAAD 11-12二、 填空题13、2 14、2 15、在一、三象限 16、2 17、 三、解答题19(1) 提示:将所求式子的分子、分母同时除以ab 。
值为53(2)241,01,10,241,3241122-=-∴<-∴<<±=-=-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-xx xx x x x x x x x20,解:(1)∵点(21)A -,在反比例函数m y x=的图象上,(2)12m =-⨯=-∴.∴反比例函数的表达式为2y x=-.∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,.把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,.∵线段O C 将A O B △分成A O C △和B O C △,1113111212222A OB A OC B O C S S S =+=⨯⨯+⨯⨯=+=△△△∴.21、(1)作AP ⊥BD ,求出AP =160<200,会受影响。
(2)以A 为圆心,以200为半径画弧交BF 于C 、D ,连结AC ,可求出CD =240千米,受影响时间为6小时。
22、(1)150°、△ABP .(2)如图,由于AB =AC ,∠BAC =90°,所以可以将△ACF 绕点A 旋转90°,到△ABD的位置,即过点B 作BD ⊥BC ,截取BD =FC ,连结DE .则△ADB ≌△AFC ,又易证△ADE ≌△AFE ,所以DE =EF ,在Rt △DBE 中,由勾股定理,得DE 2=DB 2+BE 2,所以EF 2=BE 2+FC 2.23、解:(1) 点A 横坐标为4,∴当4x =时,2y =.∴点A 的坐标为(42),. 点A 是直线12y x =与双曲线(0)k y k x=>的交点,428k ∴=⨯=.(2)解法一:如图27-1,点C 在双曲线上,当8y =时,1x = ∴点C 的坐标为(18),.过点A C ,分别做x 轴,y 轴的垂线,垂足为M N ,,得矩形D M O N .32O N D M S =矩形,4O N C S =△,9C D A S =△,4O A M S =△.3249415A O C O N C C D A O A M O N D M S S S S S =---=---=△△△△矩形解法二:如图27-2,过点C A ,分别做x 轴的垂线,垂足为E F ,,点C 在双曲线8y x=上,当8y =时,1x =.∴点C 的坐标为(18),. 点C ,A 都在双曲线8y x=上,4C O E A O F S S ∴==△△ CO E C O ACE F A S S SS∴+=+△△△梯形.C O A C E F A S S ∴=△梯形.1(28)3152C E F A S =⨯+⨯= 梯形,15C O A S ∴=△.(3) 反比例函数图象是关于原点O 的中心对称图形,O P O Q ∴=,O A O B =.∴四边形A P B Q 是平行四边形.图27-21124644P O A A P B Q S S ∴==⨯=△平行四边形.设点P 横坐标为(04)m m m >≠且,得8()P m m,.过点P A ,分别做x 轴的垂线,垂足为E F ,,点P A ,在双曲线上,4P Q E A O F S S ∴==△△.若04m <<,如图27-3,P O E P O A A O F P E F A S S S S +=+ △△△梯形,6P O A P E F A S S ∴==△梯形.182(4)62m m ⎛⎫+-= ⎪⎝⎭∴·. 解得2m =,8m =-(舍去).∴(24)P ,.若4m >,如图27-4,A O F A O P P O E A F E P S S S S +=+ △△△梯形,6P O A P E F A S S ∴==△梯形.182(4)62m m ⎛⎫∴+-= ⎪⎝⎭, 解得8m =,2m =-(舍去).(81)P ∴,.∴点P 的坐标是(24)P ,或(81)P ,.图27-3图27-42013年春八年级数学月考答题卷20、(12分)。